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Bayesianism – Its Scope and Limits

Elliott Sober*

1. The Math and the Philosophy (Bayes’ Theorem ��  Bayesianism)

Bayes’ theorem is a consequence of the definition of conditional probability.  However, this

way of putting things tends to conceal a proviso that needs to be recognized.  What is true is that

Pr(H *O) = Pr(O * H)Pr(H)/Pr(O),

if each quantity mentioned in the theorem is well-defined.

It is not inevitable that all propositions should have probabilities.  That depends on what one

means by probability, a point to which I’ll return.  The claim that all propositions have probabilities is a

philosophical doctrine, not a theorem of mathematics.  This is where Bayesianism begins and Bayes’

theorem leaves off.  But there is more to Bayesianism that this.  Bayesianism, in its strongest

formulation, maintains not just that propositions have probabilities, but that all epistemological concepts

that bear on empirical inquiry can be understood in terms of the probabilistic relationships described by

Bayes’s theorem.  Of course, more modest Bayesianisms also can be contemplated.

As an illustration of what Bayesianism amounts to, consider the continuing philosophical

puzzlement over the epistemic significance of simplicity.  Scientists and philosophers often maintain that

simplicity or parsimony is relevant to  evaluating the plausibility of hypotheses.  The challenge to

Bayesianism is to map this informal talk of plausibility onto formal talk of probability.  More specifically,

a double application of Bayes’ theorem yields the following comparative principle:

Pr(H1 *O) > Pr(H2 *O) if and only if Pr(O *H1)Pr(H1) > Pr(O * H2)Pr(H2).

If “more plausible” is interpreted to mean higher posterior probability, then there are just two

ingredients that Bayesianism gets to use in explaining what makes one hypothesis more plausible than

another.  This means that if simplicity does influence plausibility, it must do so via the prior probabilities

or via the likelihoods.1  If the relevance of simplicity cannot be accommodated in one of these two

ways, then either simplicity is epistemically irrelevant or (strong) Bayesianism is mistaken.2

2. The Usual Objection – Priors
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The standard objection to Bayesianism is to my mind correct.  It often does not make

 sense to talk about propositions’ having objective prior probabilities.  This is especially clear in the

case of hypotheses that attempt to specify laws of nature.  Newton’s universal law of gravitation, when

suitably supplemented with plausible background assumptions, can be said to confer probabilities on

observations. But what does it mean to say that the law has a probability in the light of those

observations? More puzzling still is the idea that it has a probability before any observations are taken

into account.  If God chose the laws of nature by drawing slips of  paper from an urn, it would make

sense to say that Newton’s law has an objective prior.  But no one believes this process model, and

nothing similar seems remotely plausible.  

Bayesians used to reply to this challenge by trying to specify a sensible version of the Principle

of Indifference.  This has turned out to be a dead end.  The problem is that there is no unique way to

translate ignorance into an assignment of priors.  Consider my garden, which is a square plot of land

that is between 10 and 20 feet on a side.  Based on this information, what is the probability that the

garden is between 10 and 15 feet on each side?  It might seem natural to say that every length between

10 and 20 feet has the same  probability (density), in which case  the probability is ½ that each side is

between 10 and 15 feet .  However, the information I gave you is equivalent to saying that the garden

has an area that is between 100 and 400 square feet.  This description makes it sound natural to say

that every area between 100 and 400 square feet has the same probability, in which case the

probability is ½ that the area is between 100 and 250 square feet.  However, this entails that the

probability is ½ that the square is between 10 and %250 = 15.8 feet on a side.  Applying the principle

simultaneously to length and to area leads to contradiction.  If the principle is to apply to just one of

these, which should it be?  No satisfactory answer has ever been provided.

Most contemporary Bayesians have given up on objective Bayesianism, and have gone the

subjective route.  If Newton’s law of gravitation does not have an objective prior probability, perhaps

each agent has a subjective degree of belief in that proposition before the evidence starts to roll in.  If

point values cannot be assigned to these degrees of belief, perhaps they can be said to fall in reasonably

well-defined intervals.  There are interesting questions to be addressed here concerning this

psychological hypothesis.  But even supposing that agents have subjective degrees of belief, my

problem with subjective Bayesianism is that subjective prior probabilities do not have probative force.  

To explain what I mean by this, I want to examine the fairly standard evolutionary idea that the

(near) universality of the genetic code is evidence that all organisms now alive trace back to a single

common ancestor.  Crick (1968) argued that the code now in use is a “frozen accident” – which

nucleotide triplet codes for which amino acid is functionally arbitrary. If this is right, it is clear why the

universality of the code favors the hypothesis of one common ancestor over the hypothesis that current

life traces back to twenty-seven separate start-ups.  The evidence discriminates between the two

hypotheses in this way because there is a likelihood inequality:

Pr(the code is universal *one common ancestor) > 
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Pr(the code is universal * 27 mutually unrelated groups).

This reasoning is grounded in objective (if not incontrovertible) considerations about the evolutionary

process.  What would be added to this if one specified one’s subjective degrees of prior belief in the

two hypotheses?  People may have different feelings here.  And even if people have the same feeling, I

don’t see why that common feeling is epistemologically relevant.  If science is about the objective and

public evaluation of hypotheses, these subjective feelings do not have scientific standing.3  When

scientists read research papers, they want information about the phenomena under study, not

autobiographical remarks about the authors of the study.  A report of the author’s subjective posterior

probabilities blends these two inputs together.  This is why it would be better to expunge the subjective

element and let the objective likelihoods speak for themselves.

I am not suggesting that we should avoid Bayesian thinking even in the privacy of our own

homes.  If you have a subjective degree of belief in a hypothesis, by all means use Bayes’ theorem to

update that degree of belief as you obtain new evidence.   For those of us who feel at a loss to say

anything about the plausibility that many hypotheses have in the absence of evidence, this is an invitation

we will want to decline.  However, the most important point is that when opinions clash, the

disagreement cannot be resolved by pointing to the fact that different agents have different subjective

priors.  If the disagreement boils down to this, the agents have simply agreed to disagree.

Consistent with this objection to (strong) Bayesianism, there remains an important domain of

scientific problems in which Bayesianism is entirely legitimate.  When the hypotheses under

consideration describe possible outcomes of a chance process (Hacking 1965, Edwards 1972), it can

make perfect sense to talk about objective prior and posterior probabilities.  If you draw at random

from a standard deck of cards, the probability that you’ll draw the six of spades is 1/52.  This is a “valid

prior”, but not because it is obtained a priori from some version of the Principle of Indifference, and

not because it reports your subjective degree of belief.  The prior is legitimate because it is based on

empirical information about the process at work.4   There are many contexts in which Bayesianism has

important applications -- medical diagnosis and legal proceedings provide plenty of examples.  My

point is just that Bayesianism can’t be the whole story about scientific inference.

3. The Retreat to Likelihoodism

As the example about the universality of the genetic code suggests, likelihoods are often  more

objective than prior probabilities.  This makes it attractive to regard likelihood as an epistemology unto

itself (Edwards 1972, Royall 1997).  In doing so, one is changing the question one expects one’s

epistemology to answer.  As Royall points out, likelihoods don’t tell you what to believe or how to act

or which hypotheses are probably true; they merely tell you how to compare the degree to which the

evidence supports the various hypotheses you wish to consider.
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Likelihoodism5  is sometimes criticized for entailing that perfectly absurd hypotheses often have

likelihoods that cannot be bettered. If you draw the six of spades from a deck of cards,

the hypothesis that this was due to the intervention of an evil demon bent on having you draw that very

card has a likelihood of unity, but few of us would regard this hypothesis as very plausible.  Doesn’t it

sound strange to say that your drawing the six of spades supports the demon hypothesis more than it

supports the hypothesis that the card was drawn at random from a normal deck?  Yet this is precisely

what likelihoodism asserts.

Whatever the merits of this objection, it is not something that a Bayesian should embrace.  The

reason is that Bayes’s theorem tells us that the observation of the six of spades confirms the demon

hypothesis, in the sense that it raises its probability.  This is the familiar point that when a hypothesis

entails an observation, and the observational outcome was not certain to occur, and the hypothesis’s

prior probability is neither zero nor one,6  the observation confirms.  It is entirely consistent with this

point that the probability of the demon hypothesis remains very low and the normal hypothesis’

probability remains very high.  But if confirmation concerns the diachronic question of how probabilities

change rather than the synchronic question of what a probability’s absolute value is, then Bayesians

have to concede that the observation of the six of spades confirms the demon hypothesis.  If so, they

should not cast a jaundiced eye on the likelihoodist’s claim about differential support.

Likelihoodists can and should admit that the demon hypothesis is implausible or absurd,

notwithstanding the fact that it has a likelihood of unity relative to the single observation under

consideration.  It’s just that likelihoodists decline to represent this epistemic judgment by assigning the

hypothesis a probability.  Likelihoodist epistemology is modest in its ambitions; support gets

represented formally, but plausibility does not.  It thereby contrasts with (strong) Bayesianism, which,

as I’ve explained, aims to characterize all genuine epistemic concepts.

There’s another Bayesian criticism of likelihoodism that I want to consider.  This is the idea that

likelihoods have epistemic significance only when they are used in the context of Bayes’ theorem. 

Bayesians sometimes present this claim as if it were obvious, but it isn’t.  Why is  Edwards (1972, p.

100) wrong when he endorses Fisher’s (1938) view that likelihood is a “primitive postulate” -- it stands

on its own and requires no more ultimate justification?  Furthermore, it should be clear that the

likelihood principle can be evaluated in the same way that any philosophical explication can be – by

seeing if it accords with and systematizes intuitions about examples.  Finally, I should add that there are

nonBayesian inferential frameworks in which likelihood plays a prominent role (Forster and Sober

2002); I’ll mention one of these at the end of this paper.

4. The Trouble with Likelihoods

Likelihoodism’s objection to Bayesianism comes back to haunt it when one considers

composite hypotheses.  A simple statistical hypothesis confers a sharp probability on each possible
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observation.  Composite hypotheses do not.  When composite hypotheses have objective likelihoods,

their values are often unknown; often they cannot be said to have objective likelihoods at all.

Composite hypotheses are frequently disjunctions – whether finite or infinite – of simple

hypotheses.  When this is so, their likelihoods are averages.  Consider, for example, how the standard

Mendelian model of reproduction may be used to compute the likelihoods of different hypotheses about

the genotypes of an organism’s parents, given an observation of the offspring’s genotype:

Pr(Offspring is Aa *Parents are AA and AA ) = 0

Pr(Offspring is Aa *Parents are AA and Aa ) = ½

Pr(Offspring is Aa *Parents are AA and aa) = 1.0

Pr(Offspring is Aa *Parents are Aa and Aa) = ½

Pr(Offspring is Aa *Parents are Aa and aa) =  ½

Pr(Offspring is Aa *Parents are aa and aa) = 0.

Hypotheses about the genotype of the parental pair are simple.  However, the hypothesis (H1) that the

offspring’s mother is AA is composite; its likelihood is an average:

Pr(Offspring is Aa *Mother is AA) = 

Pr(Offspring is Aa *Mother is AA & Father is AA)Pr(Father is AA *Mother is AA) + 

Pr(Offspring is Aa *Mother is AA & Father is Aa)Pr(Father is Aa *Mother is AA) + 

Pr(Offspring is Aa *Mother is AA & Father is aa)Pr(Father is aa *Mother is AA) =

(0)w1 + (½)w2  + (1)w3     (where w1 + w2 + w3 = 1.0).

The hypothesis H1 that the mother was AA is a disjunction of simple hypotheses – either she was AA

and the father was AA, or she was AA and the father was Aa, or she was AA and the father was aa.

The same point holds with respect to the hypothesis (H2) that the mother was a heterozygote. 

However,  in this case the relevant simple hypotheses about the parental pair confer the same

probability on the observation, namely ½..  This means that H2's likelihood is ½.  The likelihoods of the

two hypotheses, as a function of the father’s genotype, are depicted in Figure 1.

Figure 1

Which hypothesis, H1or H2, has the higher likelihood?  To answer this question, we must

evaluate the likelihood of H1, but to do this we have to know the values of the weighting terms w1, w2,

and w3, which represent the properties of the mating scheme by which males and females in the parental

generation came together to reproduce.  If one had empirical information about whether mating was

random or assortative (and to what degree), there would be no problem.  But in the absence of such

information, it is hard to see how values for these weighting terms can be specified unless one regards
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them as reflecting one’s subjective degrees of belief. 

In this example the weighting terms are “nuisance parameters.”  Our interest is in inferring the

mother’s genotype, but the father’s genotype gets in the way.   One solution that is sometimes

employed in science is to estimate the values of nuisance parameters by finding the values for those

parameters that maximize the likelihood of the composite hypothesis in question. In the case at hand, it

is easy to see that º 1 = 0, º 2 = 0, and º 3 = 1.0 are the values that maximize the likelihood of H1.  If

we assume that AA mothers always pair with aa fathers, we can conclude that H1 has a likelihood of 

unity and so is more likely than H2.

Although this procedure for handling nuisance parameters may seem to solve our problem, it

does not.  Rather, we have merely changed the subject.  We have not compared H1 and H2; instead,

we have compared L(H1) and H2, where L(H1) specifies a specific set of values for the nuisance

parameters in H1.  The likelihood of L(H1) is greater than the likelihood of H1, not equal to it.  H1 is

composite, but L(H1) is simple.   Instead of assessing the average likelihood of the composite

hypothesis with which we began, we have evaluated the likelihood of its likeliest special case.7

This example is artificial, but it illustrates a genuine issue that arises in scientific practice.  As a

more realistic example, consider the idea that the likelihood concept can be used to discriminate among

competing phylogenetic hypotheses (first proposed by Edwards and Cavalli-Sforza 1964; recently

reviewed by Lewis 1998).  Suppose we are trying to ascertain the phylogenetic relationships that

connect species X, Y, and Z and that our data consist of the characteristics these species are observed

to exhibit.   There are three possible phylogenetic trees 

-- (XY)Z, X(YZ), and (XZ)Y.   The first of these possibilities is depicted in the accompanying figure. 

The tips of the tree represent species that exist now; interior nodes represent common ancestors.  The

(XY)Z tree says that X and Y have a common ancestor that is not an ancestor of Z.

Figure 2

How can data on the similarities and differences these species exhibit be used to decide which

genealogical hypothesis is best supported?   The likelihood approach is to find the tree that confers the

highest probability on the data.  The problem, however, is that a phylogeny, by itself, does not tell us

how probable it is that the three species should have the characteristics we observe.  What is needed in

addition is a quantitative model of how different traits evolve in different lineages.  For example, the

value of Pr[Data * (XY)Z] depends on the rules of evolution that each trait obeys in the four branches

depicted in the accompanying figure and on the characteristics that the root species possesses.  The

likelihood of the tree topology is an average over the different possible values that these nuisance

parameters can take: 

Pr[Data * (XY)Z] = 3 i  Pr[Data * (XY)Z &Ni ]Pr(Ni * (XY)Z].
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The hypothesis (XY)Z is composite – it is an infinite disjunction in which each disjunct consists of the

topology (XY)Z with the nuisance parameters fixed at a particular set of values.  Biologists who use

maximum likelihood typically estimate the values of nuisance parameters from the data.  Thus, instead of

comparing the likelihoods of (XY)Z, X(YZ), and (XZ)Y, they compare the likelihoods of L[(XY)Z],

L[X(YZ)], and L[(XZ)Y].  The problem has been changed from one that is intractable to one that can

be solved. 

A solution to this problem that is truer to the tenets of likelihoodism is to identify regions of

parameter space where the likelihoods of the phylogenetic hypotheses have one ordering, and other

regions where they have another.   Perhaps when the nuisance parameters fall in one region, (XY)Z is

the hypothesis that makes the data most probable, whereas when the nuisance parameters fall in a

different region, X(YZ) is the hypothesis of maximum likelihood.  This conditional assessment does not

have the finality of the unqualified conclusion that (XY)Z is the maximum likelihood hypothesis.  Rather,

it points to further biological questions that must be answered if we wish to say more (Sober 1988).

The problem I have just surveyed – that composite hypotheses often do not have known

objective likelihoods – is not a problem for likelihoodism, if that philosophy is sufficiently modest, but it

is a problem for Bayesianism, if that philosophy is sufficiently immodest. Modest likelihoodists can and

do admit that the likelihoods of composite hypotheses often cannot be evaluated.  However, Bayesians

who want their epistemology to provide a complete account of scientific inference here confront a

second problem.  The difficulty with priors also attaches to likelihoods.8

5. A Further Problem for the Best-Case Strategy of Dealing with Nuisance Parameters

Although Bayesians and likelihoodists should not confuse the likelihood of a composite

hypothesis with the likelihood of its likeliest special case, it is worth exploring a further difficulty that

arises if one changes the subject in this way.  Let’s return to the topology depicted in the figure and

consider what a fully realistic model of evolution in that tree will look like.  We will want to have nine

nuisance parameters for each dichotomous character.  Eight of these are branch transition probabilities;

the ninth assigns a probability to the root species’ occupying character state 0.  This model

acknowledges that there can be between-trait and within-trait heterogeneity;

different traits can evolve according to different rules, and the rules that a trait follows on one branch

may differ from the rules that it follows on another.   The model says that heterogeneities are possible,

but it does not demand that they be actual.  Two different parameters may have different values, but

they also can have the same value.  In addition to these nine parameters for each trait, a fully realistic

model will also need parameters that represents the degree of independence with which each pair of

traits evolves in each branch.  The presence of these parameters in our model does not commit us to

saying that traits are correlated in their evolution,

but merely says that this is possible.  
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The complex model I have just described  is realistic, but it has an embarrassing consequence –

if we use this model and deploy the best-case solution to the problem of nuisance parameters, the result

is that all phylogenies have a likelihood of unity.  For example, consider a characteristic in which X is in

state 1, Y is in state 1, and Z is in state 0; it is easy to find values for the nine nuisance parameters that

pertain to this character’s evolution that entail that this distribution of characters has a probability of

unity.  When we move to another character that has a different distribution, we can do the same thing. 

Other topologies are no different. What this means is that it is impossible to discriminate among

phylogenetic hypotheses if we use the best case strategy in the context of a fully realistic model of the

evolutionary process.

This has not stopped evolutionary biology in its tracks.  Rather, biologists assign likelihoods to

tree topologies by using constrained models.  These constraints fall into two categories:

Within trait constraints:  The strongest version of this idea is that a trait’s probability of 

changing in a unit of time is the same everywhere in the tree.  A weaker constraint is that a

trait’s probability of changing in a unit of time is the same at any two simultaneous temporal

intervals.  In terms of the topology depicted in Figure 2, the latter constraint entails that e1 = e2,

but says nothing about the relationship of e1 and e3; the former says that e1 = e2 and that e1 = e3

if lineages 1 and 3 have the same durations.

Between trait constraints: Traits evolve independently of each other, and different traits in a

lineage follow the same rules of evolution.

This second category of constraints has been applied both globally, to all traits in the data, and locally,

within classes of traits.  

Although these constraints save the problem of phylogenetic inference from collapsing under its

own weight, they are manifestly unrealistic.  Do we really believe that a trait’s rules of evolution are

exactly the same in different lineages?   Do we really believe that different traits follow exactly the same

rules of evolution?   These are idealizations.9  What is clearly true is the unconstrained model, which

says that different traits may or may not evolve independently, that they may or may not follow the same

rules of evolution, and that a given trait may or may not follow the same rules in different lineages.  We

thus have arrived at a dilemma: we can use a realistic model and give up on the idea of inferring

phylogenies by best-case maximum likelihood, or we can use a constrained model to infer phylogenies,

but leave our inference vulnerable to the charge that the model used is not realistic.

As noted earlier, the best-case strategy for dealing with nuisance parameters does not conform

to the dictates of  likelihoodism, which is perfectly clear on the difference between the average

likelihood of a composite hypothesis H and the likelihood of the simple hypothesis L(H).

However, I doubt that this point will give pause to biologists who use this strategy to reconstruct

phylogenies.  This is because these biologists are frequentists, not likelihoodists; they use the  frequentist



9

technique known as the likelihood ratio test.10  This test  prevents the collapse I have just described.   

Instead of automatically opting for hypotheses of high likelihood, they ask whether more complex

hypotheses have likelihoods that are significantly greater than the likelihoods of simpler hypotheses. 

Not that all is well if one embraces frequentism to solve this problem.  In addition to the

conceptual objections that Bayesians and likelihoodists have developed against frequentism,

frequentism has a practical  limitation in the problem at hand – the frequentist’s likelihood ratio test

applies only to nested hypotheses.  This can be illustrated by considering our three competing tree

topologies and some of the process models already described. Consider a data set  that describes the

character states of each species for  ten dichotomous characters.  The accompanying table represents

the different best case hypotheses that are generated by bringing a tree topology together with a

process model and then finding the maximum likelihood estimate of the nuisance parameters.11  Models

in the same column are nested, but entries in different columns are not.12  Frequentism has no way to

implement diagonal comparisons.

################# ######
################# ######
################# ######
######

                                  tree topologies

        (XY)Z         X(YZ)          (XZ)Y

process

models

All characters evolve

independently (N90).

L[(XY)Z & N90] L[X(YZ) & N90] L[(XZ)Y & N90]

All characters evolve

independently and follow

the same rules (N9).

L[(XY)Z &  N9] L[X(YZ) &  N9] L[(XZ)Y &  N9]

All characters evolve

independently, follow the

same rules, and evolve at a

constant rate (N5).

L[(XY)Z &  N5] L[X(YZ) &  N5] L[(XZ)Y &  N5]

6. Simplicity – the Achilles Heel of (Strong) Bayesianism

In the list of process models displayed in the table, N5 is simpler than N9, and N9 is simpler

than N90. Don’t be misled by the lengths of the verbal descriptions; the relevant consideration is the

number of adjustable parameters.  Model N90 has 90 nuisance parameters – nine for each of the ten

character distributions in the data set.  Because it has so many parameters, this model is able to leave

open whether different traits evolve according to the same or different rules, and also whether a given
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trait follows the same rules in different branches.  In the table’s list of models, simpler models entail

models that are more complex.  This is the kind of situation that Popper (1959) was thinking about

when he equated simplicity with falsifiability.13  As Popper observed, the epistemic relevance of

simplicity in this instance cannot be captured by stipulating that simpler theories are more probable. If

N5 entails N90, N5 cannot be more probable than N90.

Howson (1988) correctly notes that there is no logical prohibition against assigning simpler

models higher priors when models are not nested.  However, Popper’s point remains true for nested

models.  What are we to conclude?  It may seem that the question that needs to be addressed is

whether scientists should compare nested models.  As noted before, they in fact do so; scientists are

often frequentists and the likelihood ratio test requires that models be nested.  Bayesians may reply that

this is a confusion from which scientists need to emancipate themselves.   Since nested models are not

incompatible, why should we regard them as competitors?  I’ll return to this question in a while; the

point I want to emphasize here is that the insistence on non-nested models does not pluck the Bayesian

fat from the fire.  This is because it is obscure what justification the Bayesian can offer for assigning

simpler models higher priors.   For example, suppose we reformulate N90 so that N9 is no longer

nested in it – let N90* use different parameters for different traits with the stipulation that different traits

cannot have exactly the same branch transition probabilities.  What justification could there be for

assigning N9 a higher prior than N90*?  If a gun were put to my head, I’d allow dimensionality

considerations to lead me to bet on just the opposite judgment -- I’d say that it is more probable that

two traits have different probabilities of evolving than that they have exactly the same probabilities of

evolving.   

If Bayesianism can’t capture the epistemic relevance of simplicity by defending an objective

ordering of prior probabilities, the other possibility is that it might be able to explain the relevance of

simplicity via the vehicle of likelihoods.  However, we have just seen that serious difficulties stand in the

way of this undertaking.  The likelihoods of composite hypotheses often cannot be evaluated

objectively.  And if we change the subject by using the best case strategy, the problem is that simpler

models inevitably come out with lower likelihoods, not higher ones.14  

I mentioned at the outset that Bayesianism has just two resources for explaining the epistemic

relevance of simplicity – priors and likelihoods.  Neither of these appears to be at all promising.  Does it

follow that Bayesianism is mistaken?  There is a way out to consider – perhaps one should deny that

simplicity has any epistemic relevance at all.  Perhaps simplicity is merely an aesthetic frill.  Scientists

like simpler theories for various reasons, but that does not mean that simplicity is epistemically

significant.

I think this way out is blocked for two reasons.  First, the practice of science makes it very hard

to believe that simplicity always counts for nothing.  It does no good for the Bayesian to point to

examples of scientific inference in which simplicity plays no role.  Granted, there are such cases. 

However, in biology and the social sciences, scientists frequently compare models that contain different
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numbers of adjustable parameters.  Simplicity is central to science because model selection is a

pervasive problem.

The second reason not to deny the epistemic import of simplicity is that there exists an

inferential framework that is neither Bayesian, nor likelihoodist, nor frequentist, which entails that

simplicity is epistemically relevant and explains why this is so.  This is the model selection framework

and criterion developed by H. Akaike (1973) and his school (see Sakamoto et al. 1986).  It turns out

that the simplicity of a model, when measured in terms of the number of adjustable parameters it

contains, is relevant to estimating how predictively accurate the model will be.  Akaike’s framework

and criterion are nonBayesian, in that no prior probabilities are invoked.  However, the criterion for

model selection that Akaike derives does say that the likelihood of a model’s likeliest special case is

relevant to estimating the model’s predictive accuracy.  Akaike (1973) describes his proposal as an

“extension” of the method of maximum likelihood.  Likelihood is relevant to estimating predictive

accuracy, but it is not the only thing that is relevant; simplicity is relevant too.15

Since this paper is about Bayesianism, not the work of Akaike, I won’t try to explain in any

detail how these ideas work.  However, I will make a few brief comments, which I hope will whet the

reader’s appetite.  Akaike suggested that the problem of model selection be conceived in terms of a

certain goal; the goal is not to find models that are true, but models that will be predictively accurate. 

This conception of the goal of model selection is what I mean by Akaike’s “framework.”  Akaike also

proposed a means for achieving that goal; he proved a theorem that describes how one can obtain an

unbiased estimate of a model’s predictive accuracy.  This theorem is the basis for what has come to be

called the Akaike information criterion (AIC).  This separation of Akaike’s framework from his

criterion is important; there may be circumstances in which AIC is not the best criterion to use in model

selection, even granting the goal of maximizing predictive accuracy.  The model selection literature

contains a good deal of discussion of this point.  My own view is not that AIC is the be-all and end-all;

what I find philosophically interesting is the Akaike framework and a certain feature that many model

selection criteria  share – that simplicity is relevant because it helps one estimate predictive accuracy.

Akaike’s idea of predictive accuracy has to be understood in terms of a two-step process.

Models that contain adjustable parameters make predictions in the following sense: first one draws a set

of data from the underlying distribution and uses that data to estimate the values of the model’s

parameters (by maximum likelihood estimation).   One then uses that fitted model to predict a new data

set drawn from the same distribution.  In terms of our previous notation, we use a model M to make a

prediction about new data by using the old data to find L(M) -- it is L(M) that makes a definite

prediction.  The predicted values may be close to the new data, or far away (as measured by the

Kulback-Leibler distance measure).   Imagine using the model repeatedly in this two-step process;

there will doubtless be some variation among these repetitions in terms of how well the fitted model

predicts new data.  The average performance of the model is what defines its predictive accuracy. 

The predictive accuracy of M is the expected likelihood of L(M).
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Having models that are predictively accurate may be a desirable goal, but how can one tell how

predictively accurate a model is apt to be?  That is, is predictive accuracy epistemically accessible?  

Akaike’s (1973) remarkable theorem provides an answer:

An unbiased estimate of the predictive accuracy of model M . Log-likelihood[L(M)] - k.

One takes the logarithm of the likelihood of the fitted model and subtracts k, the number of adjustable

parameters.16  Complex models, when fitted to the data, tend to have higher likelihoods than simpler

ones, but they also incur a larger penalty because of their complexity.  For a complex model to have a

higher AIC value than a simpler one, it isn’t enough that the complex model fit the data better; it must fit

the data better by a sufficient margin to overcome the fact that it is more complex.     

There is more to the Akaike framework than Akaike’s theorem.  For example, even though

AIC provides an unbiased estimate of a model’s predictive accuracy, one may want to know how

much error there is in this estimate.  Sakamoto et al. (1986) describe a theorem that addresses this

question (see Forster and Sober 1994).  The model selection literature explores this and other

properties of AIC and other model selection criteria.  In addition, Akaike’s concept of predictive

accuracy needs to be supplemented.  Akaike described what Forster (2002) calls interpolative

predictive accuracy; the concept of extrapolative predictive accuracy has interestingly different

properties.

Notice that it doesn’t matter to the Akaike framework or to AIC whether the models one

considers are nested or non-nested.  Comparing nested models makes sense because nested models

can make different predictions when fitted to the data.  It does seem strange to compare nested models

if the goal is to discover which model is true.  Since nested models are not in conflict, why does one

have to choose?  It is here that the Akaike framework is fundamental.  Bayesians typically see truth as

the goal of inference – the point of evaluating data is to say which of the competing theories one has

formulated has the highest probability of being true.  When predictive accuracy is substituted for truth as

the goal of inference, the epistemological landscape undergoes a fundamental change.

 

7. Conclusion

Objective Bayesianism has its place and so does subjective Bayesianism.  By “objective

Bayesianism,” I don’t mean a Bayesianism based on the principle of indifference (how could that be

objective?), but one in which priors are objectively justified by a plausible account of a chance process. 

When I say that subjective Bayesianism has its place, I mean that agents who have degrees of belief in a

proposition should use Bayes’s Theorem to update.  However, these two arenas for Bayesianism leave

a large void in the theory of scientific inference.  Many of the hypotheses of interest to science do not

have objective prior probabilities.  In addition, there are many composite hypotheses for which

objective likelihoods cannot be provided.  The reaction to these exigencies should not be a retreat to
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subjective Bayesianism.  This is because it is doubtful that people always have subjective degrees of

belief in hypotheses before they have any evidence in hand.  But more importantly, the scientific

enterprise aims to separate objective evidence from subjective preconception.  

These problems come vividly into focus when they are brought to bear on the question of why

simplicity matters in scientific inference.  Bayesians have two resources to use in framing an answer.

They can argue that simpler theories have higher prior probabilities or that they have higher likelihoods.  

When models are nested, it is impossible for the simpler model to have the higher prior (or posterior).  

For non-nested models, there is no logical contradiction in assigning simpler models higher priors, but

what could justify that assignment?  It is not enough that one has various prior degrees of belief.  The

question is why those assignments are right and others are wrong.  Hopes for a likelihood account of

the role of simplicity are likewise dim.17  Models containing adjustable parameters are composite, and it

often  is obscure how the likelihoods of composite hypotheses  can be compared objectively.  One

might be tempted to solve this problem by using the best-case strategy.  However, this renders simpler

hypotheses less likely, not more so.

Is it plausible to think that these problems for Bayesianism will be solved with more time and

hard work?  I tend to regard them as permanent and intractable.  In contemplating the prospects for

progress in this research program, it is worth considering the fact that simplicity is not a puzzlement in

the Akaike framework; rather, its justification is patent.  There are no prior probabilities here, and the

problem of evaluating the likelihoods of composite hypotheses does not arise.   I don’t want to suggest

that this newer framework is a paradise free of conceptual puzzles.  But it is a framework well worth

exploring, in view of Bayesianism’s scope and limits.

Figure 1 Caption: The likelihoods of two hypotheses about the mother’s genotype, relative to the

observation that the offspring’s genotype is Aa.  H2 say that the mother was Aa; this hypothesis confers

the same probability on the observation, regardless of what the father’s genotype was.  H1 says that the

mother was AA; what probability this hypothesis confers on the observation depends on the father’s

(unknown) genotype.

Figure 2 Caption: In this phylogenetic tree, there are nine nuisance parameters for each dichotomous

character (whose two possible states are 0 and 1).  For each lineage i (i=1,2,3,4), ei = Pr(lineage i

ends in state 1 * lineage i begins in state 0) and ri = Pr(lineage i ends in state 0 * lineage i begins in state

1).  In addition, there is one parameter that describes the state of the root –  Pr(R is in state 0). 
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2.Bayesians need not argue that simplicity is always relevant just by way of influencing priors, or that it

is always relevant just by way of influencing likelihoods.  See Sober (1990) for discussion.

3. It would be a different matter if one had an empirically well-confirmed theory that allowed one to say

how often life can be expected to emerge from nonlife in various environments, and how often whole

phylogenetic trees can be expected to go extinct.  A process theory of this kind would provide an

objective basis for the prior probabilities.  See Sober (1999) for discussion.  

4. The prior probability is properly so-called, not because it is a priori (it is not), but because it is in

place prior to one’s taking the new evidence into account.

5. By likelihoodism, I mean the comparative principle that O supports H1 more than O supports H2 if

and only if Pr(O * H1) > Pr(O * H2).  It is a further claim that degree of differential support is

measured by the likelihood ratio.  Formulations of the Likelihood Principle often combine these two

elements; see Forster and Sober (2002) for discussion.

6. Since Bayesians usually reserve priors of 0 and 1 for tautologies and contradictions, I take it that

they will want to assign the demon hypothesis an intermediate prior probability. 

7.  This “best-case procedure” is discussed by Kalbfleisch and Sprott (1970), by Edwards (1972, pp.

109-119), and by Royall (1998, pp. 158-159).

8. There is a Bayesian proposal for evaluating the average likelihoods of composite hypotheses.

This is Schwarz’s (1978) Bayesian information criterion (BIC).  This approach imposes a flat

distribution on parameter values that are near the data and a probability of zero on values that are far

away; in addition, it renders commensurable the average likelihoods of composite hypotheses

containing different adjustable parameters by introducing stipulations that fail to be invariant under

reparameterization.  See Forster and Sober (1994, pp. 23-24) for discussion.

9. For discussion of the relationship between idealization and simplification, see Sober (1998, 2002)

and Forster (2000, 2002).

10. Don’t be misled by the terminology – the likelihood ratio test is not consistent with likelihoodism. 

11. In this table, I’ve written, for example, “L[(XY)Z & N9]” and not “(XY)Z & L[N(9)].”  The

reason is that conjunctions in the same row often have their nuisance parameters set at different values,

depending on the phylogeny to which they are attached.  

12. Although the conjunctions in this table that include the same phylogeny are nested, it is perfectly

possible for two such conjunctions to be non-nested (e.g., let one assume that there is between-trait

homogeneity and leave open whether there is within-trait homogeneity and let the other do the

opposite).  
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13. Popper, of course, realized that simplicity is sometimes not epistemically relevant; he introduced his

equation to explain what makes simplicity epistemically relevant when it is so in fact.

14. For further discussion of Bayesianism’s and likelihoodism’s inadequate treatment of simplicity, see

Forster and Sober (1994) and Forster (1995). 

15. For further discussion of Akaike’s framework and theorem, see Burnham and Anderson (1998),

McQuarrie and Tsai (1998), Forster and Sober (1994, 2002), Forster (2002), and Sober (2002a).

16. More exactly, the formulation of Akaike’s result that Forster and Sober (1994) and Forster (2002)

recommend is that an unbiased estimate of the model’s  predictive accuracy per datum

is (1/N){Log-likelihood[L(M)] - k}, where N is the number of data.

17. There is a special case in which I think this pessimism is misplaced.   Cladistic parsimony is a

method of inference used in phylogeny reconstruction.  I suspect that this method makes sense to the

extent that it reflects likelihood considerations; see Sober (1988, 2002b) for discussion.


