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Introduction

This thesis concerns the use of categorical structures in physics. It is largely self-contained,
and as such introduces most of the necessary prerequisites in chapters 1 and 2, which concern
mathematics and physics, respectively. There are a multitude of successful and interesting
attempts by physicists to use category theory and its descendants to organize physical data, but

we will only focus on a few. Namely, we will study the following:

o Synthetic differential geometry, the axiomatic ("synthetic") development of differential ge-
ometry in certain categories with enough structure to admit an internal logic capable of
supporting notions of smoothness and infinitesimality, i.e. smooth topoi. It has been
applied to physics in the form of both smaller attempts to reformulate certain physi-
cal models, such as general relativity [Guts and Grinkevich, 1996| Lawvere, 2002], and
larger attempts to understand the ambient geometry in which physics occurs [Schreiber,
2013, Lawvere, 1997]]. (F. W. Lawvere in particular has worked both on the general theory
and its applications to continuum mechanics). We will study both categories of applica-
tions.

o Topos quantum theory, a separate attempt to apply topoi to physics, makes use of the fact
that quantum physics derives largely from a quantum logic which, while radically non-
classical, is a system of logic nonetheless. While classical (Newtonian) mechanics can
be formalized in the topos of sets and its logic shown to be the internal logic of sets, it
is hoped that we may find a topos whose internal logic resembles quantum logic, and
thereby reformulate quantum mechanics in a consistent manner. This hope is realized by
the work of Isham, Doring, Flori, and others [Doring and Isham, 2008a, Flori, 2013a, Flori,
2013b], who in particular use the category Set” ™" of presheaves of abelian von Neumann
algebras over a given Hilbert space H.

o A topological quantum field theory (TQFT) is a quantum field theory defined on a manifold

M whose Lagrangian density is independent of the metric, and hence depends only on the
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topology of M. TQFTs have vanishing Hamiltonians, and hence no actual dynamics, but
coupling their Lagrangians to those of non-topological field theories provides topological
constraints on the latter, making them interesting from a physical point of view. It was
realized by Atiyah [Atiyah, 1988] that TQFTs can in general be realized as functors from
"geometric" categories to "algebraic" categories, associating elements of e.g. modules
to spaces in a functorial manner. In the usual formulation, as in e.g. [Lurie, 2009b], a
TQFT is a symmetric monoidal functor from the category of (smooth, compact, oriented,
closed) (n — 1)-manifolds and their cobordisms to the category of vector spaces over a
given field k, which in turn assigns an element of k, i.e. a number, to every n-manifold.
This formulation of TQFTs admits a natural extension to higher categories: we assign
numbers to n-manifolds, vector spaces to (n — 1)-manifolds, categories of vector spaces to

(n — 2)-manifolds, and so on.

While it is too intricate to cover in the current work, Schreiber’s project to formalize physics
in modal homotopy type theory [Schreiber, 2016], which seeks to map the internal logic of an
oo-topos onto Hegel’s logic of concepts and sublations as well as the logic of physics, is worth

mentioning as well.
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several days” worth of tedious typesetting. Feynman diagrams were drawn with the software
JaxoDraw [Binosi and Theussl, 2004]. Aside from the creators of these tools, I would like to
thank Prof. Mirroslav Yotov for answering silly questions and providing a fruitful bird’s-eye

view of many subjects, especially algebraic geometry.



Chapter 1
Mathematics

This chapter, which introduces category theory and covers the study of spaces from many
categorically oriented points of view, is a blend of many sources. Our sources for category
theory include [Mac Lane, 2013, Riehl, 2017, |/Aluffi, 2009]. The section on homotopy theory
borrows from [May, 1999, Hatcher, 2005, Munkres, 2018, in roughly that order, whereas the
discussion on vector bundles is inspired by [Hatcher, 2003, Weibel, 2013]. The section on
algebraic geometry is indebted to [Hartshorne, 2013, Vakil, 2017, /Authors, 2018].

1.1 Category Theory

1.1.1 Categories

A category C is a class Ob(C) of objects and, for every two objects X,Y € Ob(C), a class
of morphisms denoted variously as C(X,Y) or Homc(X,Y). (We will have occasion to use
both notations — while C(X,Y) is more concise and easier on the eyes, the Hom notation is
sometimes more enlightening). For every triple of objects X, Y, Z, there is a composition function
C(Y,Z) x C(X,Y) — C(X, Z) sending g, f to the composition morphism g o f, often abbreviated
to gf, whose existence we require. We also require that composition is associative, in the sense
that (hog)of = ho(gof), as well as the existence of identity morphisms idx for each X € Ob(C)
such that goidx = gand idx o f = f.

If Ob(C) is a set rather than a proper class, C is said to be small. If C(X,Y)isasetforall X,Y € C,

then C is locally small, and we often refer to C(X,Y) as a hom-set[l.

"Hom" is an abbreviation of homomorphism, a relic from category theory’s origins in algebraic topology.
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1.1. Category Theory

Many common "types" of mathematical objects can be assembled into categories:

e There is a category Set whose objects are sets and whose morphisms are functions (a
function f : X — Ybeing a selection of an elementin Y for every element of X). Composition
of functions is defined in the usual sense, and there is an obvious identity morphism
idx : X —> X, x — x.

e The category Top consists of topological spaces and continuous functions.

e The category Ab consists of abelian groups and group homomorphisms.

e The category CRing consists of commutative rings and ring homomorphisms.

e The category R-Mod consists of modules over a commutative ring R and their homomor-
phismsB.

e The category ManP consists of C? manifolds and maps. For instance, Diff := Man> consists

of smooth manifolds and maps.

Set is a locally small category, as are all categories whose objects and morphisms can be

thought of as sets and set functions, including all of the above examples.

Monomorphisms and Epimorphisms In Set, we can classify morphisms into injective, surjec-
tive, and bijective maps. This generalizes in the following manner: A morphism f : X — Y in
a category C is an epimorphism if, for all g,h : Y — Z, we have gf = hf if and only if g = h.
f is a monomorphism if, for all g,h : W — X, we have fg = fh if and only g = h. fis an
isomorphism if there is an inverse morphism g : Y — X such that fg = idy and gf = idx. Two
objects in C are isomorphic if there is an isomorphism between them. The isomorphisms in Grp,
Set, Top, and Diff, for instance, are the group isomorphisms, bijections, homeomorphisms, and
diffeomorphisms, respectively; for nearly all intents and purposes, isomorphic objects are to be
regarded as equivalent. Note: we often shorten epimorphism to epi, or in its adjectival form, an
epic morphism, whereas monomorphism is shortened to mono, or a monic morphism.

In Set, (i) epimorphisms are equivalent to surjections, (ii) monomorphisms are equivalent to
injections, and (iii) isomorphisms are equivalent to bijections. To prove this, take a map of sets
f:X—>Y.

(i) Suppose that there is some y € Y not contained in f(X). Let Z = {0,1},and letg,h: Y — Z
send Y-y toOand y to0 or 1, respectively. gf = hf, but g # h. So if f is an epimorphism, it must

be a surjection. Conversely, suppose that f is a surjection, and let g,h : Y — Z satisfy gf = hf.

2We often write R(X, Y) and Homg(X, Y) instead of R-Mod(X, Y) and Homg-pmod(X, Y).
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1.1. Category Theory

For every y € Y there is an x, such that f(xy) =y, so g(y) = gf(xy) = hf(xy) = h(y),and g = h.
Obviously, if g = h then gf = hf as well, so surjections are epimorphisms.

(ii) Similar to (i).

(iii) Bijections obviously have inverses. Conversely, let f : X — Y admit an inverse g : Y — X
such that g(f(x)) = x and f(g(y)) = y. If f is not surjective, then there is some y € Y mapped
to by no f(x), so we cannot have f(g(y)) = y, and if f is not injective, then there are x # x’ € X
with f(x) = f(x’) and therefore x = g(f(x)) = g(f(x")) = X/, a contradiction. So isomorphisms
are injective and surjective, and hence bijective. Importantly, this proof hinges on the fact
that injective surjections are bijections; in an arbitrary category, it is not necessarily true that a
morphism which is both monic and epic is an isomorphism. A category where this is true is
known as a balanced category.

Most of our example categories are balanced, but CRing is not. To see this, take the inclusion
i1:Z — Q. First, let f,g : R — Z be such that if = ig. Since 1 is an inclusion, f(r) = g(r) for all r,
making i monic. Now let h,k : Q — S be such that hi = ki. h(p/q) = h(p)h(q™') = h(p)h(q)~?},
so h and likewise k are completely determined by where they send the integers, and hence

hi = ki implies h = k. Despite being monic and epic, i fails to be an isomorphism.

Naturality In general, the vast majority of types of mathematical objects assemble into cate-
gories, the main concern being what the morphisms between objects of a certain type should be;
generally, there is a natural notion of morphism between such objects (as in the above examples)
which, when equipped to their category, allow that category to "encapsulate" the nature of
that type of object. This natural notion is generally one that preserves precisely the structure
associated to that type of object; given enough information about what is needed to define an
object of that type, the structure we want morphisms to preserve generally becomes obvious.

For instance, we may define a natural notion of a morphism between categories: a morphism
F : C — D should map objects X € C to objects FX € D and morphisms f : X — Y to morphisms
Ff : FX — FYinamanner that preserves composition, identity, and associativity. Such a map has
aspecial name: Given two categories C, D, a functor F : C — D consists of amap Ob(C) — Ob(D),
as well as, for every X,Y € C, amap C(X,Y) — D(FX, FY). We require F(g o f) = (Fg) o (Ff) and
Fidx = idrx. (Associativity is trivial).

Given two functors F, G : C — D, a natural transformation o« : F = G is a family {ax : FX —

GX}xec of maps in D such that, for any f : X — Y, we have (Gf) o ax = ay o (Ff). If each xx is



1.1. Category Theory

an isomorphism, « is known as a natural isomorphism.

We can define two new categories: the category Cat of small categories and functors, and,
for any C,D € Cat, a category D¢ whose objects are functors C — D and whose morphisms are
natural transformations between functors. Both of these are subject to set-theoretic issuesd. We
will handwave these issues away, though especially curious/bored readers may see Appendix

A for a discussion on the problems this can lead to, and the mechanisms for fixing them.

Y
X — > X
FY f GY
£ _ Ff \ Y/
Ff X Gf
Y —— 3 FY / \
FX GX
~_

The data associated to a functor and natural transformation

All of our example categories are locally small, and their objects are sets equipped with extra
structure. Such locally small categories which can be modeled on sets are called concrete, and
they admit functors C — Set which "forget" the structure on their objects, conveniently known
as forgetful functors. For instance, the forgetful functor Ab — Set just maps abelian groups to
their underlying sets, and group homomorphisms to their underlying set functions. In general,
for a category to be concrete we require the existence of a forgetful functor which is injective on
hom-sets, as otherwise two different maps in C will be sent to the same set map, so we cannot
speak of their "underlying" set maps.

A functor F for which each map C(X,Y) — C(FX, FY) is injective is known as a faithful functor;
in contrast, functors which are surjective on hom-sets are called full. Faithfully full functors are
bijections on hom-sets. On objects, F is essentially surjective if every object Y € D is isomorphic
to some FX, X € C.

81t is for this reason that Cat consists of small categories; the set-theoretically problematic CAT is defined as the
category of all categories.



1.1. Category Theory

1.1.2 Limits and Colimits

To see how categorical thinking can encapsulate the nature of certain types of mathematical
objects, consider the product of topological spaces: given a pair of topological spaces X1, X,
we define their product to be a space X equipped with canonical projection maps m; : X — Xj,
and give X the smallest topology that makes the 7r; continuous. Every open set in this initial
topology is required for continuity, making this the "most efficient" space with continuous
morphisms into X; and X,. This can be made rigorous by the following observation: any space
Y equipped with a pair of functions (f; : Y — Xj,f2 : Y — Xp) admits a continuous map
f: Y — X,y (fi(y), f2(y)) such that i1 f = f; and mpf = fp; in fact, this f is uniquely determined
by f1 and f,. Pictorially, there is a unique arrow f : Y — X such that the triangles in the following

diagram commute:
X
/ T \A
|
|
)
|
|
|

\/

In particular, if we set Y = X, we get f = idx. We see that X = X; X X, encodes pairs of
morphisms (f; : Y — Xji,f2 : Y — Xp) in the most efficient possible way; in fact, if any other

space X’ with morphisms (7t’1 X > Xy, X > X») satisfies this property, then the diagram

X

s :f vl

oo
X1 < X > X2

|

\ If’

71 N2 T
X

demonstrates that the unique morphism f'f : X — X satisfies m; = ;1 f'f and my, = mpf'f; since
idx also satisfies this property, we have f'f = idx, and by the same reasoning ff’ = idx, making
X’ and X homeomorphic to one another. It follows that the product of topological spaces can
be defined (up to homeomorphism) by this category-theoretic requirement, which takes place
abstractly in Top. We can generalize this to an arbitrary category C:

The product of two objects X, Y is, if it exists, an object X X Y equipped with morphisms
mix : X XY — Xand my : X XY — Y such that for every Z equipped with a pair of morphisms
f:Z— Xand g:Z — Y, there is a unique morphism h : Z — X X Y with mxh = fand yh = g.

8



1.1. Category Theory

The product in Top is the topological product, as we’ve seen; in Ab, Set, and CRing, it’s the
product of abelian groups, cartesian product of sets, and product of rings, respectively. All of
these share the same property of being unique up to isomorphism. In general, suppose two

objects X, Y in a category C have two products, Zyp and Z;. Then Zy and Z; are isomorphic.

Proof. Let ¢x, ¢y be the canonical projections from Zy and Px, Py the canonical projections
from Z;. By the universal property of the product, Z; has an arrow ¥ : Z; — Z; such that
dx oY =1YPx and ¢y o ¥ =Py, and Zj has an arrow @ : Zy — Z; such that Ppx o ® = ¢px and
Py o @ = ¢y. It follows that px oW o @ = Ppx o ® = ¢x, and ¢y oW o @ = ¢y. Likewise,
Px o DoV =1x and Py o ® o ¥ = 1y. It follows that both the morphisms ¥ o ® and idz,
satisfy the required factorization identities in the product diagram for Zj, and likewise for Z;,

as indicated in the following diagrams:

Z Z,
X idz, yo Y X idz oY Y
Z Z,
Soidz, = Y® and idz, = @Y, making ® and ¥ isomorphisms between Zj and Z;. ]

This manner of thinking about categorical constructions can be vastly generalized: for in-
stance, we may ask for an object that classifies morphisms into 70 objects, i.e. an object T that
has a unique morphism f : X — T for all X € C. Such an object is known as a terminal object.
We may even throw morphisms into the mix: given a diagram f, g : X; = X, we may ask for an
object Y equipped with morphismsi:Y — Xj,j : Y — X, such that fi = gi = j any other object
equipped with commuting morphisms to X; and X, bears a unique morphism to Y; such a 'V,

when it exists, is known as the equalizer of f and g, Eq(f, g).

X1 X Xo T Eq(f, g)
/ 0 \ T A
| | / f
Xi | X, | X g X2
| | \
~_ : Nl

X X X

Diagrams for products, terminal objects, and equalizers; dashed arrows are unique



1.1. Category Theory

This process is generalized in the obvious way to arbitrary diagrams; the object corresponding
to a certain diagram is known as the limit of that diagram. For instance, the limit of the empty
diagram is the terminal object, the limit of the diagram Xj Xj is the product X; X X3, and the limit
of the diagram f, g : X; =3 Xy is the equalizer Eq(f, g). The proof of the uniqueness of products
up to isomorphism generalizes easily to the uniqueness of any kind of limit. In particular, any
category can have at most one terminal object up to isomorphism. In Set, all singletons are
terminal objects — for X an arbitrary set, there’s only a single function f : X — {*} sending all
x € X to the single object * — and all singletons are isomorphic, allowing us to just speak of "a"

terminal set; if we need a specific one, we’ll use the ordinal 1 := {&}.

Duality Given any category C, we can flip all the arrows, obtaining the opposite category C°P.
For instance, a morphism X — Y in Set®? is given by a function f : Y — X. In general, every
arrow-theoretic statement and construction has a dual, given by flipping all the arrows and
attaching the prefix 'co’; this is known as the principle of duality. For instance, the coproduct of
two objects X1, Xy € Cis an object X; LI X; equipped with two morphisms i; : X1 — X; LI Xy,
ip : Xo — X1 LI X3 such that any X also equipped with such morphisms has a unique morphism

from X1 LI X making everything commute.

X1 X Xo X1 I Xz
I 7\

We similarly have coequalizers, coterminal (initial) objects, and in general, colimits.

X2 X1 /
7 I

omparing product and coproduct diagrams

X2

|

|

|

|

|
\I/
X

An especially ubiquitous notion is given by that of a cofunctor, or a contravariant functor: A
contravariant functor F : C — D is a functor C°? — D. Specifically, each arrow f: X — Yin Cis
sent to an arrow Ff : FY — FX, and composition works backwards, sending gof: X — Y — Zto
F(gf) = (Ff)(Fg) : FZ — FY — FX. Normal functors are often called covariant when specification

is required.

Example. For every object X in a category C, there is a covariant functor C(X, —) : C — Set sending
Y € C to the set C(X, Y), and a morphism f : Y — Z to the set map f. : C(X,Y) — C(X, Z) sending

10



1.1. Category Theory

ag:X— Yto f.(g) = f o g. The dual, contravariant functor is given by C(—, X), which sends an
object Yto C(Y,X)andamap f: Y — Zto f*: C(Z,X) — C(Y,X), g+ gof. C(X,-)and C(-, X)

are known as the covariant and contravariant representable functors for X.

Example. A lattice is a poset which, as a category, has all binary products and coproducts. The
coproduct is to be interpreted as the join (or sup, logical OR) x V y and the product as the meet
(or inf, logical AND) x A y. Since the categorical structure on an arbitrary poset is given by
writing an arrow x — y whenever x < y, the join of two elements x,y is an element x V y
satisfying x,y < x V y, and such that any object z satisfying x,y < z also satisfiesx Vy < z. In
this way, x V y is the least upper bound of x,y, while x A y is the greatest lower bound.

If L has elements 0 and 1 such that 0 < x < 1 for all x € L, then 0 and 1 are the initial and
terminal objects of L as a category. Equalizers and coequalizers are trivial in lattices, so a lattice
with 0 and 1 is a poset which, as a category, has all finite limits and colimits.

We may also define lattices with 0 and 1 equationally: a lattice is a set with two distinguished
elements 0 and 1, and two associative, commutative binary operations V and A such that
xAx=xVx=%x,1Ax=0Vx=x,and xA(yVx) = (xAy)Vx = x. The partial order is recovered
by the relationx <y &= x=xAy & y=xVuy. IfalsoxA(yvz)=xAy)V(xAz),or
equivalently, x V (y A z) = (x Vy) A (x V z), we say that the lattice is distributive. If L has for each
x an element —x such that x A =x = 0 and x V —=x = 1, then such a —x is unique, and is known
as the complement of x. A Boolean algebra is a distributive lattice with 0 and 1 in which every
element x has a complement. In such a lattice, the DeMorgan laws hold: =(x Vy) = =x A 1,
=(x Ay) = (=x) V (-y), and -—x = x. For instance, every poset of subsets of a given set is a
Boolean algebra under the operations of union, intersection, and complement; in fact, every

Boolean algebra can be constructed up to isomorphism in this manner.

Equivalence and Universality As indicated earlier, the notion of naturality plays a large role
in category theory; categories and their morphisms serve as a method of organizing objects of a
certain type, and basic constructions on categories (taking limits, opposites, etc.) yield natural
constructions on the corresponding objects. The key ingredient in all of these constructions
is universality, which can be thought of as selecting the "most general" or "best" way of doing
something: for instance, the product X X Y of two objects is the most general object that bears

morphisms to both X and Y, in the sense that all other objects with morphisms to X and Y see

11



1.1. Category Theory

those morphisms factor uniquely through those of X X Y . Even without the use of category
theory, universal properties show up throughout mathematics: for instance, the tensor product
M ® N of R-modules M and N satisfies the universal property that any bilinear morphism
M@&N — P factors uniquely through M ® N; informally, it is the most general way to turn bilinear
homomorphisms into linear morphisms. The localization of a ring A at a multiplicatively
closed subset S C A satisfies the universal property that every ring homomorphism A — B
which sends A to an invertible element of B factors uniquely through S™A; it is the most general
way to add inverses to A.

Category theory also allows us to weaken the notion of equivalence from strict equality (=) to
isomorphism (=). Many categories have a natural notion of a "morphism between morphism",
or a 2-morphism: e.g., natural transformations serve as the 2-morphisms in Cat. In a category
with 2-morphisms, known as a 2-category, we can further weaken the notion of equivalence: let
X, Y be objects of a 2-category C with morphisms F: X — Y and G : Y — X such that FG admits
a 2-isomorphism « : FG = idy and GF a 2-isomorphism 3 : GF = idx. In C = CAT, this concept
bears a special name: An equivalence of categories C = D is a pair of functors F : C — D,

G : C — D equipped with natural isomorphisms « : FG = idy and 3 : GF = idx.

Yoneda’s Lemma For a category C, we will denote the functor category Set®” of contravariant
functors C — Set by C; its elements are known as presheaves. Yoneda’s lemma states that C
admits a full and faithful embedding into its category of presheaves C.

For a covariant functor F : C — Set, the set E(C(X, —), F) of natural transformations from
C(X, —) to Fis isomorphic to FX. For a contravariant F : C°P — Set, E(C(—, X),F) = FX.

Proof. For F covariant, take an arbitrary a € FX. Letting ax(idx) = a defines a unique natural
transformation in which any f : X — Y must be mapped to (Ff)(a). Conversely, any a € FX
defines a unique natural transformation oy (f) = (Ff)(a). For F contravariant, flip the direction
of f. ]

Note that when F = C(-,Y), the contravariant version yields E(C(—,X), C(—-,Y)) = CXY).
We may use this to define an embedding of C in C: the Yoneda embedding is the functor
k:C—C sending X to C(—, X) and f : X — Y to the natural transformation C(—, X) = C(-,Y)
corresponding to f. Since the sets of natural transformations between two functors are the hom-

sets in the functor category C, ks a full and faithful functor, and hence a proper embedding.

4The name "universality" derives from the fact that this property is expressed via universal properties,asV ... 3! . ...
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1.1. Category Theory

Furthermore, C also contains all colimits in a natural way: (Co-Yoneda lemma) Every element
of Cis a colimit of a diagram of contravariant representable functors in a canonical manner. For
further details and a proof, see [MacLane and Moerdijk, 2012]], pgs. 41-43.

1.1.3 Adjunctions

The "best" relation two functors F : C — D and G : D — C can have is their forming an
equivalence of categories C = D. Then, morphisms in C can be mapped to morphisms in D in a
natural and reversible manner (up to isomorphism). The next best relation F and G can have is
a failure of equivalence on objects, but an equivalence on morphisms, in the sense that D(FX, Y)
is in bijection with C(X, GY) for all X € C, Y € D. If this happens in a natural manner, we say that
F and G are adjoint functors. Adjunctions show up everywhere, as we will demonstrate.

Given locally small categories C and D, along with functors F: C - Dand G : D — C, we
call Fand G adjoint functors if there’s a natural isomorphism ® between the following functors
from C°P x D to Set:

® : D(F-,-) = C(-, G-)

Then, Fis said to be left adjoint to G, and G is said to be right adjoint to F. This relation is written
as F 4 G, with the 4 symbol pointing towards the left adjoint (we could also write G + F).

The name "adjoint" comes from linear algebra, where the adjoint of an operator A on an inner
product space V is another operator AT satisfying (Av, w) = (v, Afw): we "move" the operator

to the other side by taking its adjoint.

Example. The free abelian group on a set S, is defined to be an abelian group F(S) along with
an inclusion set map is : S — F(S) such that every set map u : S — A, where A is an abelian
group, factors as u = @ o i for a unique homomorphism ¢. A set map f: S — T generates by
composition a map it o f : S — F(T), and hence a unique homomorphism F(S) — F(T); it can
be verified that when f = ids, this homomorphism is idgs), and furthermore that composition
of these induced maps is associative. This evidences F as a functor Set — Ab, known as a free
functor. If we let | be the forgetful functor Ab — Set, then we see that Set(S, JA) is in bijection
with Ab(FS, A): the map from set maps to group homomorphisms is given by the definition
of the free group, and the map from group homomorphisms to set maps is given by taking
@ : F(S) = A to the set map ¢ oi:S — JA. This bijection is natural in both S and A, rendering
F the left adjoint to J. Free-forgetful adjunctions of this nature are extremely common: in fact,

we may define free functors as left adjoints to forgetful functors.
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1.1. Category Theory

Example. In Set, maps X X Y — Z can be identified with maps X — Set(Y, Z) by currying: in
lambda notation, we send Ax, y.f(x,y) to Ax. (Ay.f(x,y)). This yields an adjunction with — XY
on the left and Set(Y, —) on the right. As we'll see later, this is the defining feature of a cartesian

closed category.

Example. A Heyting algebra is a lattice H with 0 and 1 which has an right adjoint known as
exponentiation associated to the functor — Ay. That is, there is for every x, y an object, generally
written as x = y, such that z < (x = y) iff x A x <y, i.e. x = y is a least upper bound for all
elements z with z A x < y. In particular, y < (x = y).

The unit and counit of the exponential adjunction give us inclusions x < (y = (x Ay)) and
Yy A (y = x) < x. The properties 1% = 1 and X! = X, valid in any category with a right adjoint to
its product functor, become (x = 1) = 1 and (1 = x) = x, and the properties (y X z)* = y* x z*
and xY** = (xY)* become (x = (yAz)) = (x > y)A(x = z))and (yArz) = x) = (z = (y = x)).
Heyting algebras are distributive due to the fact that — Ay is a left adjoint, and hence preserves
coproducts: ((x Vz) Ay) = ((x Ay) V (zAy)).

In a Heyting algebra, we may define the negation of x as —=x := (x = 0), the idea being that
"not x" means "x implies falsity". This is not a strict negation: while x A =x = 0, as evidenced by
the identity x A (x = y) <y, x V =x isn’t necessarily equal to 1. If x does have a strict negation,
though, it is —x. So while x < ——x, this isn’t a strict equality as in a Boolean algebra. However,
—-x = =%, and x <y implies that -y < —x, so we're not totally lost. These features tell us that
the logic of a Heyting algebra doesn’t necessarily satisfy the law of double negation x = =—x,
and as such is an intuitionistic logic rather than a classical one.

Given a predicate S(x,y), where x € X and y € Y are elements of sets, we may regard S as
the subset S € X x Y of those pairs for which S(x,y) is true. The statement (V¥x)S(x,y) then
picks out a subset T C Y consisting of all those y such that X Xy € S. Letting p denote the
projection X X Y — Y, we may denote this subset as V,,S. The statement (3x)S(x, y) is equivalent
toy € p(S), and we will denote the corresponding subset by 3,S. Let PY be the Boolean
algebra of all subsets T C Y and P(X X Y) the Boolean algebra of all predicates S. Viewing these
as categories, we have a pair of functors V,, 3, : P(X X Y) =3 P(Y). There is a third functor,
p*: P(Y) — P(X x Y) which sends each subset T C Y to its inverse image p*T = X X T. Then,
there is an adjoint triple 3, 4 p* 4 V;,. This follows from the fact that pT C S <= T C VS
and S Cp'T & 3,SCT.

Example. Ab is naturally a subcategory of Grp, so we can define an inclusion functor i : Ab — Grp

which just drops the “abelian” prefix. The left adjoint of this functor is given by abelianization,
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1.1. Category Theory

sending a group G to G/[G, G] and a group homomorphism ¢ : G — H to the map ¢*: G —
H — H/[H, H], which satisfies ¢(xy) = @(x)@(y) = @(y)e(x) = @(yx) and hence extends to a
morphism G/[G, G] — H/[H, H]. In general, a subcategory C of a category C is reflective when
its inclusion functor has a left adjoint, and coreflective when the inclusion functor has a right

adjoint.

A paramount feature of adjoints which we will state but not prove is their ability to preserve
limits and colimits. Let F : C — D be left adjoint to G : C — D, let " be a diagram in C, and let
A be a diagram in D. Then, colimFI" = F(colimI") and lim GA = G(lim A). Succinctly, left adjoints

preserve colimits and right adjoints preserve limits.

Units and Counits Given an adjunction @ : C(X, GY) = D(FX,Y), suppose we set Y = FX,
giving us a bijection C(X, GFX) = D(FX, FX). Plugging the identity 1, in on the right side gives
us a unique nx : X — GFX. Doing this for all X gives us a natural transformation idc — GF,
since an h : X’ — X is translated to a GFh : GFX’ — GFX such that GFhonyx = nxoh
(proof: GFhonx = GFh o @(idrx/) = ®(Fh o idfx/) = @(idrx oFh) = @(idrx) o h = nx o h).
Dually, we can let X = GY, so that plugging in idgy into the right hand side of the bijection
C(GY, GY) = D(FGY,Y) gives us a natural transformation ¢ : FG — idp. Both the composites
G ﬁ GFG E> GandF l FGF E—F> F reduce to the identities 1g and 1f; from this, we obtain

the adjunction’s zig-zag identities

(eF() =1  (MG)(Ge) =1g

We call n the unit of the adjunction and ¢ the counit.

Monads Consider the iterated composites of an endofunctor T : C — C, i.e. T2=TT,T3,...
If 1 : T2 — Tis a natural transformation, with pux a morphism T?2X — TX, then Ty = {Tux }xec
is a natural transformation from T to T2, defined by (Tw)x to T(ux). uT is another natural
transformation between T° and T2, defined by (uT)x = prx.

A monad in a category C consists of an endofunctor T on C and two natural transformations
n:idc — Tand p: T> — T known as the unit and multiplication such that the following

diagrams commute:
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78 18y 72 1T 2Ly 12 107
uTl lu \ u/
[ T

where 1 is the natural transformation {idx } xec.
The structure is meant to resemble that of a monoid (identity, associative composition), with
n the unit of T and u the multiplication of T. In this sense, the left diagram just expresses the

associativity of multiplication, and the right diagram expresses the left and right unit laws.

Example. As an example, the powerset functor P : Set — Set, X = PX, (Pf)(S) = f(S) forms a
monad. The unit sends X € Set to the map nx : idset(X) — PX, x = {x}, and the multiplication
sends X to the map pux : PPX — PX, {Sa} — U Sa.

To verify the coherence laws, let S = {{Sx, }se=}ren, Where each Sj, is a subset of X, be
an arbitrary element of PPPX. We want to verify that (uxppx) (S) = (uxPux) (S). On one
side, (uxppx) (S) = Unen (Ugez Sae) = Uae Sa;. On the other side, note that Pux is a map
PPPX — PPX sending S to {Uaez S}\E}Ae/\/ 50 (LxPrx) (S) = Uren (Uaez ng) = U}\,é, She
as well. To verify the law for n, we must show that puxnpx = pxPnx = idpx, which is evident

from the trivial action of p on singletons.

Every adjunction F: C — D 4 G : D — C gives rise to a monad in the category C. GF is the
endofunctor on C, the unitn : idc — GF of the adjunction the unit of the monad, and, given the

counit ¢, the multiplication is given as GeF : GFGF — GF. The coherence laws then look like

GFGFGF SFSf GFGF FGFG <S8 FG ide GF 25 GreF <™ GFidc
GsFGF\L l/GsF sFG\L la \ \LG&F/
GFGF —— GF FG — idp GF

The middle diagram is just a restatement of the right, obtained by removing the G on the left
and the F on the right; it must hold, since ¢¢ = ¢ - (FGe) = ¢ - (¢FG). The right diagram must
hold since 1 = Ge -G = ¢F - Fn.

Example. Consider the free abelian group - forgetful functor adjunction F 4 U. This yields a
monad with unit n : idser — UF with nx : X — UFX sending x € X to x considered as a basis
element of FX and multiplication UeF : UFUF — UF, where ¢ : FU — 1, sends an abelian
group A to a morphism FUA — A that takes the elements of an element of FUA (a collection of
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arbitrary un-concatenated elements of A) and multiplies them all together to get an element of
A. This is conceptually similar to the power set monad, in that the unit "wraps" a set (x = {x} vs.
x - {basis element x}), whereas the multiplication gives us a way to reduce several elements
at the same level (set of sets — set of union of sets vs. set of elements of abelian group +— sum
of elements in abelian group). This similarity comes from the fact that both monads involve Set

as the base category.

Given a monad T = (T, i,n) on C, an algebra over T, or a T-algebra, is an object X € C along
with a morphism f : TX — X such that fnx = idx and f(Tf) = fux. In the power set monad
on Set, for instance, an algebra is an assignment to each subset S of a given object X an element
f(S) such that f({x}) = x and f({f(Sx)}) = f(Ux SA). A morphism of T-algebras (X, f) — (Y, g)
is a morphism o« : X — Y where the obvious square commutes: g(T«) = «f. Thus, any monad
T on C gives us a category C' of T-algebras, known as the Eilenberg-Moore category of T.
While there is no natural choice of map TX — X (we have to choose a T-algebra structure), there
is a natural map px : T°X — TX giving TX a T-algebra structure. The functor F' : C — CT
sending X to the algebra (TX, p1x) is known as the free algebra functor, and the subcategory of
CT consisting of the free algebras is known as the Kleisli category Cr.

The free algebra functor FT : CT — Cisleft adjoint to the forgetful functor CT — C, (X, f) > X.
The counit of this adjunction is the natural transformation 1 : T2 — T and the unitisn: 1 — T.
In this way, not only does every adjunction generate a monad, but every monad comes from an

adjunction.

1.2 Homotopy Theory

1.2.1 Homotopy Equivalence

Given two continuous functions f, g : X =3 Y between topological spaces, we may ask whether
there is a "continuous transformation” of f into g. For instance, we may wonder whether two
different loops on a torus (continuous functionsy : [0,1] — T? withy(0) = (1)) can be morphed
into one another continuously, i.e. without breaking one of the loops. Such a transformation
between two paths, say f and g, would look like a family of paths F¢(x), where s € [0, 1], such
that Fo(x) = f(x) and F1(x) = g(x). The right definition is as follows: A homotopy between two
continuous maps f, g : X 33 Y is a continuous map F : X x [0,1] — Y such that F(x, 0) = f(x) and

F(x,1) = g(x). If there is a homotopy from f to g, the two maps are said to be homotopic, written
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1.2. Homotopy Theory

as f ~ g. We think of the second argument t as moving along the continuous family, and the
first argument x as selecting a point in Fy.
Homotopy is an equivalence relation on the set of continuous maps X — Y, and composition

is compatible with this relation.

Proof. Every map f is homotopic to itself, by letting F(x,t) = f(x). If F is a homotopy from f
to g, then F'(x,t) = F(x,1 — t) is a homotopy from g to f. Finally, if F is a homotopy from f to
g and G a homotopy from g to h, defining H(x,t) = F(x,2t) for 0 < t < 1/2 and G(x,2t — 1)
for 1/2 < t < 2 yields a homotopy from f to h. So the relation whereby f ~ g if f ~ g is
reflexive, symmetric, and transitive, and hence an equivalence relation on Top(X, Y). Given two
homotopiesf ~ g: X — Yand h ~ k : Y — Z, we may extend the homotopy f ~ g to a homotopy
h = f @ h = g that leaves h fixed but moves f to g, and likewise obtain a chain of homotopic
mapshof~hog=kof=x~kog. Therefore, we can define [h] o [f] by taking the homotopy

class of the composition of any representative of [h] with any representative of [f]. u

We may define a new category whose objects are those of Top, but whose morphisms are
homotopy classes of morphisms in Top. This category, which is famously not concrete, is known
as hTop.

We may sometimes want to restrict the set of homotopies between two maps f,g : X 3 Y,
requiring that all morphisms in our continuous family F(x, —) preserve all points p in a subspace
Xo € X; such a homotopy is known as a homotopy relative to Xy. This is also an equivalence
relation, the proof being more or less unchanged. The prototypical example is when X = I, Xy =
{0,1}, and f, g are paths I — Y; in this case, f is homotopic to g relative to the endpoints {0, 1}
when F(x,0) = f(x), F(x,1) = g(x), and F(s, t) = f(s) = g(s) for all s € {0, 1}.

A pointed space is a topological space X equipped with a specified element x € X known
as the basepoint. A basepoint-preserving map f between pointed spaces (X, x) and (Y, y) is a
continuous map X — Y sending x to y. When working in the category Top, of pointed spaces
and basepoint-preserving maps, we often denote all basepoints as *, lazily stating that f(+) = *
and so on. Homotopies in this category must necessarily be relative to the basepoint.

Quotienting the hom-sets in Top, by the equivalence relation of basepoint-preserving homo-
topy yields the homotopy category hTop, of pointed topological spaces. The product in Top, is
the product in Top, with the basepoint being the product of the two basepoints. The coproduct
is not the disjoint union, however, since there would be no canonical basepoint; Top, remedies

this in the most obvious possible way, by identifying the basepoints of the two spaces with a
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single point. This forms the wedge product X vV Y. Denoting the basepoints of X and Y by xg
and yo, there is a canonical inclusion X VY — X X Y sending x € X € X VY to (x,yp) and
Yy €Y C XVYto(xo,y). Identifying this subspace of X X Y with a point yields the smash product
XAY=XXY/XVY.

1.2.2 Categories of Topological Spaces

Since Top,(—, —) is a bifunctor, we can immediately form four important endofunctors on Top,.
Letting S1 have an arbitrary basepoint 0, and defining I to be the interval [0, 1] with the basepoint

0, these are:

The loop space functor Q = Top,(S?, -)

The path space functor P = Top,(I, -)

The reduced suspension functor £ = S! A —

The reduced cylinder functor C = I A -

The action of () and P on functions are canonically defined. The action of £ and C on functions
comes from the universal property of quotient spaces: if Ag C Aand By C B, thenf: A — B
extends to a unique map. Since X V Y is sent to X V f(Y) C X V Z, this lets us define *f and Cf
for X = S1, 1. The action of the functor X A —onamap f : Y — Z is to send the image of (x,y) in
X A'Y, which we can denote x Ay, to x A f(y) € X A Z.

There are many nice properties of these functors which hold for most conceivable examples
but fail to hold in general; for instance, the smash product is "usually" associative up to natural
isomorphism, but fails to be so in general: as detailed in [May and Sigurdsson, 2006], (QAQ) AN
is not homeomorphic to Q A (Q A N). As such, we may want to move to a more nicely behaved
subcategory of Top,, of which there are many. To specify certain subcategories, we need
additional topological definitions. A space X is weak Hausdorff if, for all compact Hausdorff
spaces Y and continuous functions f : Y — X, the image of f is closed in X. X is a k-space if any
subset Xp C X all of whose preimages are closed is itself closed. X is compactly generated if it
is both weak Hausdorff and a k-space.

Topological manifolds, metric spaces, and compact Hausdorff spaces are all both compactly
generated and Hausdorff, and are therefore contained in all of the following full subcategories

of Top:

e kTop, the category of k-spaces
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e wHaus, the category of weak Hausdorff spaces
e CG = kTop N wHaus, the category of compactly generated spaces
o CGHaus, the category of compactly generated Hausdorff spaces

All of these have pointed, homotopy, and pointed homotopy variants. Letting ix denote the

inclusion functor kTop — Top and i,,H the inclusion functor wHaus — Top, we have a triplet of

adjunctions:
1k ’vgl-_l _ k
7 TN T T TN
kTop 1 Top L wHaus T CG
T/\\\ _ —//// \_/ 1\_/
k TwH icg

The right adjoint k to ix is known as k-ification, and the left adjoint wH to i,,n as weak
Hausdorffification; k-ification turns a weak Hausdorff space into a compactly generated space,
and, as a functor wHaus — CG, is itself left adjoint to the inclusion functor CG — wHaus.
wHaus is complete, and right adjoints preserve limits, allowing us to construct limits in CG by
constructing them in wHaus and then k-ifying. We will implicitly work in CG, letting X X Y
denote the k-ification of the product in wHaus, and YX the k-ification of the space of maps from
Xto YB.

In CG, there is an adjunction — x Z 4 (—)% for all Z, such that maps X x Z — Y can be
identified in a natural way with maps X — YZ. In particular, CG(X x I,Y) = CG(X, PY) and
CG(X x S1,Y) = CG(X,QY). In the based version, CG,, this becomes — A Z 4 (-)%, yielding
the adjunctions C 4 P and £ 4 Q. (The exponential here ranges over basepoint-preserving
maps, and its basepoint is the map that sends all points in the domain to the basepoint of the
codomain). These adjunctions are preserved upon passing to homotopy classes. We will write
[X, Y] for hCG.(X,Y), leaving the basepoints implicit.

1.2.3 Homotopy Groups

Given two loops vo, V1 : (S!,%) — (X, *), the composite loop vo *y1 is defined by (vo *v1)(t) =
Yo(2t)if 0 <t <1/2,and y1(2t — 1) if 1/2 < t < 1. Under the operation of composition of loops,
[S!, X] has the structure of a group.

5This space is equipped with the compact-open topology, whose subbase contains, for all Xg € X, Yy C Y, the
set of all functions f : X — Y with f(Xo) C Yp.
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Proof. The proof that * respects homotopy equivalence is similar to that of o respecting homotopy
equivalence. We define the identity element on [S!, X] to be the constant loop e(t) = *, and define
the inverse of a loop y : S — X by the loop y71(t) = y(1 — t). To see that [y~ = y] = [e], use the
homotopy F(s, t) = ys(t) * ys(t)™!, where ys(t) = y(t) for t < s and y(s) for t > s. This implies
that [y *y~!] = [(}/‘1)_1 +y~1] = [e] as well, so ([S1, X], *) has a multiplication, inverses, and a
two-sided identity. ]

The fundamental group of a pointed space (X, *) is defined as m;(X, *) = [S!, X], with the
group structure defined above. We will generally omit the *, just writing 71(X). The higher
homotopy groups of a pointed space X are defined as 7,, (X) := [S!, Q™" 1X] = m(Q™1X),n > 1.
Since S™ = £S™1, we have 7, (X) =[S, Q™X] = [£™S!, X] = [S™, X]. This alternative definition
allows us to interpret the nth homotopy group of a space X as the homotopically distinct ways of
mapping the n-sphere into X in a basepoint-preserving manner, as well as to clearly demonstrate
the functoriality of 7t,,; Every based map f : X — Y induces a map 7, (X) — 7, (Y) given by
sending a loop ¢ : S! — X to the loop fo € : S! — Y. We can also define a zeroth homotopy
group 71o(X); this is just the set of path-connected components of X, and doesn’t necessarily have
a group structure.

As a consequence of the functoriality of homotopy groups, homeomorphic spaces have iso-
morphic fundamental groups. In fact, the motivation behind the introduction algebraic topology
was the development of algebraic tools to figure out when two groups are homeomorphic.

A based map f : X — Y that induces isomorphisms 7, (X) = 7, (Y) is known as a weak
equivalence. Two spaces X, Y are weakly equivalent, written as X =~ Y, when there is a weak
equivalence between them. Homeomorphisms are weak equivalences, but the converse is not
true in general; this means that, while two spaces X, Y with differing homotopy groups cannot
be homeomorphic, verifying that all homotopy groups are the same isn’t enough to verify that
X and Y are homeomorphic.

Homotopy groups will serve as one of our primary methods of classifying topological spaces,
and weak equivalence will serve as an important notion of equality in this classification. An-
other notion of equivalence is similar to that of categories: two spaces X and Y are homotopy
equivalent if there are continuous f : X — Yand g : Y — X such that fg and gf are homotopic to

theidentity maps on Y and X, respectively. Thisis also a weaker property than homeomorphism.
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1.24 CW Complexes

The vast majority of spaces that come to mind when one thinks of a topological space all share
a common trait: they can be pieced together using points and n-disks in a systematic manner.
The circle S!, for instance, is constructed by attaching D! = [0, 1], to a single point at both ends.
Attaching two copies of D? to the circle along their boundaries yields a sphere. A torus can be
constructed in a similar manner with one point, two 1-disks, and one 2-disk, as shown below.

We can make this construction pattern rigorous. The general process is as follows:

Figure 1.1: Construction of the torus T? as a CW complex.

1. Start with a set of points X.
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2. Form an n-skeleton X™ from X™~! by attaching a collection of open n-disks e via maps
specifying where their boundary goes, @ : S*™' — X"l We can say that X" is the
quotient space X" 1 [[, D2 of X" under the identifications x ~ @ «(x) for x € 9DT; as a
set, X™ = X" 1] el

3. Either stop at a finite stage (in which case X is finite-dimensional, and its dimension is n), or
take the infinite union X = (J,, X™ and give it the weak topology, where A is open/closed
in X iff A N X™ is open/closed in X™ for all n.

Spaces constructed in this way are called CW complexes, a.k.a. cell complexes. Some examples:

e A 1l-dimensional CW complex is a graph. (It’s actually a multigraph, but we call it a

graph).

e S™ is constructed with the cells €, a single point, and e™, the disk D™ attached by the

constant map S™! — eg. By part 2 of the construction, we can see that S™ = D™/9D™.

A subcomplex of a CW complex X is a closed subspace A C X that’s a union of cells in X; the
closedness implies that the characteristic map of each of these cells has image contained in A,
making A itself a CW complex. A pair (X, A) of a CW complex X and a subcomplex A is called
a CW pair. Since each skeleton X™ of a subcomplex X is a closed subspace of X, (X, X™) isa CW
pair.

CW complexes are especially well behaved; they are all compactly generated Hausdorff,
locally contractible, and paracompact; the full subcategory CW of Top consisting of the CW
complexes is closed under topological products, wedge sums, and smash products. Homotopy
equivalence between CW complexes is equivalent to weak equivalence, and every topological

space is weakly equivalent to a CW complex.

1.3 Bundles

1.3.1 Vector Bundles

Let k denote any of the fields R, C, or H. A family of (k-)vector spaces over a topological space
X is a topological space E along with a continuous map 7 : E — X and a finite-dimensional
k-vector space structure on each fiber E := 7 1(x) such that the k-module addition and scalar

multiplication E Xx E — E and k X E — E are continuous. A homomorphism between families
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n:E — Xand p : F — Xis a continuous map which reduces to a linear transformation Ex — Fx
on all x and satisfies pf = 7.

For a family of vector spaces 7t : E — X and an open subset Y C X, write E|y for the restriction
7 }(Y) C E. A vector bundle is a family of vector spacesn : E — X which is locally trivial: every
x € X is contained in an open set x € U € X such that n|y : E|[y — U is a trivial bundle, or
a bundle which is isomorphic to one of the form E = X X k™. Given a vector bundle E — X,
the function x +— dim E, is a continuous function X — N, and therefore constant on connected
components. If it is constant everywhere, then we can define the dimension dim E of the vector
bundle. 1-dimensional bundles in particular are known as line bundles.

The category of k-vector bundles over X and their homomorphisms forms a category VB (X).
A useful categorical property of VB (X) is its closure under pullbacks: given a continuous
f: X = Y and a vector bundle F — Y, there is an induced bundle f*F — X given by the pullback

F Xy X and its projection maps:

fF=FxyX —/3 F

e

X——"——Y

So, in fact, we can interpret VB (—) as a contravariant functor from Top into some category of
vector bundles in general. The Whitney sum E & F of two vector bundles over X is defined
locally as (E®F)x = Ex ®@Fy, and is given the subspace topology of E X F; this is the finite product
in VB (X), as well as the finite coproduct.

Given a vector bundle 7t : E — X and an open covering {U;} of X for which each Ey; is locally
trivial, with an isomorphism h; : U; X k™ = Ey,, we have on each intersection U; N U; a map
hi‘lhj D(Ug NUy) X k™ = Eygnuy; = (Ui NU;) X k™ sending (x, v), considered as a point in Ey;,
to (x, gijv) for some nonsingular n-dimensional matrix gij; the gi; satisfy the cocycle condition
gijgjk = gik. While they must all lie in GL (n; k), the set of all invertible n X n matrices over k,

if they lie in any subgroup G of GL (n; k), we call G the structure group of the vector bundle.

1.3.2 Principal Fiber Bundles

A principal fiber bundle (PFB) is a surjection of smooth manifolds 7 : E — X along with a
choice of Lie group G which acts freely on E, with each g € G generating a diffeomorphism
Rg : E = E,p — pg. We require that for each x € X, 71(x) is diffeomorphic to G and there is a
neighborhood U > x such that 7~1(U) is diffeomorphic to U x G.
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Examples of Lie Groups It will be useful to compile a list of Lie groups. Since most Lie groups
have variants over R and C, we will use k to denote a field which is either R or C. Most (but not
all) Lie groups encountered in nature are matrix Lie groups, or subgroups G of GL (n; k), the
set of automorphisms of k™ / n X n non-singular matrices with the elementwise convergence
topology, which are closed in GL (n; k). The Lie algebra associated to a matrix Lie group G can
be calculated as the set of all n X n matrices X such that et € G forallt € R, and equipped with
the commutator [X, Y] = XY — YX. All groups below will be matrix Lie groups unless specified
otherwise, and hence groups of invertible n X n matrices with product and inverse given by
matrix multiplication and inversion.

The special linear group SL (n; k) is the matrix Lie group consisting of n X n matrices over k
with determinant 1, which has dimension n? —1 (as a k-vector space). Since det(e'X) = "X =1
if and only if TrX = 0, the corresponding Lie algebra sl(n; k) consists of all n X n matrices over
k with trace 0.

The orthogonal group O(n) consists of n X n real matrices which are orthogonal, or satisfy
XTX = I,,. Any orthogonal matrix X must satisfy det(X"X) = det(X)?> = det(I,) = 1, implying
that det(X) = 1. Since the determinant is a continuous function M, (k) — k, this implies
that O(n) consists of two topological components: matrices with determinant 1, and matrices
with determinant -1. Indeed, these form its two connected components. The component with
determinant 1 is known as the special orthogonal group SO(n). We can equivalently think of
O(n) as the n(n—1)/2-dimensional group of symmetries of S™, and SO(n) as the subgroup (with
unchanged dimension) of those symmetries which preserve orientation, i.e. aren’t reflections.
O(1), the set of 1 X 1 real numbers pretending to be matrices satisfying x> = 1, is clearly {-1,1},
with SO(1) = {1}. SO(2) is diffeomorphic to S!, and SO(3) to RP®. Since detetX = eT*X > 0,
the Lie algebras of O(n) and SO(n) are the same, and consist of antisymmetric n X n matrices,
or matrices X satisfying XT = —X.

The expansion of O(n) to the complex numbers is known as the unitary group U(n), which
is the set of all n X n complex matrices X such that XX = I, (known as unitary matrices),
where (X')i; = X_)1 is the adjoint. Since det(X") = det(X), we must have det(X) det(X) = 1, and
hence the determinant of a unitary matrix must lie in the circle group S'. For n = 1, det(X) is
equivalent to X, making U(1) is equivalent to S!. In general, U(n) is connected of dimension
n?, but not simply connected: its fundamental group is Z, regardless of n. The subgroup of all
nxXn unitary matrices with determinant 1 is known as the special unitary group SU(n), and has

dimension n? — 1. SU(1) is trivial, whereas SU(2) is equivalent to the space of all versors (unit
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quaternions) and hence diffeomorphic to S®. The Lie algebra u(n) consists of anti-Hermitian
matrices, whereas su(n) consists of anti-Hermitian matrices with vanishing trace.

Another variant of O(n) is given as follows: define an inner product (-, -)n, x on Rtk by the
formula (X, Yy)n,k = X1Y1 +... +XnYn — Xn+1Yn+1 —- - - — Xn+kYn+k, OF equivalently by the matrix
Ink, as (X, Y)nk = deiag(l, ...,1,-1,...,-1)y where the inner product matrix I, x hasn 1’s
and k -1’s. The generalized orthogonal group Or(n, k) (also written as O(n, k)) is defined as the
subgroup of GL (n + k; R) satisfying (Ax, Ay)n,k = (X, U)nk, Or equivalently AT InkA = [k
Of particular interest in physics is the Lorentz group Or(1, 3).

Principal Bundles Take a fiber bundle E = E 5 X with typical fiber G. A specific choice Ty
of diffeomorphism 71 (Ll) — U X G for every open set U is known as a local trivialization of E,
or, to physicists, a choice of gauge. If we can choose a global trivialization 7 1(X) — E X G, then
E is known as a trivial bundle.

The pushforward 7. : TE — TX of the projection map t: E — X sends av € T,E to a vector
7'(v) € T, X acting on functions f € C*°(E) as 7*(v)(f) = v(f o 7r), and the pullback 7" : T"X — T*E
sends a one-form w € T,X to the one-form m*(w)(v) = w(m.(v)). Each g € G generates a
diffeomorphism Ry : E — E, and hence also has a pushforward (Rg).(v)(f) = v(f o Rg) and
pullback R (v)(w) = w((Rg)«(f)). We define the vertical subspace V;, at a point p of the bundle
E to be kerm., or the space of vectors sending all functions of the form f o 7t to zero. Since the
only vector v € T,E that sends all functions f to zero is zero itself, V,, measures the extent to
which 7t "flattens” E.

The vertical subspace V,, of T,E can be explicitly calculated, but in general there are many
different "horizontal" subspaces H, such that T,E = V,, ® H,. A smooth selection p — H,,
generated by a set of h = dimV — dim E smooth vector fields that span H, at each point,
would allow us to split an arbitrary vector field on E into a horizontal part, coming from X,
and a vertical part inherent to E. A connection is such a smooth assignment p — H,, which is
invariant under the action of G, in the sense that (Rg).(Hp) = Hpg. Such a connection defines a

map wyp : ToE — g given by setting wp(v) = 0 for precisely all v € H,, and, for the vector field

X; = % (petx)|t:0

smoothly on p, so does wy,, allowing us to consider it as a section of the trivial bundle g ® E
tensored with Q*(E), i.e. an element of I' ((§ X E) ® (A*T*E)) = I'(g X E) ®coo(g) Q*(E), which

we write as Q*(E, g) Such an object is known as a g-valued one-form. Given an A € g and an

which is necessarily in V}, setting wy(X},) = X. Since V;, and H,, depend
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R-valued (normal) k-form w € Q(E), we define A ® w to be the g-valued one-form given by
tensoring the section p = A with w. For abasis Ey, @ € {1,...,dim g} of g, we can clearly write
w =4 Ex ® w*, where the w* are a set of R-valued k-forms thought of as the components of
w in the basis {E4}.

Given g-valued k and {-differential forms w, n on a manifold M, we define their bracket to be
the (k + ¢)-form

[w,n](V1, ..., Vk+e) = ﬁ Z (D TwOey -+ Vo) MVa(k+1)r - - - Vo(k+0)]
0ESH

where [—, —] is the bracket of g. For R-valued forms w, n, we have [A®w, B®n] = [A, B]®(wAn),
and for g-valued k, £, m-forms w, 1, p we have [w,n] = (-1)**![n, w] and (-1)*™[[w,n], p] +
(=)' [p, w],n] + (=1)**[[n, p], w] = 0. (In particular, for odd-valued forms w,n, we have
[w,m] = [, w]). We say that g-valued differential forms on M, with their bracket, form a graded
Lie algebra. Since d is an antiderivation on the graded algebra of R-valued differential forms,
it follows that d is an antiderivation on the graded Lie algebra of g-valued differential forms.

The g-valued one-form w derived from a connection is known as a connection one-form. The
connection p — H, also allows us to assign to each choice of gauge Ty : mH(U) > UXG a
g-valued one-form on U. Take the pullback of the local section map oy : U — E,p — Tl‘l1 (p,e)
to get a map o}, : T'E = T*U, o}, (w)(v) = w((ou)«(v)), and, after tensoring with I'(g X E), let
wy = oy, w be the promised g-valued one-form on U. These one-forms on open subsets of
X are known as gauge potentials. When G is abelian, these trivially piece together to form a
well-defined one-form on the whole of X, but when G is nonabelian, we must take into account
the choice of gauge on each open set.

For instance, the Lie algebra u(1) is the imaginary line iR, so a connection one-form on a
U(1)-bundle E 5 X - an S'-bundle with an extra "rotating" action — looks like an ordinary
one-form in the imaginary domain. Since u(1) is abelian, a connection gives us a u(1)-valued

one-form w on X which we can write as w = —iA, where A is an ordinary one-form on X.

1.4 Enriched Categories

Many families of objects that naturally assemble into categories can be endowed with additional

operations. Some motivating examples, some of which we have already seen:
e (Monoidal structure) Given two R-modules M and N, their tensor product is the module
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Figure 1.2: A section of a principal U(1)-bundle.

M ® N, unique up to isomorphism, such that bilinear maps @ : M x N — P are naturally
in bijection with maps M ® N — P. The operator ® can be extended to a bifunctor

R-Mod X R-Mod — R-Mod, and equips R-Mod with the structure of a monoid.

o (Cartesian closed structure) Every function of the form f : X X Y — Z in Set is equivalent
to a function of the form X — Homse(Y, Z) via currying. Similarly, in the category CGWH,
the adjunction — X X 4 =X allows us to identify maps Y x X — Z with maps Y — (X — Z)

in a manner entirely internal to CGWH.

e (Model structure) Every morphism in Top can be factored as a fibration followed by a
cofibration [Riehl, 2014]. Any morphism which is both a fibration and a cofibration is a
weak equivalence, inducing isomorphisms on all higher homotopy groups. The fibrations
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and cofibrations on Top tell us what we need to know in order to do homotopy theory,
and by defining fibrations and cofibrations in arbitrary categories, we may do homotopy

theory in categories other than Top.

e (Enriched structure) Every hom-set in R-Mod is an abelian group in a natural way: the
identity is the zero map 0(m) = 0, and addition is given by (¢ + ¥)(m) = @(m) + P(m).
Composition is a bilinear map oxyz : R(X,Y) X R(Y, Z) — R(X, Z) as well, so we say that
R-Mod is enriched over Ab.

e (n-categorical structure) In Cat, morphisms are functors. The set D¢ of functors C — D
is itself a category, with natural transformations as morphisms; we can therefore say that

Cat has not just hom-sets but hom-categories.

e (Abelian structure) In many categories enriched over Ab, such as R-Mod, morphisms have
kernels, images, cokernels, and coimages; we can correspondingly find quotient objects

and speak of the homology of chain complexes. [Weibel, 1995].

o (Topological structure) Diff admits a natural notion of a covering, in which a function
family {Mi — M} covers the smooth manifold M if the images of all functions form an
open cover of M [MacLane and Moerdijk, 2012]. It is possible to extend this notion of a

covering to the notion of a topology on a category, known as a Grothendieck topology.

We will use these examples to construct a few hierarchies of structures that can be placed on
(arbitrary) categories. Enriched categories, in particular, give us a way to replace the hom-sets
of a category C with hom-objects in a category V with some additional structure necessary to
define composition; n-categories are examples of enriched categories, and abelian categories
are categories enriched over Ab with some additional niceness properties.

R-Mod is a very useful case study. Not only does the tensor product give it a monoidal
structure, but every R-Mod is enriched over Z-Mod = Ab in a manner compatible with the
monoidal structure on Ab: the composition map oxyz : R(X,Y) X R(Y, Z) — R(X, Z) is a bilinear
map in Ab, and hence can be reduced to a single arrow R(X, Y) ®z R(Y, Z) — R(X, Z). So, hom-
sets in R-Mod are objects in Ab, and composition in R-Mod is described by morphisms in Ab in
a manner compatible with Ab’s monoidal structure. In general, any category C whose objects
and morphisms can be described by a "monoidal category” V in a similar manner is said to be

enriched over V.
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Our discussion of monoidal categories and enrichment is based largely off of [Mac Lane,
2013, Fong and Spivak, 2018, Riehl, 2014], with extra details pertaining to structures in monoidal
categories based off of Coecke’s articles [Coecke, 2010, Abramsky and Coecke, 2009].

1.4.1 Monoidal Categories

In many categories, there is a natural notion of a product of objects, which is functorial in nature:
in Set, any object X gives rise to a functor X X — : Set — Set, sending Y to X X Y and a map
f:Y—> ZtoidxXf : XXY — XX Z. Due to the commutativity (up to isomorphism) of the
cartesian product, this allows us to regard — X — as a functor Set X Set — Set, also called a
bifunctor (since it’s functorial in both arguments). The same happens in R-Mod, with the tensor
product ® yielding a bifunctor — ® — : R-Mod X R-Mod — R-Mod.

Monoidal categories generalize this kind of structure; we equip a category V with a bifunctor
® : VXV — Vwhich gives V the structure of a monoid. We generally don’t require commutativity
and associativity to hold exactly, but only up to natural isomorphism; this is sometimes called
a weak monoidal structure, in contrast to a strong monoidal structure, but more often it is just

called a monoidal structure.

Monoidal Categories A category V is a monoidal category when it is equipped with the
following objects: a bifunctor ® : VXV — V, a selected object 1 € V known as the unit, a natural
isomorphism o : —1 ® (—2 ® —3) = (—1 ® —2) ® —3 known as the associator, and a pair of natural
isomorphisms A : 1 ® — = idy and p : — ® 1 = idy known as the left and right unitors. We
require that the following three diagrams commute:

X®Y)®(ZeW) X®(1®Y) —— X®1)®Y
e o —
1®>\\L pR1
X®(YQ®(ZW)) (X®Y)®Z)W X®YK 1
I oo 0
R x® /
X@(Y®Z)®@W) X s (X (Y®Z)eW 1] =—=1®1

In the special case that ® = X, V is known as cartesian monoidal.

We may sum up all this information by defining a monoidal category as the tuple (V, ®, 1, o, A, p),
but we generally just write (V, ®, 1), leaving the natural isomorphisms implicit (they are usually
canonical). The canonical example is, again, (R-Mod, ®, R). If a functor F between monoidal

categories satisfies F(X ® Y) = (FX) ® (FY), F is known as strong monoidal.
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A monoidal category (V,®,1) is symmetric if there is an additional natural isomorphism
Y:—1®— = — ® —1 such that yx y o yy x = idxxy and px = Ax o yx 1.

Again, v is generally canonical, and so left implicit. For instance, in R-Mod, yxy : X®Y — Y®X
sends x ® y to y ® x, which is obviously natural, commuting with other morphisms. Since the
categorical product is naturally commutative, cartesian monoidal categories are symmetric

monoidal.

Cartesian Closed Categories A symmetric monoidal category (V,®,1) is closed when the
functor — ® X has a right adjoint, denoted variously by [X,-], X = —, or =X. If ® = X, V is
known as a cartesian closed category. Explicitly, for every X, A, B there is an isomorphism
V(A x X, B) = V(A, BX), natural in all three variables; this isomorphism is known as curryingf.
The object BX is known as the internal hom of B and X; it gives us a way to interpret hom-sets
in V as actual objects in V.

The canonical example of a cartesian closed category is, as remarked above, (Set, X, 1) (where
the singleton 1 = {@} is a terminal object); here, BX = Set(X, B). Another important example
of a closed monoidal category is given by R-Mod; it is well known that R(X, B) can be given the
structure of an R-module as (¢ +)(a) = ¢(a) + P(a) and (r@)(a) = T(@(a)), and BX is, up to
isomorphism, precisely this R-module.

In an arbitrary cartesian closed category (V, ®,1), the counit of the — ® X A X adjunction
is a morphism BX ® X — B known as the evaluation morphism; in Set, this morphism takes a
function f : X — B and an element x € X and simply returns f(x), hence the name. The unit is
known as the coevaluation morphism, and in Set sends an element x € X to the function that
takes a b € B and yields the pair (x, b).

When C has terminal objects and binary products, the category of presheaves C is cartesian
closed: finite products are computed pointwise, and the exponential Q" is given by Q¥ (X) =
E(J:(X) X P, Q), so we can write QF = E(J:(—) X P, Q). The evaluation counit evaly : (QF xP)(X) =
E(J:(X) X P, Q) X P(X) = Q(X) sends a natural transformation « : hx X P — Q and an element
p € P(X) to «(1x,p) € Q(X).

¢In computer science, currying is the partial evaluation of functions, e.g. taking the binary function f : XxY — Z
and plugging in a fixed x to get a unary function fy, : Y — Z,y — f(x,y); this operation is itself a function
Hom(X XY, Z) — Hom(X, Hom(Y, Z)), Ax, y.f(x,y) — Ax. (Ay.f(x,y)).
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1.4.2 Enriched Categories

A category V is closed monoidal when its hom-sets can be thought of as objects in V. If we
can think of another category C’s hom-sets as being objects in V, then C is said to be enriched
over V, or a V-category. If V is not concrete, then a V-category C may not even be a category
in the traditional sense (it would have hom-objects rather than hom-sets), so we must define

V-categories in a more abstract manner.

Enriched Categories Given a symmetric monoidal category (V, ®, 1), a V-category, or category
enriched over V, is a collection C = {X,} of objects, along with the following data: For each
pair X,Y € C, we have an object C(X,Y) € V known as the hom-object. For each X € C we
have a morphism idx : 1 — C(X, X) representing the identity morphism, and, for each triplet
X,Y, Z € C, we have a morphism oxyz : C(X,Y) ® C(Y, Z) — C(X, Z). We require composition to

be associative, in the sense that
oxyw © (idcix y) ® oyzw) = oxzw © (oxyz ® idczw)) : C(X, Y) ® C(Y, Z) ® C(Z, W) — C(X, W)

forall X,Y, Z, W, and we require the identity to play nicely with composition in the usual sense,

for which we require
oxxy © (idc(x,y) ® idx) = pcix,v) : C(X, Y)® 1 — C(X,Y)

and
oyyx o (idy ®idc(x,v)) = Acix,y) : 1® C(X,Y) — C(X,Y)

where p and A are the right and left unitors. When C is enriched over V, we call V the base
category.

The idea behind using a morphism 1 — C(X, X) to represent the identity morphisms in C is
that in most naturally occurring base categories, such as (Set, X, 1) and (Ab, ®z, Z), morphisms
from the unit to an arbitrary object X of the base category correspond to elements of X, so in the
general case we think of a morphism 1 — C(X, X) as corresponding to an "element" of C(X, X).

In fact, this idea allows us to extract a underlying category Cp from any V-category C. This
has the same objects as C, but its hom-sets are given by Co(X,Y) = V(1,C(X,Y)). The identity
morphism idx is the above specified morphism 1 — C(X, X), and composition sends the pair
f:1->CXY),g:1—->CY, 2 firsttofeg:1®1=1-—> CX,Y)® CY,Z), and then to a
morphism 1 — C(X, Z) given by composing oxyz with f ® g.
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Enriched Functors Given two V-categories C, D, a V-functor F : C — D is a map on objects
X = FX along with, for every C(X,Y) € V, a morphism in V, Fxy : C(X,Y) — D(FX,FY). We
require that these morphisms commute with composition morphisms in V, in the sense that

D - C
obx ryrz © (Fr,zXFxy) =Fxzooxy ,

AN

and we require that the identity map 1 — C(X, X) composed with Fx x : C(X,X) — D(FX, FX) be
equal to the identity map 1 — D(FX, FX).

Given a V-category D with an arrow g : 1 — D(Y, Z) in V, we can for any X € D define a
g-: D(X,Y) =2 IxD(X,Y) — D(Y, Z)xD(X,Y) — C(X, Z); this is the equivalent of postcomposition
by g. Equivalently, we can define a g* : D(Z, W) = D(Z, W) x 1 — D(Z, W) x D(Y, Z) — D(Y, W)
which is equivalent to precomposition by g.

A V-natural transformation « : F — G between V-enriched F, G : C — Dis defined in the usual
way, as a family of morphisms «x : 1 — D(FX, GX), but we require (xy). o Fxy = (ax)* o Gx,y.

The set of V-categories along with V-functors forms a category of V-enriched categories,
which we will call V-Cat. The notion of an equivalence of V-categories is roughly the same as
in ordinary categories: we want an essentially surjective V-functor F : C — D that is V-fully
faithful, in the sense that each Fx y : C(X,Y) — D(X,Y) is, as a morphism in V, an isomorphism.
Similarly, a V-adjunction F: C = D 4 G : D — Cis a natural isomorphism D(F—,-) = C(—, G-),
or equivalently V-natural transformationsn : 1 — GF and ¢ : FG — 1 satisfying the zig-zag

identities.

1.4.3 2-Categories

The category Cat of (small) categories has a cartesian product X and a terminal object consisting
of the one-object category * whose only morphism is the identity. The formation of the functor
category D¢ gives Cat an exponential, and thus makes it cartesian closed. In particular, it is
symmetric monoidal, and we can therefore enrich over it. A category enriched over Cat, or a
Cat-category, is known as a 2-category.

More concretely, a 2-category C consists of objects X, Y, ..., and for every X, Y € C a category
C(X,Y). The objects of this category correspond to typical morphisms X — Y, and are known
as 1-morphisms or 1-cells. The morphisms of C(X,Y) correspond to morphisms between
functions, and are known as 2-morphisms or 2-cells. The categorical structure of C(X,Y) allows

us to vertically compose 2-morphisms as
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f f
. T
X—9g3Y — X Box Y
s
h h

and horizontally compose pairs of 2-cells as

f j jf
Ty
X x Y B Z — X Bre Z
\dA
g k kg
Horizontal composition comes from the fact that a 2-category C, being enriched over Cat, has
a composition rule oxyz : C(Y, Z) x C(X,Y) — C(X, Z) which is an arrow in Cat, a.k.a. a functor:
if on objects oxyz(j, f) = jf and oxyz(k, g) = kg, then the morphism (3, ) : (j, f) = (k, g) must
be sent by oxyz to a 2-morphism jf = kg, which we denote as 3 * x. The identity 2-cells
idig, : idx = idx are the identites for horizontal composition, and id¢ is the identity for vertical

composition on f. The horizontal composition of vertical composites is equal to the vertical

composition of horizontal composites, in the sense that

() *(Ba) = (8% B) - (v * x)

This is known as middle-four interchange.

The trivial horizontal composition
f a f b
X — A@B ) X@A:ﬂzs:ﬂgv
9 a g b

is known as the whiskered composite b - « - a : bfa = bga : X — Y. Of course, we can only
whisker on one side if we want, letting the other side silently denote the identity morphism.
Whiskering is natural, in the sense that every horizontally composable pair of 2-cells gives rise

to a commutative square as follows:

f j Bf

jif == kf
X:EY:EZ — X e b x| Z
~
g k ]g?kg
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We can also prove this by middle-four interchange:

(B9)(x) = (B *idg)(idj *a) = (Bid)) * (idg*x) = P rx = ... = (ka)(BT)

Two objects X,Y in a 2-category C are equivalent if there are 1-morphisms f : X — Y and
g : Y — X along with isomorphisms « : fg = idy, 3 : gf — idx. For instance, in the 2-category
Cat, this reduces to the notion of equivalence between categories. If fg and gf are not just
isomorphic but strictly equal to idy and idx, X and Y are isomorphic; in this way, equivalence is
a "loosening" of isomorphism.

Given a category C and a 2-category D, we may define functors C — D by simply ignoring
the 2-morphisms of D. A pseudo-functor F : C — D is, however, a looser notion of a functor
which takes advantage of D’s 2-categorical structure. Specifically, a pseudofunctor F: C — D is
an assignment of objects FX € D to objects X € C, I-morphisms Ff : FX — FY in D to morphisms
f: X = Yin C, along with for every X € C a 2-isomorphism «x : idpx = F(idx) and, for every
X5YS zin C, a 2-isomorphism «g ¢ : F(gf) = (Fg)(Ff). We require that for every f : X — Y
in C we have «iq,,f = oty *idrr and o5 g, = idr¢ * ax. Furthermore, for any W i> X3y i> Z,
we require the identity

(idrn * &g,f)oth,gf = (0th,g * idFf)Xng,r

In most cases, D is a 2-category of categories, with 1-morphisms being functors and 2-
morphisms natural transformations, and F is a contravariant functor. In such a case, we can
simplify the above definition. A pseudo-functor F on C is an assignment of a category FX to
each X € C, along with a functor Ff : FY — FX for each f : X — Y, generally denoted by f*. We
require natural isomorphisms «x : idy = idrx and g ¢ : f*g" = (gf)" satisfying the following

identities, where f, g, h are as above:

*
Kidy,f = axf’ oridy = fray gt o, gh’ = otrhgf otgn

1.4.4 Internalization

Internal Category Theory Everysmall category Cisin particular a pair of sets (Co = Obj(C), C; =
Mor(C)) equipped with the appropriate codomain, domain, and composition morphisms. In
this manner, small categories are categories "internal" to set. In an arbitrary category C, we
may define an internal category to be an object of objects Cp, an object of morphisms Cy, a

domain morphism dg : C; — Cp, a codomain morphism d; : C; — Cp, an identity mor-
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phism e : Co — Cjp, and a composition morphism m : C; = C; Xc, C; — Cyq, where the
pullback is taken over the morphisms do,d; : C; — Cop, expressing the fact that in order to
compose two morphisms we require the codomain of the first to be the domain of the next.
We require the obvious diagrammatic versions of the composition and identity laws. Writing
C = (Co, Cq,do, d1, e, m), a internal functor F : C — D between internal categories in C is a pair
of morphisms (Fp : Co — Do, F1 : C; — Dj) in C which commute with the morphisms do, dy, e,
and m of each internal category. An internal natural transformation « : F = G is a morphism
o : Co — Dy such that doox = Fp, dijx = Gp, and m o ((«x o dg) Xp, F1) = m o (G1 Xp, (e o dy)).
With internal functors and internal natural transformations, the collection of internal categories

in C forms a 2-category Cat(C).

Example. For instance, a category internal to Vect is known as a 2-vector space: to be precise,
a 2-vector space is a pair (Vp, V1) of vector spaces along with linear maps do,d; : V1 — V,
e: Vp — Vi, and alinear m : Vi Xy, Vi — Vj [Baez and Crans, 2003]. Since dgoe = djoe =idy,,

e must be a surjection Vy — Vj.

Internalization The process of finding categories internal to a given category C is a specific
example of the idea of internalization, the transportation of mathematical objects from Set to
arbitrary categories by an analysis of the arrows involved.

For instance, we may define a group internal to a category C with all finite products, also
known as a group object as an object G along with an identity map e : 1 — G, a multiplication
map m : G X G — G, and an inversion map i : G — G such that the following diagrams

commute:

GXGxG 9N 5w G 1xG 2498 5x@ G—2 yoxG 9 gxe
mxidg\L lm H \idG A\L\idg

m Im
GXG — G G><1_—>G><G>}G GXG.HGX@G
m idgxe m ixidg m

These diagrams tell us that multiplication is associative, the identity is two-sided, and inverses

are two-sided. A group object homomomorphism is a morphism ¢ : G — H between group
objects such that poeg = epyand mpyo (@ X @) = pomg : GXG — HXH — H; group objects
and their homomorphisms yield a category Grp(C) of group objects in a category C.

Group objects in Set are clearly groups, but group objects in other categories behave more

interestingly: in Top and Diff, the group objects are the topological and Lie groups, respectively.
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A group object in Schg is known as an S-group scheme, and a group object in Cat is known as

a strict 2-group. We may also internalize rings, R-modules, and other algebraic theories.

1.5 Homological Algebra

In this section, we’ll add an increasing amount of structures to an arbitrary Ab-category, culmi-
nating in the definition of an abelian category. Such categories allow us to define homology and
cohomology, and are very useful in the study of algebraic topology. R-Mod is the prototypical
example of an abelian category, and in a sense is the universal example: the Freyd-Mitchell
embedding theorem allows us to embed any category C, by means of a full and faithful functor,
into some R-Mod. As such, we’ll think of the elements of abelian categories as being R-modules,

allowing us to work with elements rather than arrow-theoretic language.

1.5.1 Abelian Categories

In an Ab-category C, every hom-set is an abelian group, and composition is a bilinear operation
oxyz : C(X,Y) x C(Y,Z) — C(X,Z). An Ab-functor F : C — D between Ab-categories is a
functor such that each mapping C(X,Y) — D(FX, FY) is a morphism in Ab, i.e. an abelian group
homomorphism. Since Ab is a concrete category whose morphisms 1 = Z — G are in bijection
with elements of G, the definition of an Ab-natural transformation simplifies to a family of

homomorphisms FX — GX satisfying the usual commutativity condition.

Additive Categories In an Ab-category C, the finite product is, if it exists, equivalent to the
coproduct. To see this, suppose for objects X, Y € C we have a product X X Y with projections
px and py. Then, the pair of maps (idx,0Oxy) induces a morphism ix : X — X X Y such
that pxix = idx and pvix = Oxy; likewise, the pair of maps (Oyx,idy) induces a morphism
iy 1 Y —» X xY. Take an object Z with morphisms f : X — Zand g : Y — Z, and let
@ : XXY — Z = fpx +gpy, such that pix = fpxix +gpyix = f+g0xy = f and likewise @iy = g.
This construction satisfies the universal property of the coproduct, so X X Y is both a product
and a coproduct. We call it the biproduct, and denote it &.

In an arbitrary category C, a zero object 0 is, if it exists, an object that is both initial and final.
It has the special property that it defines a unique morphism, a zero morphism, between any

two objects X and Y: this morphism, denoted Oxy, is given by the composition X — 0 — Y.
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We interpret the object 0 as carrying no information, and therefore zero morphisms destroy
all information. An arbitrary Ab-category C has zero morphisms in a literal sense: they’re the
identities of the hom-groups. If C has a zero object 0, then C(0, X), necessarily being the trivial
group, generates these zero morphisms in the manner described above. An Ab-category with a

zero object and finite biproducts is known as an additive category.

Kernels In the Ab-category R-Mod, the zero object is simply the zero module. Once we have a
zero object, we can take a morphism f : X — Y and define its kernel to be the equalizer of f with
Oxy, and its cokernel to be the coequalizer of f with Oxy. Specifically, the kernel is an object K
along with a morphism ¢ : K — X such that f¢ = Oxy, and any other K’ with a \{ satisfying
fip = Oxry has a unique p : K” — K such that { = @p. In pictures,

In Grp and Ab, K ends up being (isomorphic to) the set of all x € X that are mapped to 0 by f,
with ¢ the inclusion map from K to X, recovering the normal definition of kernel. (While this
case works out very nicely, as do cokernels, it must be emphasized that (co)kernels have not just
objects but morphisms as well). The cokernel is an object Q along with a morphism ¢ : Y — Q
such that ¢f = Oxq, and any other Q’ with a 1 satisfying \f = Oxg- has a unique p : Q — Q’
such that 1 = pe. Another picture:

Y
f i(p
0xQ ¥
X —>Q

QI
In Ab, the cokernel ends up being Y/Im(f). In summary, if fip = 0, then 1 factors uniquely

through kerf, but if f = 0, then \ factors uniquely through cokerf. Zero morphisms restrict

the flow of information between two objects X and Y, kernels tell you how difficult it is to silence

38
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an X with a morphism f : X — Y, and cokernels tell you how difficult it is to censor Y. The
image of a morphism ¢ is defined by kercokerg, and the coimage of ¢ is cokerkere.

An additive category A is abelian if it has all kernels and cokernels, any monomorphism can
be presented as the kernel of some morphism, and any epimorphism can be presented as the

cokernel of some morphism.

1.5.2 Chain Complexes

In an abelian category A, a chain complex C, is a collection {Cp, }nez along with morphisms

{dn : C = Cn-1}nez, generally represented as a diagram of the form

oo —> Crat dn+1 Cn An, Chog — -
We require that d,, o dn41 = 0 for all n. This implies that kerd,, € imdy 1 for all n; if these two
submodules of C,, are equal for all n, then the chain complex C, is said to be exact. Dually, a
cochain complex C* is a collection of objects {C™} ez and morphisms {d™ : c™ ! — C"} such
that d™*!od™ = 0. In specific instantiations of such complexes there may be a specific reason for
going in one direction or the other. In the abstract sense, though, flipping the indices is really
all we have to do; for this reason, chain and cochain complexes are more or less equivalent, and

a chain complex (C,, d.) generates a cochain complex (C~°,d™*).

Homology An arbitrary chain complex C, may or may not be exact; the extent to which it fails
to be exact at an index n is equivalent to the extent to which imd,, 1 fails to be as large as kerd,, .
It will always be a submodule, though, so we can record this failure of exactness by taking the

quotient module kerd,, /imdn+1. The homology of the chain complex (C., d.) is defined by
Hn(C,) = kerd,, /imdn 41

and the cohomology of a cochain complex (C*®, d*) is given by
H™(C®) = kerd,,/imd_1

In R-Mod, elements of imd,, 11 are known as the boundaries of C,,, and elements of kerd,, are
known as the cycles of Cy,; Hn(C.) is then simply the submodule of cycles modulo the relation

that identifies two cycles that differ only by a boundary:.
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The Category of Chain Complexes A morphism of chain complexes C, — D, is a family u,

of morphisms in A such that

d+] d
'ch+l = >Cn n>Cn—1—>"'

\Lun+l \Lun \Lun—l
d’ a’

. — Dyt = Dy —5 Dy — -+

is a commutative diagram. The set of all chain complexes on A, along with chain maps between
chain complexes, forms a category Ch(A). This is itself an abelian category, with all kernels,
cokernels, sums of morphisms, etc. being computed pointwise. Given a chainmap f: C, — D,
in Ch(R-Mod), we note that if di(g) = 0 for g € C;, then d’ifi(g) = fi—1di(g) = 0, and that if
g = di+1(h), then fi(g) = fidit1(h) = d}_,fi+1(h); chain maps send boundaries to boundaries
and cycles to cycles, and hence induce well-defined maps Hi(C.) — Hi(D.). In this way, the
map H; : Ch(R-Mod) — R-Mod, C, +— H;(C,) acts functorially; this holds for an arbitrary abelian
category A. Two chain complexes are quasi-isomorphic if all of their homology objects are
isomorphic; this provides a weaker notion of equivalence than isomorphism.

A chain complex is bounded if all but finitely many of the C,, are 0. If C,, is non-zero solely
when n € [a,b], we say that C, has amplitude in [a,b]. C, is bounded above if there’s a
b such that C,, = 0 for all n > b, and bounded below if there’s an a such that C,, = 0 for
all n < a. Keeping in line with the identification C,, = C™, a cochain complex is bounded
above/below iff its associated chain complex is bounded below /above. These allow us to form
tull subcategories of Ch(A): the categories of bounded, bounded above, bounded below, and
non-negative chain complexes are denoted Ch(A)y,, Ch(A)—, Ch(A),, and Ch(A)s, respectively.

Chain Homotopies A chain complex C, is split if there are maps s, : C;; = Cn41 such that
d = dsd. It is split exact if it is also exact; equivalently, it is split exact if and only if ds + sd
is the identity map. If we have a chain map f : Co — D,, f is called null homotopic if there
are maps sn, : Cn — Dny1 such that f = ds + sd. Two chain maps f,g : C¢ = D, are chain
homotopic if their difference f — g is null homotopic, i.e. there are maps sy, : Cr, = Dy 41 such
that f — g = ds + sd. A diagram:

'—>Cn+1 /Cn1H

|
|
- g.)/(.f g.)/‘f g)9
Dyt —4— Dy — 5 Dy —
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The maps {sn} are collectively called a chain homotopy. We will regard the notion of chain
homotopy as an extension of the notion of a homotopy between maps between topological
spaces. Correspondingly, we call two chain complexes C, and D, chain homotopy equivalent
if there are maps f : C, — D, and g : D, to C, such that gf and fg are equivalent to the identities

on D, and C,, respectively.

1.5.3 Resolutions

Let F: A — B be an Ab-functor between abelian categories A, B. If, for all exact sequences in A
of the form 0 —- X - Y — Z — 0, F yields an exact sequence 0 — FX — FY —- FZ — 0, Fis
known as a exact functor. If just 0 — FX — FY — FZ is exact, F is known as left exact, and if
FX — FY — FZ — 0is exact, F is known as right exact.

For a fixed M € A, the covariant representable functor A(M, —) is left exact. To see this, let
0> X-5Y-%Z— 0beexact. Asin R-Mod, f must be monic and g must be epic. Take the map
f. .= A(X,f) sending ¢ : M — X to fo : M — Y. If fo = Onmy, then since f is monic, ¢ must
be Opmx. So f. is monic, and likewise g.f.(¢) = gf@ = Oxz@ = Onmz, 50 g.f. = Oa(m,x),AM,Z)-
Finally, if @ : M — Y satisfies g.(¢@) = 0, then, since im¢ is a subobject of imf, ¢ factors through
fas @ = f = f.(h) for some P : M — X. So 0 —» AM,X) —» A(M,Y) — A(M, Z) is exact.

Hence, A(M, —-) is a left exact functor.

Projective Objects It is not in general true that the final arrow A(M,Y) — A(M, Z) is an
epimorphism, so that we could extend the left exact sequence to an exact sequence. For this
to be true, we require the following (equivalent) universal lifting property on M: given any
surjection g : Y — Z in A, and any map ¢ : M — Z, there is a (not necessarily unique)
map P : M — Y such that ¢ = fip. If M had this property, it would follow immediately
that A(M,Y) — A(M, Z) is an epimorphism, and hence that A(M, —) is an exact functor. If M
satisfies this universal lifting property, or equivalently if A(M, —) is an exact functor, we call M
a projective object. For instance, free modules are projective. For some nice rings R, including
Z, fields, and division rings, the projective R-modules are the free modules, but this isn’t always
the case. In general, an R-module is projective if and only if it’s a direct summand of a free

R-module.

Injectives The dual notion is that of an injective object, or an object M € A such that every

monomorphism f : X — Yand map ¢ : X — M yields at least one : Y — M such that fip = ¢.
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The contravariant functor A(—, M) is right exact, since it is A°P(M, —) which, A°P being abelian,
sends exact sequences in A°P to left exact sequences in Ab, and hence exact sequences in A to
right exact sequences in Ab). A(—, M) is exact if and only if M is injective. Injective modules are
harder to characterize then projective modules, but if A = R-Mod for R a principal ideal domain,
then M is injective if and only if for every r # 0 € rand m € M, m = rm’ for some m’ € M, so
that we can "divide" elements of M by nonzero elements of R. For instance, Q is injective as a
Z-module.

It is in general true that left adjoints are right exact and right adjoints are left exact, since left
adjoints preserve colimits, and hence cokernels, and right adjoints preserve kernels. In the case
A = R-Mod, this observation is another way to show that R(M, —) is left exact, and its left adjoint
M ®r — is right exact.

Resolutions For some nice rings R, including Z, fields, and division rings, the projective R-
modules are the free modules, but this isn’t always the case. In general, an R-module is projective
if and only if it’s a direct summand of a free R-module. R-Mod has enough projectives: given an
R-module A, take the free R-module on the set of elements of A, 7t(A) = FJA. The counit of the
F 4 J adjunction gives us a natural map 7m(A) — A (that sends a sequence of elements of A to its
sum) which is a surjection.

An abelian category A has enough projectives if for every M € A there is an epimorphism
from a projective object P to M, and enough injectives if there is a monomorphism from X to
an injective object I. A left resolution of M is a complex X, along with a map € : Xo — M such

that the following sequence

is exact. If furthermore all X; are projective objects, then X, is known as a projective resolution
of M. Dually, a right resolution of M is a cochain complex X* along with a map € : M — X’

such that the sequence

1 2
0 —> M —S3 x0 45 xt 4 x2

~

is exact. If all X" are injective, X* is known as a injective resolution.
In an abelian category A with enough projectives (injectives), every object M € A has a

projective (injective) resolution.
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Proof. Choosing a projection €y : Pg — M, we recursively choose a projective P,, and an
epimorphism €, : Py — My_1, set M, = kerey,, and let d, : P, — Py _1 be the composition
Py —» Myu—1 — Pn_1. See:

0 0 0
AN AN
0 > My > Py > M3 > 0 s> My > Po

g

.
7
.
4

Ps P3 Py M 7 0
/’ AN X‘ y‘ AN
" 7 Ms > 0 > My > P2 > My >0
g
0 0 0

Using our m(A) — A projection as €, we see that My consists of all sequences in 7(A) that
sum to 0 (and comes with an injection into Py), P is (M), coming with a canonical €1, and so
on. The kernel of each d is the image of the next, by design, so this is a projective resolution of
M.

The proof for injective objects is dual to the above proof. ]

Maps between objects M, N naturally induce chain maps between projective resolutions.
Letting P, =M, Q. L Nbe projective resolutions of M and N, and f a morphism M — N,

there is a chain map « : Ps — Q, that lifts f in the sense that the following diagram commutes:

> P2 > P1 > Po > M > 0

€

oW Wl

e — Q2 > Q1 > Qo 14N > 0

This chain map is unique up to chain homotopy equivalence.
The dual phenomenon is observed with injective objects: an injective resolution N — I°

is naturally lifted by f to an injective resolution M S E'ina way that makes the following
diagram commute:

0—M——>E —E —F—
f\L ocO\L cxl\L cxz\L
0— N—"51 —1I' — 12—
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1.5.4 Derived Functors

Left Derived Functors Fix a right exact functor F, and take an R-module M. Given a projective
resolution P, of M, FP1 — FPp — FM — 0 is an exact sequence, but the rest of FP, isn't
necessarily exact. The ith homology of FP, is known as the ith left derived functor of F,
LiF(M) := Hi(FP.). The homology at the zeroth position is given by LoF(M) = FM, so the ith
derived functor of F can be seen as the ith "homological extension" of F, with the zeroth extension
obviously being F itself. The module LiF(M) is independent of the projective resolution we
choose for M: any two different projective resolutions P., Q. will yield a pair of chain maps
f: Pe — Q. g: Qe — P, each lifting the identity map ida, implying that h = gf is a map
P. — P, lifting idpm from P, to itself. Since idp, also serves this role, and h is unique up to
chain homotopy, h and idp, must be chain homotopic, and hence induce equivalent maps on
homology, implying that the transformation induced by using Q. instead of P, — which is a

natural transformation — has an inverse, and hence a natural isomorphism.

Example. Our canonical example of a right exact functor on R-Mod is — ® N; its corresponding

left derived functors are known as the Tor functors, defined by
TorR (M, N) := Li(- ® N)(M)
Hompg(—, N) is also right exact, and we define the Ext functors by

Ext, (M, N) = Li(Homg(—, N))(M)

Right Derived Functors Given a left exact functor F and an R-module M with an (again,
arbitrary) injective resolution I°*, we can define the right derived functor R'F(M) to be the ith
cohomology of FI*, R'F(M) := H'(FI*). When F = Homg(M, —), we again arrive at Ext}a(M, N) =
RY(Homg (M, —))(N). Namely, it doesn’t matter if we compute the Ext functor via a left or right
derived functor, and in the same vein we can show that Li(— ® N)(M) = Li(M ®r —)(N) =
Torf(M, N); further exposition can be found in [Weibel, 1995].

A table of correspondences:

Left derived functor L;F Right derived functor R'G

Right exact functor F Left exact functor G
Projective resolution P, — A | Injective resolution A — I,
LiF(A) = Hi(F(P)) R'G(A) = HY(G(P))
Tor functor Ext functor
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For computational purposes, it's useful to note that Tor} preserves filtered colimits — colimits
over what are essentially directed preorders — and in particular directed limits (which are,
confusingly, actually colimits) in both variables. In the case of Ab = Z-Mod, since every abelian
group G is the direct limit of its finitely generated subgroups, we only need to know a few values
of Tor?, perhaps computed directly via selecting convenient projective resolutions, in order to

compute a wide variety of Tor groups.

Example. For an arbitrary abelian group G, we may calculate Tor”(Z/nZ, G) by selecting the
projective resolution 0 — Z Bz->1z2 /nZ — 0, which upon tensoring with G becomes
0> G5G—0. The homology of this complex at the Oth position is G/nG, and the homology
at the first position is the n-torsion subgroup »G = {g € G | ng = 0}. So TorOZ(Z /nZ,G) = G/nG,
and Torlz(Z /nZ,G) = 1G. (The ability of Tor to compute torsion subgroups is where Tor gets
its name). In fact, since every abelian group G can be written as the direct limit of its finitely
generated subgroups, each of which is either some Z™ or some Z/nZ, this approach can be used

to show that ToriZ (G, H) vanishes for i > 2.

In contrast, Ext is named after its ability to compute extensions of R-modules. An extension
of M by N is an exact sequence 0 - N — X — M — 0, and such an extension splits if
X=MeN. If Ext#(M, N) vanishes, then every extension of M by N splits; Ext! therefore tells

us what obstruction prevents a given extension of M by N from splitting.

1.5.5 Singular Cohomology

Take a topological space X. Let Hom(A™, X) be the set of maps from the space
A" ={(x0,...,xn) ER™"™ | xo+... +xn =1,%0,...,xn > 0}

known as the n-simplex, to X. The images of maps «, 3, ... in this set are known as singular n-
simplices, and denoted x|[vy, . .., vn ], where each vertex v; is the image of the vertex e; of A™. We
write &|[vo, ..., Vi, ..., vn] for the singular (n — 1)-simplex obtained by projecting the regular n-
simplex onto the face opposing the ith vertex and sending that to X. Let Cy,(X) be the free abelian
group on Hom(A™, X), whose elements are known as n-chains, and 0y, : Cr(X) = Cn-1(X) the

linear map defined on bases as

On(e) = > (=Dial[vo, ..., Vi, ., V]
i=0
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known as the boundary operator. For instance, 0 sends a singular 1-simplex, or a path in X,
to the O-chain consisting of its end minus its beginning. It’s easy to check that 9n,_10n = 0,
50 (Ca,0s) forms a chain complex of abelian groups. Its homology groups are known as the
singular homology groups of X.

A map f: X = Y generates a map f; : Cn(X) = Cn(Y) sending & : A™ — X to fou : A™ = V.
fﬁ&(lx) = 8&Y)fﬁ, so this map is a chain map, and hence extends to a map f. : Hn(X) — Hn(Y)
evidencing H;, as a functor Top — Ab; homotopic maps induce the same map, so H;, is in facta
map hTop — Ab.

Given a group G, let C™(X) be the set of all homomorphisms C,(X) — G, known as n-
cochains, which is itself an abelian group. We may precompose any morphism with On 1
to obtain a homomorphism §™*! : C(X) — C™**(X), ¢ > adn+1 known as the coboundary
operator. Since 8™6™ ! (a)(@) = @In-19n = 0, (C*,8*) is a cochain complex, whose cohomology
groups H™(X; G) are known as X’s singular cohomology groups with coefficients in G. The
failure of H™(X; G) to be equivalent to Homap(Hn (X), G) is given by the universal coefficient

theorem for homology, which states that the sequence
0 — Ext(Hp-1(X), G) — H™(X; G) — Homap(H(X), G)

is split exact; this is a purely algebraic fact, but evidences H™(—; G) as a functor hTop — Ab
as well, and is often useful in computing cohomology groups in cases where Ext is easy to
calculate. If you'd like to actually do some calculations, see the tools provided by [Hatcher,

2005], such as long exact sequences.

Eilenberg-MacLane Spaces Consider a contravariant functor F from the homotopy category
Hotc of pointed, connected CW complexes to Set. If F maps wedge products to products and, for
every u,vinsome cover U, V of a CW complex X restricting to the same element of F(LINV), there
is at least one x € F(X) restricting to U and V, then the Brown representability theorem states
that F is naturally isomorphic to the functor [—, X¢] for some X € Hotc. By Yoneda, F +— Xf is a
functor. When F = H™(—; G), both of these properties are indeed satisfied, and the representing
space is the Eilenberg-MacLane space K(G, n) whose defining property is that m;(K(G,n)) = G
when i = n and 0 otherwise. Note that such a space isn’t unique up to isomorphism, but
rather only up to weak equivalence. It is expedient to give a few examples: K(Z,1) =~ S!,
RP*® ~ K(Z/2Z,1) and CP>® = K(Z, 2).

This representability plays a useful role in the theory of vector bundles: consider the functor
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VB sending a space X to the set VB, (X) of k-vector bundles of dimension n over some paracom-
pact space X. It is known (see, e.g., [Weibel, 2013, Husemoller, 1975]) that VB’ is representable
by the infinite Grassmanian Grassy, which is the space of all n-dimensional subsets of k™.
Namely, VB (X) = [X,Grassy]. In the case n = 1, Grass;,, = kIP*°. Furthermore, we know that
if Y is an Eilenberg-MacLane space K(G, n), that [X, Y] =2 H*(X; G). For k = R, C, then, we have

the following isomorphisms:
VBL(X) = [X,RP™] = H'(X; Z/27Z)

VBL(X) = [X,CP™] = HA(X; Z)

So we may send a complex vector bundle E 5 Xtoanelement of the second singular cohomology

class of X; this element is known as the first Chern class ci(X).

Figure 1.3: Singular homology’s boundary operator.

0,1,2,3] > [1,2,3]
0
—[0, 2, 3]

+10, 1, 3]

—10, 1, 2]
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Chapter 2

Physics

2.1 Classical Mechanics

We’ll sketch out the basics, using [Landau and Lifshitz, 2013] as our primary source for classical
mechanics in its traditional, analytic sense; [Arnold, 2013] concerns the porting of this theory
over to manifolds, which will later allow us to discuss general relativity and more abstract

models of mechanics such as those encountered in synthetic differential geometry.

2.1.1 Equations of Motion

Suppose we have a system consisting of N particles in a three-dimensional space. Each particle
has an x, y, and z component, and we require 3N degrees of freedom to express the state of this
system at any given moment. Generalizing this, suppose the quantities q, ..., qs completely
define a system: these q; are generalized coordinates, and their time derivatives ¢; are their
generalized derivatives. Heuristically, if all coordinates q = {qi} and velocities g are given, the
accelerations ¢ are uniquely determined.

The most general formulation of classical mechanics is given by the principle of least action,
which states that (a) there is a function L(q, g,t) (known as the Lagrangian of a system’s
generalized coordinates at a given time (of which q and ¢ are themselves functions), and that q

and ¢ are specified so as to extremize the action

t2

s = fuq, 4,1 dt

t1
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2.1. Classical Mechanics

To play around with this, we’ll need some concepts from the calculus of variations. For a

functional F[f], the functional derivative is given by

5_F ~ lim F[f + en] — F[f]
of e—0 €

For instance, the functional derivative of the action is given by

t2

oS 1
5q(to) elir})ej (g+en,g+ent)—L(q, g, t)d
ty

t2
I N L )
= lim — JenaqL(q,q,tH enaqL(q,q,tHO(e )dt
t1

If we set boundary conditions on what q(t1), 4(t1), q(t2), and §(t2) are, we must also set

n(t1) =n(t2) =0, so as not to alter these conditions. Then, applying integration by parts, we get

t2
[ ()
5q )™ aq " at\aq
t
Since the principle of least action implies that q is selected so as to extremize the action, we
must be at a peak (or trough) of the action, and 6S/5q must be zero, regardless of what 1 is;
the expression in the brackets must therefore be zero. Therefore, any q obeying the principle of
least action must also obey the equation
(o) oL _
dt \oq) oq

which is known as the Euler-Lagrange equation.

2.1.2 Lagrangians and Hamiltonians

In a vacuum, we can assume by symmetry that we're in a reference frame where space is
homogeneous and isotropic (the same regardless of orientation); such a reference frame is
called an inertial frame. In an inertial frame, the Lagrangian can’t refer explicitly to the radius
vector, the time, or the direction of the velocity, implying that the Lagrangian for a free particle

is solely a function of v - v = V2. Plugging this finding into the Euler-Lagrange equations, we see
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2.1. Classical Mechanics

that % % =0, so dL/0V is constant; since this is a function of v only, it follows that V is constant,
and therefore that free motion in an inertial frame has a constant velocity: this is known as the
law of inertia. Heuristically, two inertial frames, perhaps moving at different velocities, are
equivalent in all mechanical respects: this is known as Galileo’s relativity principle.

For a system of particles which interact with each other, but which are isolated from exterior
forces (a closed system), we subtract from the kinetic energy term T = }; %miv% a potential

energy term U that depends on the locations 1; of the particles, giving us

1
L= Z Emiv% -U(ry,..., ™)

Solving the Euler-Lagrange equations gives us

d\/i ou

™G T o

Such equations of motion are called Newton’s equations, and the term on the LHS, mv;, is
known as the force. Note that, since the equations of motion depend entirely on derivatives of
the Lagrangian, the potential is effectively only defined up to a constant; we generally choose
this constant such that the potential goes to zero as the particles get infinitely far away from one
another.

Given a Lagrangian L, we may define the conjugate momentum to a coordinate q; to be
pi = g—(;i. For instance, when L = %qu — U(q), p = mq. If the kinetic energy T is a function
of ¢ alone and the potential energy a function of q alone, then }; pidi = 2T, and the quantity
H = > pigi — Lyields T + U, the total energy of the system. This quantity, which is in general
conserved, is known as the Hamiltonian. While we express the Lagrangian as a function of q,
d, and t, we conventionally express the Hamiltonian as a function of p, q, and t. By matching

different expressions for the total differential dH of the Hamiltonian,

oH oH oH '
dH = %dp + %dq + Edt =d(pg-1L)

we can obtain Hamilton’s equations,

dp __OH  dq oM
dt  0q dt  op
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2.2. Quantum Mechanics

2.2 Quantum Mechanics

The section on functional analysis is based on [Haase, 2014, Rudin, 1973], and the natural segue
into quantum probability theory relies on many sources, including [Takhtadzhian, 2008, Meyer,
2006,Holevo, 2003, Rédei and Summers, 2007], each of which tells a small part of a large story. In
addition to the sources used in our discussion of functional analysis and quantum probability

theory, we use [Sakurai et al., 2014] as a source for quantum mechanics.

2.2.1 Banach Spaces

In the theory of finite dimensional vector spaces, everything goes right. More specifically, every

such space V satisfies the following:

e The double dual of V, V*, is canonically isomorphic to V itself.
e Allnorms on V are equivalent, and induce the same topology.
e With this topology, any linear map from V is continuous.

e An endomorphism on V is injective iff it is surjective.

e The unit ball in V (under any norm) is compact.

The theory of infinite dimensional vector spaces, however, is far more dangerous: none of these
statements hold, nor can they be easily fixed. In such an infinite dimensional vector space W,

the following properties are satisfied:

e As cardinals, dim W** > dim W* > dim W, these inequalities being strict.

W generally has many different topologies of interest.

Linear maps from W aren’t necessarily continuous.

There are non-surjective injections W — W.

The unit ball is never compact.

In nature, infinite dimensional vector spaces tend to occur as spaces of functions, hence the
name functional analysis. There is a hierarchy of classes of infinite-dimensional vector spaces,
with each level of the hierarchy introducing a new structure, or a new condition to be fulfilled
by a structure provided at the lower tier. At the bottom rung are simply k-vector spaces, where

we assume k is either R or C.
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2.2. Quantum Mechanics

Normed Spaces The first thing we can do with a vector space V is put a norm on it. This is a

function || - || : V — [0, oco) which satisfies the following properties:

1. Homogeneity: ||cv|| = |c|||v||, for c € k.
2. Triangle inequality: ||v +wl| < [[v|| + [|w]]
3. Definiteness: |[v|| =0iffv = 0.

Equipped with such a norm, V becomes a normed space. This norm induces a topology on

V whose basis consists of open sets
Br(v) ={weV]|y-wl <t}

for all r € [0,00) and all v € V. Given two normed vector spaces V, W, we may ask which
linear maps A : V — W, also known as operators, preserve the norm, in the sense that
[|Av||lw < c||v]|v for all v € V, for some fixed ¢ > 0. Such an operator is known as a bounded
operator. It’s well known that an operator is bounded if and only if it is continuous: in this
sense, the structure on V that a norm provides is equivalent to the structure that the topology
induced by the norm itself provides. The smallest such c satisfying ||Av||w < cl||v||v is given by
SUP|j¢(jy <1 ||Av||w, and is known as the operator norm ||A||. With this norm, the space B(V, W)
of bounded operators V — W, with its natural vector space structure, becomes a normed space
itself.

An important family of normed spaces can be constructed as follows: take a measure space

(Q, F, 1) and consider the vector space of measurable functions QO — k, k € {R, C}. Define the

1/p
1]l = J|f|p

for 1 < p < oo. The space of functions f for which |[|f||, < oo is a vector space LP(Q, 1), but

p-norm of a function f to be

it isn’t a normed space, since functions which are 0 almost everywhere have norm zero. The
set of all such functions forms a linear subspace of LP(Q, ), though, and quotienting out by it
yields a proper normed space LP((Q), i), known as an LP space, whose elements aren’t strictly
measurable functions QO — k, but equivalence classes of measurable functions which differ by
sets of measure zero [Rudin, 1973]. As p — oo, ||f||, converges to the essential supremum of
|f|, since raising |f| to a power p > 1 makes a greater change when |f| is large, with the size of
p exaggerating this change. This allows us to define ||f||s to be the essential supremum of |f|

over ), and thereby obtain the space L*°(Q), ).
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2.2. Quantum Mechanics

In the special case when p is the counting measure, which sends a finite S € Q to |S| and an

infinite S to oo, the set LP(N, p) is known as the {P space; its elements are sequences {co, c1, ...}
. 1

and the norm of a sequence ¢ = {cn }nen is just ( e |cn|p) /P when 1 < p < o0, and supc

when p = oo.

Inner Product Spaces Given a (k-)vector space V, an inner product on V is a mapping (-, ) :
V XV — k which is

1. Conjugate-symmetric: (v,w) = (w,v)
2. Positive definite: (v,v) > 0,and (v,v) = 0iffv = 0.

3. Sesquilinear: Linear in the first argument, and conjugate linear in the second argument.

A vector space equipped with an inner product is known as a inner product space. The norm
induced by the inner product (-, -) is given by [|v|| = +/(v,V); it is straightforward to check that
this is indeed a norm, and therefore that inner product spaces are a subset of normed spaces.

This norm satisfies the polarization identity
I+ glI> = IIf = glI* = 4Re ({f, 9))
as well as the parallelogram law
1+ gl + 1If = glI* = 2 (IIfI1* + lgI?)

In fact, an arbitrary norm on a vector space is induced by an inner product if and only if it

satisfies the parallelogram law [Haase, 2014].

Example. As in the finite dimensional case, two vectors v,w on an inner product space are

orthogonal if (v,w) = 0. For instance, consider the k-vector space of continuous functions
1 1 .

[0,1] — k = C, with inner product (f, g) = fo fg dx. For f,, = e?™'"* n € Z, we have

1
<fm/ fn) — JeZTEi(m—TL)X dX
0

which when m = nis 1 and when m # n is m (e2mm-m) _1) = 0. So, in fact, {fn} is
not only a set of pairwise orthogonal vectors, but an orthonormal set. It is not an orthonormal
basis, since an arbitrary f € C[0, 1] cannot be expressed as a finite linear combination of the f;,,

but (since this is just a Fourier transform) we know that we can specify coefficients ¢, = (f, f)
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2.2. Quantum Mechanics

such that the sum ;.7 cn fr, converges to f under the norm induced by the inner product. Such
a "basis" in which every element of the vector space can be expressed as the limit of a countable

sum is known as a Schauder basis.

Banach Spaces A Banach space is anormed space (V, ||-||) which is complete with respect to its
norm, having for each Cauchy sequence {vn }nen a vector v such thatlimy o |[[vn —V|| = 0. This
completeness condition ensures that V has "no holes", so that all sequences that should converge
(Cauchy sequences) do converge. An incomplete normed space V can be made complete in the
following manner: take the set of all Cauchy sequences {vn }nen in V, and, givenv = {vn},w =
{wn}, define a "metric" on Cauchy sequences by D(v,w) = limn 0 |[[vn — wn||. If V isn't
already complete, this isn’t an actual metric: let v and w be the same sequence except at the
first element to get D(v,w) = 0 with v # w. To fix this, we declare v and w to be equivalent to
be equal if limy o [[Vvn — Wn|| = 0. This is an equivalence relation by the triangle inequality,
and quotienting the set of Cauchy sequences out by it makes D a proper metric on what is now
a complete space, which we denote by V. Of course, if V is already complete, we can identify
Cauchy sequences with the vector they converge to, so V can be identified with V. If not, then V
naturally embeds into V, this embedding being given by sending a v € V to the equivalence class
of the Cauchy sequence (v, v,v,...). In this way, every normed vector space V naturally embeds
into the Banach space V known as the completion of V.

LP(Q, u) is always a Banach space, a fact often known as the Riesz-Fischer theorem. For V an
arbitrary Banach space, the set B(V) := B(V, V) of bounded operators on V is, when equipped
with the operator norm, a Banach space. This space can be equipped with an associative
multiplication given by composition. A Banach space equipped with an associative algebra
structure is known as a Banach algebra; we also require that ||AB|| < [|A]|||B||, but this holds
trivially for the Banach algebra B(V). In addition, the normed vector space V* := B(V, k) is also

a Banach space, known as the dual of V.

Example. Banach spaces often appear in the study of differential equations and dynamical
systems, since they allow us to use linear algebra in sufficiently nice topological spaces. For
instance, let X be a Banach space, and f a continuous map X — X. f is called a contracting
map if there’'s a A < 1s.t. d(f(x),f(y)) < Ad(x,y), where d(x,y) = [|x —yl||. fand its positive
iterates f2,f3,... form what is known as a discrete-time topological dynamical system. Of
course, d(f™(x), f*(y)) — 0asn — oo; every {f™(x)}xen is, in fact, a Cauchy sequence, so, given

that X is complete by virtue of being a Banach space, there’s a unique limit p to which all points
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converge, known as the fixed point.

We verify that it’s a Cauchy sequence as follows: for n > m,

d(f™(x), f™(x)) < d(f™(x), f™ (%) + ...+ d(f™ (%), (%))

m 00
<A™ FA™ 4 AYDA(F(x), x) <A™ A+ A%+ d(f(x),x) = ;\T}\d(f(x), x) =570

In particular, as m — oo, d(p, f™*(x)) — 0, implying that f(p) = p. Asn — oo, we get
d(f™(x),p) < % d(f(x), x). We say that two sequences of points {xn }nen and {yn } nen converge
exponentially to each other if d(xn,yn) < cA™ for some ¢ > 0, A < 1. In the case that {yn }nenis
a constant sequence y,, =y, wejust say that {xn }nen converges exponentially toy. We therefore
have the Contraction Mapping Principle: under the action of iterates of a contracting map f on
a complete metric space X, all points converge with exponential speed to the unique fixed point
of f.

2.2.2 Hilbert Spaces

Hilbert spaces combine the theories of inner product and Banach spaces. In particular, a Hilbert
space is an inner product space H which is Banach with respect to the norm induced by its inner
product or, equivalently, a Banach space whose norm satisfies the parallelogram law. Among
the LP spaces, this is only satisfied for p = 2, in which case the norm on [%(Q, ) is induced
by the inner product (f, g) = J o Tgdp. When a Hilbert space H has an orthonormal Schauder
(countable) basis, it’s called separable. This is essentially a size restriction on #; every Hilbert
space has a possibly uncountable orthonormal basis (assuming the AC), but we will assume
that our Hilbert spaces are separable to avoid size issues. We'll also assume that k = C unless

otherwise specified.

C*-Algebras For the purposes of quantum mechanics, we’re not interested in Hilbert spaces
per se, but in algebras of operators on Hilbert spaces. A Banach algebra of the form B(#) has
a natural involution operation given by taking adjoints: the adjoint of an operator A € B(H)
is an operator A" satisfying (Av,w) = (v,ATw) for all v,w € H. (In the real or complex
tinite dimensional case, this simply corresponds to taking the transpose or conjugate transpose,
respectively). The fact that adjoints always exist is a consequence of the Riesz representation
theorem, which states that any ¢ € 7{* can be represented as (—,Vv) for some v € #; if we set

@ = (A—,w) for a fixed w € H, this theorem gives us a v such that ¢ = (—,v), and therefore
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an identification (Ax,w) = (x,v). This v depends linearly and continuously on w, and hence
can be represented as A'w, giving us the adjoint AT. We can check that this really does define
an involution on B(H): (ATtv,w) = (w, ATtyv) = (ATw,v) = (v, ATw) = (Av,w), so ATT = A,
Furthermore, (ABv, w) = (Bv, Afw) = (v, BFA™Ww), so (AB)" = B'A'. It can also be verified that
[|ATA|| = ||AT||||A]|, and this property, along with the previous two, makes B(#) a C*-algebra

when equipped with the involution (-)'. In general, a C*-algebra is a Banach algebra with an
involution satisfying (AB)' = BTA' and ||ATA|| = ||AY]||||A||; the Gelfand-Naimark theorem

allows us to identify any C*-algebra as a subalgebra of some B(H).

Observables and Projections Three especially important subsets of B(7{) must be distin-
guished: first are the self-adjoint operators, which satisfy A" = A. (Physicists often call a
self-adjoint operator a Hermitian operator, or an observable). For H = R™, these are the
symmetric matrices A = AT, and for # = C™, these are the conjugate symmetric/Hermitian
matrices A = A'. The eigenvalues of a self-adjoint operator, i.e. those A € C such that Av = Av

for some v known as A’s eigenvector, can easily be seen to be real even if H is complex:
AVI = (W, v) = (Av,v) = (v, Av) = (v, Av) = Al ]I

In addition, the eigenvectors vy, v, of a self-adjoint A are orthogonal given that they have different

eigenvalues A1 # Ay:

A1{v1,v2) = (Avy, Vo) = (vi, Ava) = Ap(v1,V2)

s0 (A — A2)(v1,Vv2) = 0, implying that (v1,v2) = 0. We denote the set of all self-adjoint operators
as O(H) C B(H); it isn’t closed as an algebra, since (AB)" = B'AT = BA isn’t necessarily
equal to AB, but it is closed under the commutator i[A, B] = i(AB — BA), with (i[A,B]) =
(-i)(BTAT — ATB") = i[A, B].

The second subset of B(#) consists of the positive operators, for which (v, Av) is real and
non-negative for all v € H. Obviously, (v, Av) = (Av,v), suggesting that positive operators are
self-adjoint. Given two self-adjoint operators A1, Ay, we write A1 > Aj if A — A, is positive;
this forms a partial order on O(H).

Finally, there are the projection operators, those operators P € B(H) which satisfy P> = P.
These operators are necessarily self-adjoint and positive, satisfying I > P > 0, where I is the
identity operator Iv = vand 0O is the zero operator Ov = 0. In fact, projections can be characterized

as orthogonal projections onto some linear subspace of H. For instance, every v € H induces a
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projection operator P,w = v(w,v)/{v,v). Given an operator A, define its range to be R(A) = AH
and its null space tobe N(A) = {ve H | Av = 0}. Given a family {P«} of projections, we can
then define the meet AP« to be the smallest closed subspace of H containing (), R(P), and
the join V4P, to be the smallest closed subspace containing ( J, R(P«). Denoting by P(#) the
subset of O(#) containing the projections, these are the inf and sup operations with respect to
the partial order on P(#) inherited from O(H).

Diagonalizability Since we’ve assumed # to be separable, we can fix a countable orthonormal
basis (e1, €2, ...), and represent any v € H as the converging sum ;2 viei, where vi = (v, ei).
This allows us to write (v, w) = (3}; viei, 2 Wj ej) = 2,; viwi, and to express an operator A in
terms of a "matrix" Ai; = (ei, Aej). With this notation, the usual formulas for finite-dimensional
vector spaces can be extended: (Av); = 245 Aijvi, (AB)ij = 2 AikByj, and so on. In particular,
Aisdiagonal when Ai; = Ofori # j, and diagonalizable when there is an orthonormal countable
basis in which A is diagonal. Two self-adjoint operators A, B are mutually diagonalizable when
there is a single basis in which they’re both diagonal; this happens when [A, B] = 0.

The trace of an operator A is given by TrA = }; Ai; = ) ;(ei, Aei); this value is independent
of the basis chosen, being a property of the operator A itself. This sum may not always converge,
but when it does, A is said to be of trace class. For instance, we can take the trace of a projection

operator of the form P,:

(e, V) 1 1
Py = St Pied = Y (e @ ) = gy e = g B =

On the set of trace class operators in B(#), denoted 7 (H), the trace generates a norm: take an

operator A and define the self-adjoint operator A'A, which has real eigenvalues 01, 02, .... The
trace norm of A, denoted variously as ||All. or TrVAYA, is then 3; 1/0i. With this norm, 7(H)
is a Banach space; in fact, its dual can be identified with B(#) itself. We say that 7(#) is the
predual of B(H), and write T(H) = B(H)-.

Any operator p € T(H) with trace 1 is said to be a state; the projection operators P, are
special among these, and are called pure states. It is a consequence of the Hilbert-Schmidt
theorem that an arbitrary state A can be decomposed into a sum of finitely many pure states as

A= 2{11 ciPy,, where the {v;} are orthonormal and ZiN:1 ci = 1.
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Bra-Ket Notation Let H be a complex Hilbert space. Dirac’s bra-ket notation prescribes that
we write an element 1 of H as [), calling them kets, and elements ¢ of H* as ($p| := (b, —),
calling them bras. Note that physicists tend to write the inner product as being conjugate linear
in the first argument, rather than the second, which is why we’ve used (¢, —) instead of the
(-, ) above. We'll continue to use this convention for this section. The inner product of two
kets |¢), [\p) is written as (p[). The correspondence between H and H* given by the Riesz
representation theorem sends a c[i) to ¢(d|, and a term of the form A ) to (¢p|AT, where we
define the action of an operator A on a bra (¢| as ((¢p|A)|P) = (d|(A[)). We generally require
our bras and kets to be normalized, requiring that ({|\p) = 1; an arbitrary element of H can
be normalized by dividing it by its norm. In contrast to the inner product, bra-ket notation
allows us to express the outer product of a bra (¢| with a ket |p)si, which is the operator
[p)(P| that acts on a |&) as (|Y){(D|)(|&E)) = [W){(Dd|E). We may also speak of the outer product
of two bras (¢1]|(d2| or kets |\1)|P2), which is just defined to be the tensor product in H ® H.
We'll rewrite a few of our above formulas in this notation: Ai; = (ei|Ale;), [v) = Xi |ei)(eilv),
TrA = ) ;(ei|Alei), and P, = |[v)(v| (note that |v) is assumed to be normalized). Note that since
v =) lei(eilv) = (X |ei){ei]) v, we can write }; |ei){ei| = I. This is known as a resolution
of the unity, and can be inserted anywhere: for instance, (vlw) = > ;(v|ei){ei|w). Commonly,
H = 1%(M,C), where M is a Riemannian manifold with metric g and the inner product is
Wb|d) = IME(X)¢(X) w, where w is the volume form on M.

Resolution of the identity works when we replace the {e;} with an arbitrary orthonormal
basis, for instance the eigenkets of a self-adjoint operator A, when they form a complete set.
In physical systems, we often use the case of A = H, where H is an operator representing the
Hamiltonian, whose eigenvalues are thought of as the allowed energy levels of the system. The
eigenvalue equation H[\p) = E[) is known as the time-independent Schrodinger equation.
The Hamiltonian H generates a one-parameter group of operators U := e wtH where e? =
I+A+ 1A%+ ... satisfies the usual properties of the exponential, and h is a positive constant.
We have UiUg = e~n(t+s)H — U¢ys and UI = entH = U_¢, so that UtUI = UIUt = I; operators
whose adjoints are their inverses are known as unitary, and the group {U; }+cr is known as the
unitary group generated by H. For instance, the unitary group generated by ih-L on L*(R) is

given by

o 2
U, f(x) = e w¥indEf(x') = eXdx f(x) = [+ xf/ + %f” +o () = F( = x)
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where we’ve identified the penultimate step as a Taylor expansion. The operator ih-L is the
quantum analog of momentum, and we correspondingly say that momentum is the generator

of translation.

2.2.3 Measurements

As per Dirac, "a measurement always causes the system to jump into an eigenstate of the dynam-
ical variable that is being measured." To illustrate, say an operator A with some corresponding
physical variable (e.g., position) has eigenkets {|ai)}, where a; refers to an actual value of the
variable. A normalized ket |«) is represented in this basis as |«) = }’ ci|ai), where ci = (ai|o).
When we make a measurement of the variable corresponding to A, |x) jumps into one of the
|ai), and the probability of a specific ket |a;) is [{ai|a}|?. Since |) is normalized, we know
that >; [{(ai|o)|* = 1, so the probabilities sum to 1. The expectation value of A in the state
|y, denoted as (A)« (o is often suppressed, especially when it is some ground state), can be

calculated as

ai ai ai

(Ao = D aiP(a) = ) ailfailodP = > > (adaj)(aj]Alai)aila) = (Al

Define the commutator of two observables A, B as
[A,B] = AB - BA
and the anticommutator of A and B as
{A,B} = AB + BA

The observables A, B are said to be compatible when [A, B] = 0, and incompatible otherwise.
Suppose A’s eigenvalues are nondegenerate and generate a basis, in which the matrix rep-
resentation of A is diagonal. If B is compatible with A, B is diagonal in A’s basis as well.
Why? {ai|[A, B]|a;) = (ai|0]a;) = 0 = (a; — aj){ai|B|a;), which by nondegeneracy implies that
(ai|Blaj) = 0 unless i = j. So, really, the eigenkets of A are the eigenkets of B, though they
may have different eigenvalues: they are said to be simultaneous eigenkets, and are sometimes
denoted by |a;, bi). We may also use a collective index, |K;) = |ai, bi). Due to the simultaneity
of the eigenkets, measurements of A do not interfere with measurements of B, and vice-versa;

this can be extended to larger sets of pairwise compatible operators. Of course, if A and B are
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incompatible, then simultaneous eigenkets generally do not exist and successive measurements
do interfere with each other.

To represent our uncertainty in the result of a measurement, we adopt the statistical notion
of variance, calling it dispersion: defining AA = A — (A), the dispersion, also known as the

variance or mean square deviation, is given by the expectation of (AA)?, or
((AA)%) = (A% = 2A(A) + (A))) = (A%) = (A)?

It is more convenient to denote this by 0% .

For observables A, AA is also Hermitian, since the expectation is a real number (implicitly
multiplied by the identity) and thus equal to its own adjoint. We can use the fact that an operator
can be defined by its action on all possible kets to lift certain identities on vectors in Hilbert
spaces to corresponding identities on their operators: for instance, if we assume that operators
A and B are Hermitian, we can lift the Cauchy-Schwarz identity (o|o){B|B) > [{x|B)|* to a
corresponding identity (A2)(B2) > |(AB)|2. Since the dispersion operators of observables are
Hermitian, this implies that 03 0% > [(AAAB)|? for any observables A, B. In fact, expanding
this yields:

1 2

%% = (AAAB)? = |Z(IA, BI) + 2 ({AA,AB)| = I([A, BDP + 1I{(AA, ABL)P

giving us the important inequality

oA0s = 3[([A, B)

(Note that "o 4" is notational trickery, since 0% itself is not a square, but the expectation value
y A q p

of a square; however, as 0'%\

of A).

corresponds to variance, 04 corresponds to the standard deviation

2.2.4 Position, Momentum, and Time

We’ve been dealing with finite-dimensional spaces so far, where spectra are finite and everything
converges. Now we’ll move to infinite-dimensional spaces, replacing Kronecker deltas by Dirac
deltas and sums by integrals: for instance, (ai|aj) = &i; becomes (ai|a;) = 61 —j), and
2. lai){ai| = 1 becomes flai)(ad di=1.

Consider a position operator x on one dimension, whose eigenkets x|x{) = xi|xi) form a
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complete set. An arbitrary physical state |x) can be expanded as |x) = ffooo|xi> (xi|oc) dx;.
Suppose we centered a detector of length £ at position xp: when the detector registers a particle,

the state changes:
xo+£/2

o) = J ) (xila) dxi — L2|xi><xi|oc> dx;

The probability of the particle being detected in this range is given by

xo+4£/2

J il P dxe

x0—4£/2

Of course, as { — oo, this probability goes to 1 as long as |«) is normalized.

To consider three dimensions x,y,z, we must be assured that measurement in one dimen-
sion does not affect the other two, so [x,y] = [x,z] = [y,z] = 0. Defining X as a collec-
tive index for x,y, z, such that |X) is a simultaneous eigenket for the observables x,y, z, con-
sider the infinitesimal translation operator 7(dX)|X) = [X + dX). What properties should
we expect such an operator to have? It should preserve normalized eigenkets, implying that
(| TH(dX)T(dX)|o) = («]) = 1 and therefore that [J(dX) is unitary. We should also have
J(dX1)J(d%p) = J(dX1 + dXp) and J(—dX) = J~1(dX). Finally, as dX goes to zero, J(dX) should
go to the identity operator: limg;_,o J(dX) = 1.

If we take J(dx) = 1 — iK - dX for some hermitian K = (Kx, Ky, K;), all these properties are
satisfied (up to O((dX)?), which is good enough, since dX is infinitesimal). Accepting this to be
the correct form for [7(dX), we note that [X, J(dX)] = dX and therefore that [x;, Kj] = 18;;. This
K seems to generate translations, so it must be in some way related to momentum. Since K- dx
is dimensionless, K has units L-1. We can define it as p divided by some constant with the
dimension of action, [2MT~L. Calling this constant h, we rewrite J(dX) = 1—1ip - dxX/h, assuring
that momentum really is the generator of translation. Our commutation relation becomes
[xi, pj] = ihdij, and we can now state the Heisenberg uncertainty principle as a special case of
the more general relation above:

OxO0p, = %

Note: [pi, p;] = 0, and we can use p = (px, Py, Pz) to create a simultaneous momentum eigen-
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ket |p). This forms one of the three canonical commutation relations of quantum mechanics:
[xi,xj1=0  [pi,pj =01  [xi,p;j] = ihdy

Time Evolution Suppose a state |«) is pictured at some time to. We write this state as |, to),
and its evolution to an arbitrary time t we write |o, to;t). We want a time evolution operator
U(t, to)|x, to) = |, to; t) with the same conditions as the above infinitesimal position operator.
We again make the choice U(tp+dt, tg) = 1-1Qdt for some Hermitian Q). In classical mechanics,
the Hamiltonian H is the generator of time evolution, and we correspondingly define QO = H/h,
giving us U(tp + dt, tp) = 1 — iH dt/h. We find that

Ut + dt, tg) — UL, tg) = —i(H/h) dtU(t, to)
and therefore that 5
ihab{(t, to) = HU(t, tp)

Multiplying both sides by a state ket |x) immediately leads to the time-dependent Schrodinger
equation,

0
ih—|o, tg;t) = Hlx, tg; t
i 8t|0¢ ot) |, to; )

Defining the exponential of an operator A by the Taylor series for the usual exponential, e =
1+A+A2/2+A3/6+...,the solution to this equation is the same as it is for a normal differential
equation:

U(t, tg) = e w1t

when H is not a function of time,

Ut to) = & T 4Y

when H is a function of time but [H(tq), H(tz)] = 0, and

oo A th T
U, to) =1+ Z (—%) JJ .. J H(t1)H(t2) ... H(tn) dty, dtp-1...dt;
n=1 toto to

when H is a function of time and [H(t1), H(t2)] # 0. We'll generally deal only with the first case.
Suppose that H is time-independent and generates a complete basis {|ai)}, with H|ai) =

Eq,lai). Setting tg = 0 and expanding the time evolution operator in terms of |a;)(ai|, we find
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that

i

i =3 lay)ale M ai)(ail = ) arye " (ay]
J i
For an arbitrary ket |x) = }; |ai){ai|x) = }}; cq,|ai), we have

ja;t) = e "My = 3 cqeF )

i

So the coefficent cq,(t) is given by cq,(t) = caie‘%Eait.

How does the expectation value of an observable change over time? Observe:
(B)a; = {ai, t[Blag, t) = (aslus"(t, 0)BU(t, 0)]as) = (aglen " 'Be "ot |ag) = (ai[Blas)

implying that the expectation values of observables taken with respect to energy eigenstates
does not change over time. Energy eigenstates are correspondingly known as stationary states.
In general, this does not hold true for expectation values taken with respect to superpositions
of energy eigenstates, which are correspondingly known as nonstationary states.

The above exposition is an example of the Schrodinger picture of quantum dynamics, in which
state kets are postulated to change over time while observables stay constant. We can view this
in another way, though: state kets are constant, while observables change. This is known as
the Heisenberg picture, and relies on the following mathematical equality: consider two state
kets |3) and |«) and an observable U. Since observables are unitary, (3|} = (3|U"U|«). For an

operator X, consider the action of a unitary transformation X — U"XU on (B|U|x). We have
(BIX|a) = (BIUXU o)
But we can view this in two equivalent ways:
(BIUN X (Ule)) = (Bl (UTXU)ex)

So either the bras and kets change as |«) > U|a), or the operator itself changes as X +— UXU.
These two pictures have different physical interpretations, but are entirely equivalent; in the case

that U = U/, the time evolution operator, we recover the Schrodinger-Heisenberg distinction.
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2.3 Special Relativity

As in classical mechanics, to talk about nature we need a reference frame, or coordinate system.
We would like moving bodies not acted upon by external forces to move at constant velocities; a
reference frame in which this holds is known as an inertial reference frame. We can have multiple
reference frames, each attached to a distinguished point serving as the origin; if one is inertial,
and the other moves uniformly relative to the first, the other is inertial. Galileo’s principle of
relativity states that laws of nature are identical in all inertial reference frames. This principle,
however, was formulated with the idea of instantaneous transmission of physical signals in
mind; in experiment, we find that this doesn’t happen, and that the maximum velocity of
propagation is a finite constant known as the speed of light, ¢ ~ 3x 108 m/s. Einstein’s principle
of relativity states that physical laws are invariant under choice of inertial reference frame; in
particular, they all measure the same c. Theories of mechanics built upon this principle are

called relativistic.

2.3.1 Intervals

In special relativity, the primitive objects of study are events, or points in spacetime (R*).
Suppose two events happen with spacetime coordinates in a reference frame K given by
(x1,Y1,21,t1) and (x2,Y2, 22, t2), respectively, corresponding to the emission and receiving of

a light-speed signal, respectively. The signal covers a distance c(t, — t1) which is equal to

\/(xz —x1)% + (Y2 — y1)? + (z2 — 21)?, so we can write
(x2=x1)*+ (Y2 —y1)* +(z2 —z1)* = *(t2 - t1)* = 0

In a system K’ where the coordinates of the two events are (x},y7,z,t]) and (x),y3, 25, 1)),

respectively, the velocity c? is still the same due to the principle of invariance, so we have
(x5 — x'l)2 + (Y5 - y’1)2 + (25 — 21)2 - (:2(’c'2 - t'l)2 =0

In general, in a reference frame K where two events have coordinates (x1,y1,z1,t1) and

(x2,Y2, 22, 12), the interval between those two coordinates is given by

s1, = (b — 1) — (x2 = x1)* = (Y2 —y1)* — (22 — 1)

We've deduced that if the interval is zero in any one reference frame, it’s zero in all reference
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frames. If two events are infinitely close to each other, the interval ds between them is given by
ds? = ¢ dt? — dx® — dy? - dz?

If we measure the same interval in two different reference frames K and K’ to get ds and ds’, it
follows from the facts that (1) if ds = 0 then ds’ = 0 and (2) ds and ds’ are infinitesimals of the
same order, that ds and ds’ are proportional to each other: ds = a ds’. Since space and time are
homogeneous and isotropic, the constant of proportionality cannot depend on the coordinates
or the time, nor can it depend on the direction of the relative velocity. Therefore, ds’ = ads,
with the same constant of proportionality. It follows that ds = a®ds, so a> = 1 and a = £1. a
obviously can’t be —1, since moving between three reference frames would give us ds = —ds,
so we must have a = 1. Therefore, ds = ds’ and s = s’. The interval between two events is

independent of the frame of reference.

The Light Cone Suppose we have two events in spacetime, viewed from a reference frame K,

and you, a massive object (no offense) want to get from one to the other by traveling along a

straight line. Were we to attach a reference frame K’ to you, putting you at the origin, we’d find

that both events have the same space coordinates in K’. Introducing the notation t;» = t, — t;

and 1%2 = (x = x1)*> + (Y2 = y1)? + (z2 — 21)?, the intervals in K and K’ are 5%2 = cz’c%2 - 1%2 and
72 72

- 2 242 12— 242
$15 = s]5, we have s], = c¢*t}, — 13, = ¢“t}; > 0. So you can

get from one to the other if s2, > 0. We call such an interval timelike, since all that’s keeping

_ 2472 172 : 72 _ 2
= ¢t 112. Since 112 =0 and $To

you from traveling along it is time. If we want the two events to happen at the same time, we
require S%z < 0, and call the interval spacelike, since you'd have to teleport through space to get
from one to the other. Because of the invariance of intervals, the spacelike/timelike divide is an
absolute division, independent of reference frames; at any point p in a coordinate system there

2t2 = 0 known as the light cone, any point outside of which

is a cone defined by x> + y2 + 2% — ¢
is absolutely remote relative to p, and any point inside which is either in the absolute past or

absolute future relative to p, where t < 0 and t > 0, respectively.

Proper Time Suppose that we're at the center of an inertial reference frame K, we have two

clocks C and C’, and we chuck C” away at an arbitrary velocity. During an infinitesimal period

of time dt as measured by our clock C, C’ will travel a distance y/dx2 + dy2 + dz2. Because of
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the invariance of intervals, ds? = c2dt?> — dx? — dy? — dz? = c?dt’?, so

ds dx? + dy? + dz? V2
dt':—:dt\/l— =dt4/1-—=
c c2 dt2 c2

Integrating this expression, we see that over a time interval t, —t; measured by C, C’ experiences

a time interval
t2

2
t—t] = J\/l—\cj—zdt
t

Since this interval is less than t, — t;, C’ is seen as lagging. Paradoxically, however, from C’’s
reference frame, C is lagging!

The proper time for an object is the time read by a clock moving along with that object, which
is the integral f:% taken along the world line of the clock. For two points separated by a
timelike interval, this integral has the maximum value when taken along the straight world line

joining these two points.

2.3.2 Lorentz Transformations

We want to translate the set of coordinates (x,y, z,t) in the reference frame K to another set
of coordinates (x’,y’,2’,t’) in a reference frame K’. Supposing K’ moves along K’s x axis at a
velocity V, in classical mechanics we'd set X’ = x + Vt,y’ = y,z’ = z,t’ = t, which is known as
the Galilean transformation, but this fails to leave intervals invariant, making it unacceptable
for relativistic mechanics.

Setting T = ict, such that s> = x> + y? + 22 + 7%, and changing coordinates to (x,y, z, ), what
we're looking for is precisely an isometry of this space. It’s then either a parallel displacement or
a rotation. Displacement doesn’t matter, since it only changes the origin, so we want a rotation:
every rotation can be broken up into six rotations in the xy, zy, xz, Tx, Ty, Tz planes. We don’t
care about xy, zy, xz, Ty, or Tz rotations, so this must be a Tx rotation, changing coordinates as
x = =T sin, T = T cosP. From this it follows that tan = iV/c, so simple algebra leads us to

the change of coordinates

x + Vt/ , t""Vz—;
= y=y z =7z t=

V2 V2

i T

This transformation is known as the Lorentz transformation. Clearly, it yields the Galilean
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transformation as ¢ — oo. As a consequence, suppose a rod moving along the x axis at velocity
V relative to us measures its own length as Ax”: we will then measure its length as

In other words, the faster it goes, the shorter it appears to us. This is known as Lorentz
contraction.
By considering such a transformation for infinitesimal dx, dt, we can find formulas for the

transformation of velocities: under the same conditions as above, we have

’ v rl1 V2
vi+V Vy 1 c? Vz c?
— v, =

1+v;% 1+v{4% 1+va%

Again, as ¢ — oo, we get the classical transformation, in which vy =V} + V.

1
V2

We generally denote the factor as v, the Lorentz factor. So, for instance, we can restate

c2
Lorentz contraction and time dilation as Ax = yAx’ and At = YAt/, respectively.

2.3.3 Four-vectors

We'll set ¢ = 1 from now on; if you want, you can figure out where it’s been hidden via di-
mensional analysis. In the four dimensional spacetime manifold in which relativistic mechanics
take place, Minkowski space, vectors have three space components and one time component,

and are known as four-vectors. The inner product on this space is given by
a-b=a"’-a'b' - a?b? - a®b®

We can write this neatly by introducing a metric tensor 1i; on this manifold, given by

1 0 0 O
B 0 -1 0 O

niy = 1
0O 0 0 -1

So a-b = nija'b). We can restate several of the above developments in sleeker ways: the

infinitesimal interval (or line element) is given by ds? = —1;;dx*dx), the path length and proper
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time are given by

dxt dx dxt dx
As= |8 dh At= [4/ng =S aa
s J 57 A E J 57 "an

Recall the Einstein summation notation: (i) when the same index appears in both a raised and
a lowered position, we implicitly sum over it, e.g. viw! = 31_, viw! (i) we use the metric to
raise and lower indices at will, e.g. v = nijvj , and (iii) putting indices in square (curly) brackets
indicates that we wish to take their commutator (anticommutator), e.g. vj; wj] = viw; — vjwi.
By rewriting everything in terms of tensors, we can express relationships without invoking any
sort of reference frame; doing this makes an equation, relationship, or theory covariant (which
has nothing to do with covariance/contravariance of tensors).

The velocity of a particle x!, parametrized by its proper time, is given by v = dx; since
dt? = nijdxtdx), we have nijviv = 1, the interpretation being that we're always traveling at the
same speed through spacetime (light-speed, really; examining units, the 1 yields a hidden c),
and that moving faster through space just means moving slower through time. The momentum

of a particle is given by p' = ymvt, and the energy is ym. The force on a particle is given by

fl = o.ul.

2.4 General Relativity

General relativity is far more subtle, though a significant portion of the legwork was performed
in the previous discussion of Riemannian geometry. We postulate that gravitational force on an
observer is equivalent to the "pseudo’-force experienced by an observer in an accelerating ref-
erence, a postulate known as the equivalence principle. Our sources include [Wald, 2007, Carroll,
2019,Misner et al., 1973]]. The differential geometry book [Kiihnel, 2015] discusses general rel-
ativity as well, focusing in particular on "Einstein manifolds", or Riemannian manifolds whose

metrics are solutions to the vacuum Einstein field equations.

2.4.1 Pseudo-Riemannian Manifolds

We begin by recapping some constructions on a pseudo-Riemannian manifold (M, g). The Levi-

Civita connection Vi is the unique connection on M that preserves g and has vanishing torsion
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tensor, and its difference from the ordinary derivative 0; is given by the Christoffel symbols,
S URY)
ij =59 (akgﬂj + 0590k — aegjk)
Having written these down, we can express the action of V; on a vector Vv as
Vv = oV + Fjikvk

In local coordinates, the Christoffel equations give us second-order differential equations for the
position x' of a "particle” traveling on a geodesic, known as the geodesic equations:

d>xt i dx dxk
dt2 jk dt dt

(Compare this with the result that the geodesics in a flat space are straight lines, i.e. X = 0). For
any given initial position x* and velocity %—’f, the theory of ordinary differential equations tells
us that a unique solution exists to the geodesic equations.

Given an infinitesimal square with sides v* and w?, parallel transport of a vector x* around
the square generally fails to leave x' unaltered. The difference, as a vector, is linear in vi, wt,

and x', and hence is given by y* = R;;, VVw*x! for some tensor R’ known as the Riemann

ijk
curvature tensor. In terms of the Christoffel symbols, this tensor can be given as

m
.

¢ _ ot ¢ ¢ ¢
Rk = 5T =I5 #1500 TG =T

Contracting it yields the Ricci curvature Ry; and scalar curvature R:

— pt — Rl
Rij =R i6j R=RY

We define the Einstein tensor Gij by

1
Gij = Ryj — 7Rgy

A metric gij which solves the equations Gij; = 0 is one which distributes the curvature of M
"most evenly" [Kiihnel, 2015]. A key property of the Einstein tensor is its vanishing divergence:
ViGy =0.

The Stress-Energy Tensor General relativity historically has its roots in an attempt to gener-

alize the Poisson equation, a field-theoretic version of Newtonian gravity. Given a mass density
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p and a gravitational field g expressed as the gradient of a scalar potential ¢, Gauss’s law reads
V. g = —4nGp, where G is a gravitational constant. Plugging in g = —V¢, we obtain Poisson’s
equation,

V2 = 4nGp

To generalize this to the framework of special relativity, we first need to figure out how to
replace p with something that respects mass-energy equivalence and transforms like a tensor.
The solution is a symmetric tensor T;; known as the stress-energy tensor. An observer with
velocity v will measure a mass-energy per unit volume of T;;v*v). Given an x) orthogonal to v*,
the component —Tijx)v' is interpreted as the momentum density of the matter in the xJ direction.
A y¥ also orthogonal to v can be plugged in along with ¥J, and Tijx'y’ is interpreted as the
x'-y) component of the stress tensor for a point in an arbitrary material body. To summarize,
the stress-energy-momentum tensor Ti; gives us stress when we plug in two position vectors,
momentum when we plug in a position vector and an orthogonal velocity vector, and energy
when we plug in one velocity vector twice. Conservation of energy implies that the stress-

energy tensor has vanishing divergence: ViTj; = 0.

2.4.2 The Einstein Field Equations

We've identified the mass density p with the mass-energy density Ti;v'v). Now we have to
replace V2¢ with a tensorial quantity as well; it should have at most second-order derivatives
of the metric, and it should be divergence-free.

A first guess is given by the observation that the differential acceleration of two nearby
particles with separation vector x is given by —(x - V)V¢. However, since their world lines
will be geodesics, and a fortiori curves on our spacetime manifold, we know that this same
k

. . . _ e j
acceleration is given by —R MY

and therefore 9?*¢ = jo o = Rjk, and conclude that the correct covariant generalization of the

x!. So let’s make the correspondence Rfjikvjvk = 0,0'¢,
Poisson equation is given by Rijvtv) = 4nGTijv'v), or more concisely Rij = 47GTy;.

This was, in fact, one of Einstein’s guesses. It is wrong. It is in general true that V'Gy; =
Vi(Rij - %Rgij) = 0, and hence the divergence of Rij is given by Vi%Rgij = %Vj R. Hence,
divergence-freeness of Ri; implies that ViR = 0, i.e. that R and hence T = Tii are constant
throughout the universe! The correct solution to the problem is contained within the problem

itself: we replace Ry; with %Gi]-, which we already know to be divergence-free. This yields the
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Einstein field equations:
Gij = 8’7TGT1J'

4

Comparing units, we see that there’s a hidden ¢™ on the right-hand side; it is convenient to

define Einstein’s constant by k = 87G/c* and simply write Gij = kTyj.

The Lagrangian Formulation In Lagrangian mechanics, we associate to a physical system a
function of time L(t) known as the Lagrangian, which governs the dynamics of the system;
the Lagrangian is allowed to operate on the positions and velocities of the particles, e.g. as
L(t) = L(q(t), q(t)) = %mq (t)> — mgq(t). In a field-theoretic context, such as general relativity,
we may also consider the Lagrangian as a function of fields ¢ and their first derivatives 0,, ¢,
e.g.asL(t) = j%awpauq) — %mzd)2 d®x. In this case, we refer to the term which is integrated over
space to get the Lagrangian as the Lagrangian density L. Integrating the Lagrangian over time
yields the action, S = IL dt; the principle of least action states that the positions/fields involved
in the Lagrangian are chosen so as to minimize the variation of the action under an arbitrary
variation in said positions/fields 8S = 0.

A covariant formulation of Lagrangian mechanics requires us to replace 0,, with the covariant
derivative V,, so as to make all terms appearing in the Lagrangian tensorial; further, if we
wish to work on an n-dimensional Riemannian manifold (M, g), we must integrate the scalar
Lagrangian density £ with respect to the volume form \/H d™x, where d™x = dx; A ... A dxn
and |g| is the determinant of the metric tensor.

In a vacuum, the Einstein-Hilbert action of general relativity is given by the Lagrangian
density Ly = R/2k:

R
Sv=JiV|9|d4X

Upon variation of the metric, this yields
1
dSv = J(RHV — ERQHV) 5g"V+/|gl d*x

(A detailed derivation is given in [Carroll, 2019]]). Since this must be zero for all variations of
the metric, we obtain R,y — %ng = Guv = 0, Einstein’s equations for a vacuum.
To add mass-energy fields, we add an arbitrary density £ to the Lagrangian density, which

by the linearity of integration splits the action S into Sy + Spm, the sum of the vacuum and
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mass-energy actions. Working in reverse, we define the stress-energy tensor as
2 8S
VIgl®9

guaranteeing that the principle of least action reduces to Einstein’s equation, G,y = kT~

2.5 Quantum Field Theory

This section discusses the Lorentz covariant generalization of quantum mechanics to fields
known as quantum field theory. Our sources for vanilla quantum field theory are [Peskin,
2018, Lancaster and Blundell, 2014, Ticciati et al., 1999]; the two-volume series [Deligne et al., ]
delivers mathematical rigor to the field. Being especially confusing, we have tried to root our
discussion of spinors in representation theory, for which the books [Weinberg, 1995, Bleecker,
2005] are useful.

2.5.1 Classical Field Theory

The setup for studying classical field theories in Minkowski space with metricn*Y = diag(+1, -1,-1, -1)

is as follows:

1. Take the Lagrangian density of the theory. As an example, we will work with the Lagrangian

of a free scalar theory,

1 1
i WA 242
L Zé?pd)@ ) 2m [0)
2. Plug £ into the Euler-Lagrange equations,

oL oL
a“(a(am))_% =0

This yields four equations (iu = 0,1,2,3) for each free variable; our theory only has one

free variable (¢). Plugging the above L into the Euler-Lagrange equations, we calculate

DM D) _ D™ OubOnd) _ ., O0uh) (v b)
2(0,:) 20, ) T 20nb) (0. )

and hence obtain the equation

Ovp+n"Y 0, d = M o+(0V )oY = 20"

¥ +m?b =0
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Writing 9,,0" as 2, this becomes the Klein-Gordon equation
(*+m>p =0
3. If we want more information, we may calculate the Hamiltonian density of the theory. In

a theory with n free variables 1, ..., $n, this is first done by associating to each ¢; a

conjugate momentum

oL
=
v a(aud)i)
and then deriving the Hamiltonian as
n
H = Z Mod: | - £
i=1
For our free scalar theory, we have
oL
Ho— — oM
o0
and hence
1 1< 1 1[({8d)>
_ A0 =140 _ 2 hath o tm242 — = [[9P 2 242
#=0"bond ~ £ = 50baod Z;a@a ¢ +5m*¢ =5 [(at) +(VOP +m* ]

4. Alternatively, we can define the stress-enerqy tensor T, of the theory, given by

oL
™, = ——9,d - LY
Y o) T
This gives rise to four conserved quantities,
Pt = JT‘“ d*x

For the Klein-Gordon Lagrangian, we obtain a stress energy tensor of

T, = 04 oy — 58% (3,69°0 — m2¢?)

73



2.5. Quantum Field Theory

For u = v = 0, we reclaim the Hamiltonian, and for un = 0, v # 0, we obtain
3
TOL — ZnuToj _ _Toi = P Ppdid
j=1

This gives us a set of tools for the analysis of classical fields.

Another example is given by classical electromagnetism. Setting ¢ = 1, define the electro-
magnetic four-potential A, to have as its timelike component the electric potential ¢ and as its
spacelike components the magnetic vector potential A. The exterior derivative of this one-form

is known as the electromagnetic tensor F,,, and as a matrix looks like

The Lagrangian of classical electromagnetism is given by

field
N source
1 —=
E= g PR - AE

where J* = (p,j) is a four-current. With some effort, we may show that the Euler-Lagrange

equations read
OuF*Y = poJ”

Forv = O thisreducesto V-E = wop = p/eo, Gauss’slaw. Forv =1,2,3, we obtain VxB = p0§+%—§,
or Ampere’s law.
2.5.2 Canonical Quantization

To quantize a classical field theory with position variables ¢, ..., ¢ and conjugate momenta
T}, ..., Ty, we turn the position and momentum variables into operators ®1, ..., b, ﬁ{L LTI

and impose the equal-time commutation relations

[b:(t,%), (¢, §)] = 189 - §)5y;
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2.5. Quantum Field Theory

with all commutators among $sand among s being zero. The Hamiltonian #, being a function
of ¢ and IT, becomes an operator H as well, as does H = f?-[ d3x.

Fundamentally, quantizing H gives it a quantized spectrum. In the case where we have one
variable ¢ with no self-interactions (i.e., the Euler-Lagrange equations are linear in ¢), we have
a lowest-energy vacuum state |0) to which we can add a "particle" with momentum p via the

creation operator a‘%, and remove a particle with momentum ¢ via the annihilation operator

ag.
q
Additional variables will define additional pairs of annihilation and creation operators, gen-
erally denoted (E%,Ba), (E;E),Ea ), and so on. We may reconstruct ¢ from the annihilation and
creation operators by means of a mode expansion which, in the case of the Klein-Gordon field,

is given by

0,59 = [ 5 \/_ (G 7+ ate™)

where p-x = (t,9) - (t,X) = t> =P - X, and Es = \/m We interpret d(x) as creating a
particle at position x. We define the state |p) consisting of one particle with momentum p by
[p) = at|0), so that (5]q) = 57 - 9).

In general, though, our theory will not be free from self-interactions, so we have to replace the
vacuum state |0) with a more mysterious ground state |Q). While acting on |0) with @ y1e1ds
a state with a single particle of momentum P, acting on |Q) with a* a; guarantees nothlng but a
superposition of particles whose momenta sum to p.

The dynamics of a quantum field theory can be analyzed via its correlation functions, num-

bers of the form
(Qlp(x1) ... b)) by ... blyn)'1Q)

which express the probability for particles created at positions yi, ..., yn to travel to positions

X1,...,%Xn. To evaluate these, we need some additional machinery.
Green’s Functions Given a linear differential operator L, e.g. Lx(t) = m(f—,fzx(t) + cx(t), we

define the Green’s function of L to be a function G(t,u) such that LG(t,u) = 6(t — u). Given a

differential equation Lx(t) = f(t), we may use G to solve for x as

x(t) = JG(t, u)f(u) du
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2.5. Quantum Field Theory
noting that

Lx(t) =L JG(t, wf(u)du|= JLG(t, wf(u) du = Jé(t —wf(u) du = f(t)

Normal and Time Ordering When we have a series of scalar fields $(x1), $(xn) being multi-

plied, we define the time-ordering symbol T by T$(x1) el $(xn) = $(xil) Ceas $(xin ), where
0

ik
in time. Similarly, the normal ordering symbol N puts all creation operators on the left, e.g.

a‘*aa; = agaﬁ a; (note that a and az commute, so it doesn’t matter what order they're

the xi; are such that x?_ < x; iff j > k; T simply orders the scalar fields from latest to earliest
)

as Naj
placed in). We define the contraction of two operators as

Il —
AB = (0|TAB|0)

So, for instance,

[

A~~~ o~

Wick’s theorem states that applying T to a given string of operators is equivalent to applying N

to that string plus all of its possible contractions. For instance,
TABCD = NABCD + (0|]TAB|0YNCD + (O|TAC|0)NBD +... + (O|TAB|0){(0|TCD|0) +...

where we first list the term with zero contractions, then those with one contraction, then with
two. As a particular case, this allows us to evaluate terms of the form (O]TABC...|0): since
Since taking (O|NAB...|0) always yields zero, we see that this simplifies to the sum of all

terms which contract all elements.

Propagators We define the Feynman propagator by

G(x,y) = (QITHx) T (y)|Q)

The interpretation of this is as follows: starting from the ground state |Q)), create a particle at
spacetime point y, wait a while, and then attempt to annihilate it at spacetime point x; the extent

to which the state no longer resembles |Q) is given by taking its product against (QQ|. When
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2.5. Quantum Field Theory

we're in a free theory with [Q) = |0), G(x,y) is known as the free propagator
Alx,y) = (OITO(x)$* (y)I0)

Perturbation Expansions To see this machinery in action, we need a non-free, interacting field

theory. One such theory is given by the "$*" theory, with Lagrangian

1

1 A
= Hp — —m2p? —
L zapq)aq) 2md)

nid

This is similar to the Klein-Gordon Lagrangian, except for the ¢* term which induces a

non-linear Euler-Lagrange equation

The quantized Hamiltonian H is similar to that of the Klein-Gordon Hamiltonian, but with
an extra "interaction” term %54. We correspondingly decompose H as Ho + H’, where Hy is the
Klein-Gordon Hamiltonian and %’ is this interaction term. When A is small, we can approximate
the evolution of an arbitrary operator Oas Oy(t) = eiﬁotﬁe_“qﬂt, where the subscript I denotes

that we're working in the "interaction picture". We define the S-matrix by
S=T [e_i JoH d4x]

Since this is generally insoluble, we expand in powers of —i f_ooooﬁ1 d*x:

S=T|1- ijﬁl(x) at s OO JHI(X)HI(y) dxdiy+...|=T|1+ Zl (_Tgn “__[1 Hi(xm) ddxm

We can analyze the probability that a particle with momentum p turns into a particle with
momentum g by plugging the two probabilities into the S-matrix: for instance, in the ¢* theory,

we obtain
(qIS[p) o <0|5a551+3|0> =

(=1 (A

2
(3] Jomsamromraio axaty ..

T |(0la5 a4 10) + (1) (%) [ooraseratior i+
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2.5. Quantum Field Theory

B

o0
= (0]agak|o)+ )
n=1

S (3) o fas (nljl $(xm>4) a;] o ]t

Thus, the higher-order corrections to <0|aa §a% |0) arise in powers proportional to A.

Let’s analyze the first-order correction, given by
—iA = AR B\ at 4
= [0 @ beadababa; o) dt

As stated above, the integrand can be reduced to the sum of all total contractions over its six
2n)!
2nn!

(i.e., form n pairs); 2n = 6 here, there are 15 terms to consider. In each of these, either

members. Given 2n operators, there are distinguishable ways to contract all operators

the annihilation and creation operators have been contracted with one another, or they have

4!
22.21

so that each one is contracted with a @(x), number 15 — 3 = 12. The three terms are of the
form <0|aaa‘%|o> = 33(g - P), and we may also calculate (O|$(x)a%|0) = 1 L_e-ipx

@m)p2 \2E;

not. The cases in which they have number = 3, and the cases in which they have not,

(013 6(010) = e ™

We can represent each nth order term in the S-matrix expansion via a Feynman diagram,
where vertices represent particles and lines between vertices represent contractions. Each theory
has its own rules for drawing Feynman diagrams. For the ¢* theory, the rules are as follows: an
nth order term has n vertices, one for each field cf)(xi), i=1,...,n, with four outgoing lines for
each vertex, each representing a possible contraction of one of the four ¢(x;)s. ag is drawn as
an outgoing line, and 'd% as an incoming line. Contractions between operators are represented

by connecting lines. For instance, the contraction

<o|5¢(x)¢(x)¢(x)?x)a*|o>= e A ) | et
d P P 2Eg (2m)*/2 285

etd=P)IxA(0)

 16m84E5E5
(which must still be integrated and multiplied by the appropriate factor to yield a term of the

S-matrix) has the following Feynman diagram:
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2.5. Quantum Field Theory

Read from left to right, we see that two of the center vertex’s outgoing lines have been attached
to one another, one has been attached to the incoming a% line, and one has been attached to the
outgoing ag line.

Here’s a more interesting theory with one complex scalar field 1 and one real scalar field ¢

interacting with each other:
1
L= 0" ouh - m*hp + 50" $0,ud - —u 2% - gbT o

The interaction part is given by —g "¢, known as a Yukawa interaction. This theory displays

psions with annihilation and creation operators a,

phions with operators ¢, Cf;‘ What's the likelihood that one psion goes in with momentum p

'd%, antipsions with operators b b;, and

and one psion comes out with momentum g? It is proportional to (0|a §6’% |0), so our expansion
looks like

0155310y = (olagatior + y° S g™ forr
n=1 ’

m=1

a; (ﬂ $*<xm)$(xm>$(xm)) a;‘ 10) ]__[1 dtxm

Each vertex looks like
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2.5. Quantum Field Theory

where we have drawn psions with arrows going forwards in time and antipsions with arrows
going backwards in time. A more complicated scenario: what is the probability that a psion
and antipsion with momenta P, p» will become psions and antipsions with momenta gy, G»?

This probability, which is calculated via decompositions of
(0lbg, ag, ¥ (I EIPCND (W)b(y)d(y)ak bE 10)

has several interesting factors, one of which is represented by the following diagram:

We think of this as a psion and antipsion meeting at the left vertex and annihilating one another
to produce a phion, which travels for a bit before becoming another psion and antipsion. Here

is another term:

Here, a psion and antipsion travel independently of another, until one fires a phion at the

other, changing the momenta of both particles.

Functional Integration Consider a one-dimensional quantum particle moving from point

Xa = (ta,Xa) toxp = (tp, Xp). The propagator for this particleis givenby G = G |U(ty, ta)[Xa) =
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2.5. Quantum Field Theory

H(tb -t

(Xple™® J)|Xq). We may write H = P2/2m + V; while the action of P on a momentum state

is less clear, e hV|x> is just e ~%V®), Since ﬁ(tc — tb)ﬁ(tb —tq) = ﬂ(tC — tq), we may take a

part1t1on (Xa = X0, X1, - .., XN-1,XN = Xb), Where ti — tx_1 = At, and write G = (Xp|e "HAL.

HAtlX

e n ). Suppressing h and inserting resolutions of the unity between each mini-operator

1= f|xk>(xk|d5€k, we obtain
= (Rple A J|§N—1><§N—1| dXn-r e AL e AR ) = IdiN—l coedXy Ficle MAY Xy )

k=1

We evaluate each term of the product as

- _'A - - —_i(p2 - -1 v - —_i(p2 - - 1= -
Ficle ARy g) = (R e HPT/2MIAL R, ye TVR)AL o (3, e t(PT/2mIAt J|p><p|xk_1> dp

-ev [ I Ryl mIBt ) (3 ) = e VIRt [min2mnt 5, 15 (5%, ) ap

o

Xk p—iP Xk— r =
_ e—iV(ik_l)AtJ Lip?/amyar €PNk e P a5 = e~ IVEDAt (i zmatip -t 9P

ar Vo u 2

Evaluated exactly by completing the square and comparing to the 1-dimensional Gaussian

= Jexp

Taking N — oo, the partition (Xo = Xq,...,XN = Xp) becomes a trajectory x(t) and the sum

integral, we get

i (m G - Rae)?
k — k— - - -
At | ————— — V(xk- dxq...dxNn-
; e (2 TXE (X 1)) X1 ... dXN-1

becomes an integral:

G = Ie% [Fmx(t)-V(x(t) dt p _ Jeﬁs[x] Dx

where the integration measure Dx is defined as the limit as N — oo of the product dxk

for some constant & whose purpose is to keep things from blowing up. This integral 1terates
over all paths from x4 to xy, and is hence known as the path integral. Each trajectory makes
an infinitesimal contribution e®®, and the interference between contributions leads to a single

propagator value. Since the probability is a function of the absolute value of the propagator,
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2.5. Quantum Field Theory

the portion of trajectory space that makes the largest contribution to the probability of a specific
observation is simply the portion where S changes the least. For very small h, small changes in
S over a certain portion of trajectory space will lead to massive destructive interference, zeroing
out the contribution from that portion; hence, the propagator will nearly behave as though it
were following the principle of least action S = 0, but will display small quantum contributions.

To calculate this, compare its form to that of the n-dimensional Gaussian integral

- N ST A -17
e—%iTAi+bT>_€ d)‘i _ (27[) e—%ebTA 1%
det A

AsN — oo, the vector m — X, becomes a function t — x(t), and matrices m, n — A, become
functions s, t — K(s, t), (Kf)(s) = IA(S, t)f(t) dt. The dot product of vectors becomes an integral
of functions, and the inverse matrix A~! becomes an inverse kernel f?\(s, t);{‘l (t,u)dt = 6(s—u),
i.e. a Green’s function of A. The determinant of A remains the product of its eigenvalues;
although this may diverge, dividing it by a certain anti-blowing-up constant & as N — oo
keeps things from blowing up. In general, writing f' for its corresponding functional fTg =

Jf(x)g(x) dx, we write

Je-§ JOCORY)P() dx dy+[bI(X) dx Py Je_%d;?\mb%pd) _[@mN L LbTA T
det A

Given a theory, we define a generating functional known as the partition function Z, acting

on a function ] which we interpret as an operator (J§)(x) = J(x)d(x), as

[ = J et LB d'x Dy

The normalized partition function Z[]] is given by Z[]]/Z[] = 0], or
[et [Lle I+ )6 d*x g,

[et [£letaT d*x g,

We will generally find that the denominator (which is often written Z[J]) cancels out the

quantities that fail to converge. For instance, consider the free scalar field theory £ = $0,,$0" ¢ —
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2m2¢2. First, we calculate the denominator: we can use integration by parts to write
1 4 Lo
E@wb@”d} d*x = — Ed)(? d)

and hence
Jei [LloGa] d*x 1y = J& [o[~@+m2)] o d*x

B (2m)N
— \ det[-(8% + m2)]

This quantity, which makes up the denominator, will also appear in the numerator, and is there-

-1 —
fore cancelled out, leaving only the component e 2J[-@+m)] T We can identify [-(0* + m?)] !
with —iA(x,y), where A(x, y) is the free propagator. Hence, the normalized partition function

for the free scalar theory is given by

Z[]] = e 2 J0AG-YI) ax aty

In general, we may calculate correlation functions as
1 ES[4]
(QITe0a) .. dOn)IQ) = 2= |d0a) - dlxn)er” P D

Writing (p(x1) - ... - d(xn)) = (QT d(x1) - ... d(xn)|Q), we may equivalently express this as

(i) §nZ
Zy 8J(x1)-...-8J(xn)

We see that knowledge of the partition function gives us knowledge of all correlation functions,

(P1(3) - ... - (X)) =

which is more or less all we want to know about a given theory.
Path integration offers another approach to perturbative expansions: let £ = £y minus some

interaction term £;. We have
etfLaxt = gifLodixfq _ ifcl[cb(x)] d*x + (-1)° Jclm(x)]cl[cb(y)] dfxd*y +...

which, when combined with the above equation, yields another way to expand S-matrix terms.
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2.5. Quantum Field Theory

2.5.3 Representations of the Lorentz Group

Recall that the distance between two points x*, y* of Minkowski space X is given by

(anHHV)l/Z = VOO =02 — (xI —yl2 — (x2 - y2)2 — (3 — y3)?

An isometry of Minkowski space is a continuous map X — X preserving the distance between
points; the set of all such isometries is a Lie group known as the Poincaré group. It is ten-
dimensional, with 4 dimensions dedicated to translations, three to rotations (x-y, x-z, y-z), and
three to boosts, or rotations involving the time dimension (t-x, t-y, t-z).

Discarding the translations gives us a six-dimensional Lie group known as the Lorentz group

L = O(1, 3); its objects are all linear maps, and hence can be written as matrices A", satisfying
nuv/\ug/\vpxcyp — nuvxuyv

In matrix notation, such a A satisfies x'ny = (Ax) 'm(Ay) for all x,y, and hence ATqhA = 1. Tt
follows that det(ATmA) = —(det A)?> = detn = —1,sothatdet A € +1. Also, letting e® = (1,0,0,0),
we have

1= (e)"n(e”) = (Ae) n(Ae?) = (A% = (A1) = (A% = (A%)?

so that (A%)? > 1, implying that either A% > 1 or A% < 1. It follows that L is composed of four
connected components, each consisting of all transformations A with a specified determinant

and sign of A%). We write these components as
U ={Ael|detA=1,A%>1} LL={Aecl|detA=-1,A%<1)}

and likewise for LI, Lfr. LL which contains the identity, is often known as the restricted or
proper orthochronous Lorentz group, SO*(1, 3). Defining the space inversion and time reversal
operators P = diag(+1,—-1,-1,-1) and T = diag(-1, +1, +1, +1) gives the structure of the Klein
four-group {I4, P, T, PT} to these four connected components.

Since the exponentiation operator e~ from a Lie algebra g to its Lie group G is continuous,
and hence has an image contained in one connected component, g depends solely on the special
component of G containing the identity. Thus, the Lie algebras of L = O(1,3),50(1,3), and
L1 = S0O%(1, 3) are all the same. This algebra is generally written as so(1, 3).

Fix a Lie group G and Lie algebra g. A Lie group representation of G is a smooth homo-

morphism T : G — GL (n;C) for some n. A Lie algebra representation of g is a Lie algebra
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homomorphism 7t : g — gl(n; C) = End(C™). Since the Lie algebra of a Lie group is the tangent
space to its identity, the pushforward of any Lie group representation defines a homomorphism
between Lie algebras; this homomorphism preserves brackets, so that Lie group representations
induce Lie algebra representations. If g is the Lie algebra of G, it isn't true in general that (Lie
algebra) representations of g come from (Lie group) representations of G, but, if G is connected,

we may find a group Gy fitting into a short exact sequence of groups
1—>711(G)—>Gli>G—>1

known as the universal covering group of G. Representations of g are in bijection with repre-
sentations of G rather than G.

Define the 2 x 2 Hermitian Pauli matrices as
10 —i
o0 = ol = 0 1 o = 0 —i o3 = 1 0
0 1 10 i 0 0 -1

(Generally, 0¥ is omitted, giving us three Pauli matrices). These obviously span the space H(2, C)

of 2 x 2 Hermitian matrices, and in fact we have a pair of isomorphisms —, = : R* — H(2,C)
defined by x = §,,vx"0", X = nuvx*0". We can computationally verify that detx = detX = x - x,
and Xx = xX = (x - x)Ip. It follows that, for an arbitrary determinant 1 complex matrix A, the
linear map @(A)(x) = (=) !(AxAT) defines a homomorphism ¢ : SL(2; C) — L; in fact, we can
show that it is a surjection SL (2, C) — LIF with kernel ¢~ 1(14) = {+,} = Z/27Z.

Topologically, L1 is equivalent to R3 x SO(3), and therefore 7t1(L1) = m(S0O3)) = Z/27. 1t

follows that the homomorphism ¢ : SL(2;C) — Ll fits into a short exact sequence
15 7Z/2Z —»SL(2;C) > Ll -1

evidencing SL (2; C) as the universal covering group of LL

Given a Lie group or algebra representation M, a subspace V of C™ mapped into itself by
all T1(g) is known as invariant; {0} and C™ are trivially invariant, but any representation with
no nontrivial invariant subspaces is known as irreducible. Every representation of SL (2;C)
decomposes as the direct sum of irreducible representations, i.e. TT1(g) = IT1(g)®IT2(g)®. . .®T1x(g)
with each TTj(g) an n; X nj matrix, where Z;Zl n; = n. We define a pair of representations
/20 1101/2) : 51, (2; C) — GL(2; C) given by

ﬂ(l/Z,O)(A) =A n(O,l/Z)(A) — (A‘l')—l
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For w,v € {0,1/2,1,3/2,...}, we define T*¥) : SL (2; C) — GL (4**Y;C) by

) =
]—[(1/2,0) (A) ﬂ(O,l/Z)(A)
i=1 i=1

The TT*Y) are the irreducible representations of SL (2; C). Every irreducible representation of the

TTHYI(A) = ®

Lorentz algebra can be recovered as the pushforward of some TT*¥), which we denote 7(*").
Under an infinitesimal Lorentz transformation, or an element g € so(1,3), an n-component
complex field ® = (¢1,..., dn) described by a Lorentz covariant theory must experience an
infinitesimal change described by a matrix M(g) € gl(n;C), where M is a representation of
s0(1,3) and thus decomposes as M = @1;1 ntiv), The largest i + vy is known as the spin of
Q.

Spinors The Lorentz algebra is a 6-dimensional vector space, with three rotation dimensions
and three boost dimensions. It is spanned by the set J*Y = i(x*0¥ — xY0") of tangent vectors

(since J*Y = —]JVH, there really are only six), and satisfy the commutation relations
[, JP9] = AnYPIHT =P YT - P e e

Any set of six n X n matrices S*V satisfying the same commutation relations (in particular,
[SHY,SVH] = 0, so that SV = —S*Y) defines a Lie algebra homomorphism so(1,3) — gl(n;C),
and hence a representation of the Lorentz algebra.

Any set of four n X n matrices y* y* such that y*yY +yYy" = 2n"VI, yields a set of matrices

SHY = %[y”, v"] satisfying these relations. One such set of gamma matrices is given in block

diagonal form by
3 0 D 0 ot
Yo = L 0 Yi= st 0
This yields matrices
g0t i ot 0 g = leijk o* 0
210 -of 2 0 o

and, for a family of scalars c ., gives the representation ¢, J*¥ — ¢, S*Y, known as the chiral
representation. This representation decomposes as 7(!/29) @ 7(01/2); complex 2-dimensional
vector fields transforming according to 71/ and n®1/2) are known as the left-handed and

right-handed Weyl spinors, whereas a 4-dimensional complex vector field transforming ac-
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cording to 11/20) @ 7(®1/2) is known as a Dirac spinor.
The most notable property of Dirac spinors is their behavior under rotations: consider for
instance the action of an infinitesimal 6 degree rotation in the xy-plane on a Dirac spinor, which

we obtain by exponentiating its representation:

0 0 o0 o] [ee2 o 0 0

0 0 6i 0 0 e192 0
g .

0 -06i 0 0 0 0 %2 9

0 0 0 0 0 0 0 e 102

Under a full 360° = 27t revolution, a Dirac spinor doesn’t return to its original state, but picks
up a minus sign; it takes a 720° = 47 rotation to return the spinor to its original state. Dirac
spinor fields are spin 1/2 fields, as opposed to scalar fields, which transform under the trivial
representation of the Lorentz algebra and are hence spin 0. In general, a spin n > 0 field
requires a 27t/n degree rotation to return to its original state; spin 0 fields are invariant under

any rotation.

2.5.4 The Dirac Field

While Dirac spinors are four-component vectors, they will be treated analogously to the scalars
seen in previous field theories: we will generally not give them indices. Consequently, four-
component vectors of four-component vectors, or 4 X 4 matrices, will have one index. To refer to
the space-like components, or the in the case of matrices the latter three components, though,
we may still use vector notation (or, in the case of 9, V = (9!,0%,0%)). For a four-component
object x,,, we write the contraction y*x,, as ¥; note that 962 = vYHyVxuxy = %(y HyY + vy Yy )xaxy
(because we are summing over all i, v) = 1*Vx,xy = x%.

A Dirac field is a Dirac spinor field 1\ with Lagrangian
B(ip - mpp = 0

where P = Ppty9, m = mly, and Oy acts on 1 coordinate-wise. The Euler-Lagrange equation for

1 yields the Dirac equation
(i) —mpp =0

where m = ml. It follows that (=g — m)(id — m)p = (@ + m2)p = (8 + m2)P = 0, so that

the Dirac equation implies the Klein-Gordon equation in each coordinate. The Hamiltonian is
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given by ‘H = —P(iy - V- m), so the conjugate momentum of 1\ is given by ﬂi = ipy* and
the conjugate momentum of 1 is given by ﬂ% =0.

Splitting 1 into left-handed and right-handed Weyl spinor fields as = ({1, Vr), or equiva-
lently by separating it into eigenvalues of the chirality operator y° = iy%yly?y? = [_52 102 ], we
see that the mass operator leaves {1 and g in their place, whereas gamma operators switch
them. In general, this causes the two fields to interact with one another, but when m = 0, they

do not, and the Dirac equation splits into two separate equations known as the Weyl equations:
i(@o—&-V)l])]_ZO i(ao+8-V)ﬂ)R=O
. . . : _ [eVPT ] -ipx
The solutions to the Dirac equation are given by waves of the form (x) = [ gyl P
nyp-o

for positive energy, and P(x) = [—n \/ﬁ] tPx for negative energy. The & and 1 forming the

spinors u(p) = [ gy . |- \/ﬁ] are arbitrary, so we choose to normalize, setting
e = 'y = 1. We write ut for &', i = 1,2, and likewise for vi. We can write down some
useful properties of the ut and v: uf(p)u(p) = vi(p)v(p) = 2E5, 25 W) =y -p+m,
ViV (p) =y -p-m.

Quantization To quantize the Dirac field, we can not impose the equal-time commutation
relation [P(x), ipf(y)] = 16@(x —y). The particles described by any field with half-integer spin
are fermions, meaning that interchanging the position of any two fermions adds a negative sign
to the state of the field. In particular, any state with two fermions occupying the same position
in spacetime must be zero. This is in contrast to particles described by integer spin fields, such
as the spin 0 Klein-Gordon equation, which can be stacked on top of one another indefinitely;

these particles are known as bosons. Hence, we impose equal-time anticommutation relations,
), 1)) = 189G - )

where j indexes the components of each spinor.

The mode expansions for fl; and 1 can be given as

¥ [ MEZ W5 V()b e
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d3
3/2
(2m)3/ ,/2Ep

The interpretation is that E’;ﬁ creates a fermion with momentum p and handedness given by

Dix) =

Z W(p)at et + 9 (p)Bype P

j, whereas b:ﬁ creates an antifermion.

Quantum Electrodynamics The Dirac equation obviously has a global U(1) symmetry, since
the Dirac Lagrangian £ remains invariant under phase shifts { — }e'®, a € R. We're going
to outline a procedure by which we can turn global symmetries of Lagrangians into local
symmetries, and then analyze the Dirac Lagrangian with local U(1) invariance.

In general, given a principal G-bundle E 5 X with specified connection one-form w, we
write vV and v for the restrictions of an arbitrary vector field v to its vertical and horizontal
components, which satisfy 9i.(v¥) = w(") = 0 and vV + vi! = v. Given a (possibly g-valued)
k-form n on E, we define nt(vy,...,vx) = n(le, .. .,v}j) and likewise for Y. The exterior
covariant derivative on the bundle with connection (E 50X, w) is given by Dn = (dn)". The
curvature of the connection form w is given by QO := Dw. Cartan’s structure equation states that
Q=dw+ l[w w], where [w, w](v,w) = [w(v) ww)] —[ww), wv)] = 2[w(v), w(w)]. It follows
thatdQ = d(dw+ [w,w]) = 1d[w w] =75 L(ldw, w] - [w, dw]) = [dw, w]. Since [[w, w], w] =0,
we can write dw = [Q, w]. A locally U(1) invariant version of the Dirac equation, in which E is
spinors and X is spacetime, has dip = 9, = (dy)" + (dp)Y = DY + (d)V. Hence, the gauge
covariant derivative D\ differs from J,, by a one-form: we will write D, \p = 9, +iqA ),
where q is a constant and A, is known as the gauge field, transforming under a shift { - pe'®
asAy > Ay — %@Loc.

To make the Dirac equation as we know it locally U(1) invariant, we will simply make the
derivative covariant, replacing d,, with D,, = 0, + iqA . This gives us a U(1) gauge theory
L =PEAB - mp = P(id — myp — qpAp. In order to use this to model electromagnetism, we

simply add the Lagrangian of classical electromagnetism, obtaining a Lagrangian

£= 3P + D - my

Note that F, = dA,, so that this is a restriction on the gauge field itself. Hence, A, serves two
purposes: it both enforces local U(1) invariance and serves as an electromagnetic current.
L= —1Fu F*Y + VA — m)p is the Lagrangian of quantum electrodynamics. The current

density is recovered from the interacting part as J* = Py"p. P creates fermions (electrons),
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2.5. Quantum Field Theory

P creates antifermions (positrons), and A, is a massless boson (photon) field interacting with
electrons via the interaction term £; = —qEﬁ(lb. S-matrix terms see photons interacting with
pairs of electrons and fermions, creating many of the same interactions seen in the previously

encountered Yukawa interaction theory: the diagram

encountered in evaluating the amplitude of an electron and positron yielding an electron
and positron, represents a process whereby the electron and positron annihilate, yielding a
photon, which photon then transforms into an electron-positron pair. In evaluating this term
we integrate over all possible photon momenta, so this photon, which clearly cannot be observed
by experiment, can have arbitrary mass; it is said to be a virtual photon, as it cannot and should

not exist as an actual photon.
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Chapter 3
Synthetic Differential Geometry

In synthetic differential geometry, we develop geometry from an axiomatic point of view. This
is done using categories with enough structure to discuss the notions of smoothness and in-
finitesimality fundamental to geometry, namely elementary topoi. Such categories have their
own internal logic, and we can add axioms in order to enforce certain properties on our smooth
objects. We will first introduce elementary topoi, the universes in which synthetic differential
geometry takes place; our exposition follows the sources [MacLane and Moerdijk, 2012, John-
stone, 2014]]. We have also relied on the sources [Moerdijk and Reyes, 2013, Kock, 2006, Kostecki,

2009] in discussing synthetic differential geometry itself.

3.1 Grothendieck Topologies

A Grothendieck topology is a way of generalizing the structure a topology provides to a set
X to arbitrary categories. This section is based largely off of [MacLane and Moerdijk, 2012],
with additional topos theoretic details filled in from the works by Johnstone [Johnstone, 2014,
Johnstone, 2002].

3.1.1 Subobjects

In many concrete categories, monomorphisms can be interpreted as inclusions.

e In R-Mod, for instance, a monomorphism M — N evidences the image of M, which is

isomorphic to M itself, as a submodule of M.
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3.1. Grothendieck Topologies

e In Set, monomorphisms X — Y are simply injective functions, and can be interpreted as

subset inclusions.
e In Top, monomorphisms are continuous inclusions, and their images are subspaces.

Clearly, interpreting monomorphisms as inclusions gives us a notion of "subobject" in each
of the above categories, and we would like to generalize this to arbitrary categories. We must
take care to identify monomorphisms yielding the same subobject with one another, though, by
setting up the appropriate equivalence relation.

We define a subobject of an object X in a category C to be an equivalence class of monomor-
phisms Y — X, where two monomorphisms f : Y/ — X and g : Y’ — X are identified if there
is a pair of maps h : Y — Y” and k : Y” — Y’ such that g factors as fk and h factors as gh.
When the two monomorphisms factor through one another, we consider them to be the "same"

as inclusions, and hence the same subobject.

Let’s take this definition for a test drive: given a finite set X of cardinality n, say X =
{0,1,...,n =1}, any injection f : Y — X, where Y is by necessity isomorphic to the m-element
set {0,...,m—1},0 < m < n, is determined as a subobject uniquely by its image in X: if this
image consists of p different elements, weset Y = {0,...,p—1}andletg: Y — Xsend 0 to the
smallest element in the image, ..., p — 1 to the largest. We can factor g through f by sending
k € Y’ to any element of f~!(g(k)) and factor f through g likewise. It follows that there’s one
subobject for every possible image of a monomorphism into X; these are in bijection with its

subsets, so subobjects in Set are subsets.

If we have two monomorphisms f : Y — X, g : Y/ — X such that f factors through g but not
necessarily vice versa, then we say that f C g, or that f contains g. C is compatible with the
previous equivalence relation on monomorphisms, and hence makes the collection of subobjects
of an object X in a category C, denoted by Subc(X), into a poset. Posets are categories in natural
ways, and the properties of these categories tell us much about subobjects. Abusing notation
to write the subobject associated to a monic U — X simply as U, and writing U C X for the
subobject inclusion, the product of two subobjects U, V' C X is the smallest subobject that is not
only contained in both U and V, but contains any other subobject that is also contained in U and
V; this can be interpreted variously as the greatest common denominator, meet, or intersection. The

coproduct is the least common multiple, join, or union.
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3.1. Grothendieck Topologies

Subobject Classifiers In Set, a subset S C X is equivalent to a choice over all x € X as to
whether x € S or not, i.e. a map X — 2. This interpretation defines a characteristic function
xs : X = 2 = {0,1} sending x € Xto 0if x ¢ S and 1 if x € S. We’'ve made the choice of
using the subobject 1 = {0} C 2 to capture truth, which choice we encode by a monomorphism
true : 1 — 2,0 + 1. This allows us to express S as the pullback of true along xs. In Set, we can

give this pullback explicitly: it is
{(x,b) € Xx1|xs(x) = true(b)} = {x € X | xs(x) =1}

It follows that xs is the unique function X — Q which yields S upon taking the pullback.
Generalizing, in a category C with finite limits, a subobject classifier is an object () along with
a monomorphism true : 1 — Q such that every monic f : S — X admits a unique x¢ : X = Q
such that S is the pullback of true along x. That finite limits exist means that an arbitrary
morphism f : X — Q) yields by pullback a morphism f' : X X 1 — X: it is in general true
that monomorphisms pull back to monomorphisms, so that f’ is a monomorphism and hence
defines a subobject of X which is in turn classified uniquely by f. When C is locally small, this
yields an isomorphism Subc(X) = C(X, Q) between subobjects of X and morphisms X — Q.

Sieves For an arbitrary small category C, we may define a subfunctor of a functor F: C — D
as a subobiject of F in the category DC; in the case that F is a presheaf C°P — Set, or an object
in the presheaf category C = Set®”", a subfunctor G of F is another presheaf C°P — Set such
that GX C FX for all X, and each Gf : GY — GX induced by an f : X — Y is the corresponding
restriction of Ff from elements of FY to elements of GY. In E, monics are determined pointwise:
a natural transformation « : F — G is a monomorphism in C iff each ax : FX — GXis a
monomorphism in C. For C to have a subobject classifier O, () must in particular classify each
representable presheaf JX = C(—, X). By Yoneda’s lemma E(C(—, X), F) = FX, we have

Subg(C(—, X)) = C(C(-,X), Q) = QX

This means that, when C has a subobject classifier, its action as a functor is to send an object X to
the set of subfunctors of C(—, X). Its action on a morphism f : X — Yis to send the subfunctor S of
C(-,Y), which we can regard as a collection of morphisms {gx : Zx — Y}aen, to the subfunctor
(QF)(S) of C(—,X) which, as a collection of morphisms, is the set of all morphisms h into X
such that fh € S. We define a sieve on an object X € C to be a subfunctor of C(—, X), explicitly

considered as a collection of morphisms into X. Given a sieve Son Y and amap f: X — Y, the
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3.1. Grothendieck Topologies

map f* := Qf sends S to, as above, the set of all morphisms h into X such that fhis in S. The
functor C(—, X), trivially considered as a subobject of itself, corresponds to the set of all arrows

into X, which we write as tx.

3.1.2 Sites

As stated previously, we can generalize the notion of a topological structure on a space X to
a topological structure on arbitrary categories by studying Op(X); associating to each object U
of this category a "covering" of sets of functions with codomain U such that the images of the
elements of any set cover U as an open set, we find that the notion of sheaf becomes a primarily
categorical one.

The right generalization is given by that of a Grothendieck topology, or an assignment to

each object X of a category C a collection J(X) of sieves {X) — X}aea such that

1. tx € J(X).

2. ForSeJ(X)and f: Y — X, f*(S) € J(Y).

3. For § = {f) : Xy — X} € J(X), if an arbitrary sieve S’ on X satisfies 3 (S’) € J(X,) for all )
in S, then S’ € J(X) as well.

If S € J(X), we say that S covers X; if f*(S) covers Y for a morphism f : Y — X, then we say that
S covers f as well. A sieve S which contains all morphisms that it covers is known as a closed
sieve. If C has pullbacks, we can define a basis of a Grothendieck category to be an assignment

to each X € C a set B(X) of families of morphisms {X) — X}aea such that

1. Every singleton {f : Y = X} is in B(X).
2. If {fa: Xa = X}aen € B(X)and g : Y — X, then {(7tp)a : Xa Xx Y = Y}aen € B(X), where
(tp ) is the pullback of fj along g.
3. If {fa : Xa = X}aea € B(X), then for any {gaz : Xaz — Xa}zez, € B(Xa), {fa o gag :
Xae = X}aen,zez, € B(X).
A basis B(X) generates a topology J(X) by the rule S € J(X) if there’s an S’ € B(X) contained in
S.

Sites and Sheaves A category C equipped with a Grothendieck topology | is known as a site.
The natural example is C = Op(X) for some topological space X; defining J(Ul) to be the set of
open covers of U yields a Grothendieck topology known as the classical topology. Expanding,
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3.1. Grothendieck Topologies

we can define a Grothendieck topology on Top itself known as the big classical topology by
defining J(X) to be the collections of families {X; — X | i € I} of open embeddings whose
unioned images form open covers of X.

Given a category C with pullbacks and a Grothendieck topology ] on C, a presheaf P € Cisa
sheaf on the site (C,]) when VX € C, VS € J(X), the following is an equalizer diagram:

P)— || Px— || PeGaxxXw
f: X3 —XeS f:XA—XeS

g: X, —XeS
More comprehensibly, P is a sheaf if, for all objects X € C and all covering sieves S € J(X), every
natural transformation S = P uniquely extends to a natural transformation S = C(—,X) = P,
so that E(—, P) turns the inclusion S — C(, —) into an isomorphism.

For instance, consider the classical topology on Op(X). Writing X(U, V) := Homgpx)(V, U)
for convenience, a sieve S on U, being a subfunctor of X(—, U), associates to each V € Op(X)
either the singleton set {V C U} or the empty set. A natural transformation from X(—, U) to P is
an assignment for each V C U of an element s|y, € P(V) which is compatible with inclusions: the
morphism X(V, U) to X(W, U) induced by the inclusion W C V sends s|v to s|w. In particular,
every s|y must be induced from s|y by the inclusion V € U. So, we can think of a natural
transformation X(—,U) = P as an element of P(U). A natural transformation f : S = P, in
contrast, only yields an element t|y = fy({V € U}) if S(V) is nonempty, and yields nothing
otherwise. We're only guaranteed that the V for which we get an element t|\/ form an open
cover of U, and agree on intersections. It follows that the existence of a natural transformation
S = X(-, U) factoring any natural transformation f : S = P leads to the traditional gluing axiom
for sheaves, and the uniqueness of such a natural transformation leads to the locality axiom.

As in the topological case, the category of sheaves on a site, denoted by Sh(C,]), forms a
tull, reflective subcategory of C, whose inclusion functor i : Sh(C,J) — C admits a left adjoint
(=)*™ : € — Sh(C, J) known as sheafification: every morphism from a presheaf P to a sheaf Q
extends to a unique sheaf morphism P$" — Q. In addition, Sh(C, ]) has exponentials: if P is a
presheaf and F is a sheaf on C, then the exponential presheaf F¥, which associates to an object
X € C the set of natural transformations C(—, X) X P = F, is a sheaf. The subobject classifier in
Sh(C, ]) is the sheaf that sends X € C to the set of closed sieves on X. For any function f : Y — X
and closed sieve S on X, the sieve f*S is closed on Y, and the restriction map QX — QY induced
by f simply takes S to f*S. The maximal sieve tx is closed, and the morphism X + tx yields the

natural transformation true : id = Q.
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The amount of sheaves on the site (C, ]) is roughly analogous to the coarseness of the topology;
we generally want all representable presheaves, of the form C(—,X), to be sheaves, and any
Grothendieck topology ] satisfying this is known as a subcanonical topology. The canonical

topology on (C, ]) is the largest subcanonical topology.

Grothendieck Topoi A Grothendieck topos is a category C which is equivalent to some
Sh(C,]). A geometric morphism f : C — O is defined to be a pair consisting of a direct image
functor f. : C — D and a inverse image functor f* : & — C such that f* 4 f, and f* preserves
limits. Grothendieck topoi and geometric morphisms form a category Topos; when equipped
with pairs of natural transformations between the functors comprising geometric morphismes,
this becomes a 2-category.

The archetypal example of a Grothendieck topos is Set: this is the category of sheaves on the
trivial category e, since every set S corresponds to a presheaf P(e) = S, every presheaf is trivially
a sheaf, and natural transformations between sheaves correspond to morphisms between sets.
Further, Set is the terminal object in Topos. Just as morphisms from the terminal object in Set,
{e}, correspond to points, or elements, of sets, a geometric morphism from Set to a topos C is
known as a point of C.

It is in general hard to find a site (C, ]) evidencing C as a Grothendieck topology, but Giraud’s
theorem gives us a concrete way of identifying topoi: a category C is a Grothendieck topos if (1)
itis locally small, has all finite limits, is cocomplete, (2) there is a set {Sx } of objects of C such that,
forevery f,g: X 3 Y, if fh = gh for every h : S, — X, then f = g (a small set of generators), (3)
coproduct inclusions are monic and their pullback is an initial object (coproducts are disjoint),
(4) small colimits are preserved under pullback (colimits are universal), and (5) every internal
equivalence relation on an object X yields an internal quotient object (equivalence relations are

effective).

3.2 Topos Theory

3.2.1 Grothendieck Topoi

Direct Image Functors Consider a topological space X, and its corresponding category Sh(X)

of sheaves of sets. A continuous morphism f : X — Y generates a pair of adjoint functors:

e On the right, the direct image functor f. : Sh(X) — Sh(Y), which sends a sheaf F on X to
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the sheaf (f'F)(V) = F(f"1(V)).

e On the left, the inverse image functor f* : Sh(Y) — Sh(X), which sends a sheaf G on Y to

the sheaf (f.G)(U) = h—r>nv;f(u) G(V).

By their adjunction, f* preserves all colimits while f. preserves all limits. f* preserves finite
limits, in fact, as it is a general fact that filtered colimits such as lim preserve finite limits. If X
and Y are soberfl, such that every point x € X can be deduced from the lattice of open subsets
containing x (and likewise for Y), then in fact any such adjunction f* 4 f, : Sh(X) — Sh(Y) whose

left adjoint preserves finite limits comes from a continuous map f : X — Y.

An instructive case is given by setting X = {*}, the vacuously Hausdorff and hence sober
one-point space, since the category Sh(X) is equivalent to Set. Points of Y are equivalent to
morphisms X — Y, and hence equivalent to limit preserving left adjoints f* : Sh(Y) — Set. On
the other hand, the fact that X is terminal in Top gives us a unique functor f. : Sh(Y) — Set for
any morphism f : Y — X; this is the global sections functor, and its inverse image is the constant

sheaf functor.

Geometric Morphisms Let & = Sh(C,]) and # = Sh(D, K) be Grothendieck topoi. An ad-
junction f* 4 f, : & — F with f* preserving finite limits is known as a geometric morphism
& — ¥, with f* and f. being called the direct and inverse images, respectively. This will be
the topos-theoretic generalization of the above observation that morphisms f : X — Y generate
adjoints f* 4 f. : Sh(X) — Sh(Y). Similarly, we define a point of & to be a geometric morphism
p : Set — &. We form Grothendieck topoi and their geometric morphisms into a category Topos,
whose terminal object is Set; the unique morphism I' : & — Set has as its direct image the global
sections functor.

If f*, which preserves finite limits, preserves all small limits, then by the special adjoint functor
theorem it has a further left adjoint f; : & — ¥, which we can compute as fiY = JXESH Xy X;
an adjunction f; 4 f* 4 f. : & — F characterizes an essential geometric morphism.

Many useful properties of Grothendieck topos are defined by analogy to topological spacesé.

1Sobriety is a relatively weak condition, as it is implied by Hausdorffness (and hence present for manifolds, CW
complexes, and so on); all affine schemes (and hence all schemes) are sober as well. So it holds in most practical
cases.

20r, more technically, locales, though we will note that sober topological spaces embed fully and faithfully into
locales.
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For instance, take X sober, and let p : Sh(X) — Set. Connectedness of X is equivalent to fullness
and faithfulness of p* : Set — Sh(X). Hence, we call an arbitrary geometric morphismf : & —
connected if f* is full and faithful, and call & itself connected if I' : & — Set is connected (so
that ™ : Set — & is full and faithful). Connected morphisms are necessarily essential, their

identifying property being that f, preserves the terminal object.

3.2.2 Elementary Topoi

An elementary topos is a category & which is cartesian closed, has finite limits, including a
terminal object 1, and a subobject classifier (). We define the contravariant power object functor

as P := 7, which due to the hom-exponential adjunction satisfies
Subg(X X Y) =&(XXY,Q) = &(X,PY)

As with Grothendieck topoi, the canonical elementary topos is Set; as we will see, constructions

in Set directly inspire many definitions of structures in elementary topoi.

3.2.3 Set-like Properties of Topoi

Set as a Topos Set is a topos with the following data:
e The subobject classifier is given by Q =2 = {0, 1}.
e The true morphism is given by the inclusion 1 — 2.
e The exponential [X, Y] is simply the set of all maps from X to Y. Hence, [, —] = Set(—, —).

e The evaluation morphismevx y : [X, Y] XX — Y takesamap ¢ : X = Y and element x € X

and sends it to @(x) € Y (hence the name evaluation).

e The coevaluation morphism coevxy : X — [Y,X X Y] sends x to the map sending y to

XX Y.
e The classifying arrow of an inclusion f : X < Y is given by x(y) = [y € imf].

These examples will serve as our intuition for how these gadgets work in arbitrary elementary

topoi; they will also serve as a foundation for us to characterize more "Set-like" gadgets.
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Membership In Set, subsets of a set X are in bijection with morphisms X — 2: an § C X'is
mapped to the morphism S(x) = [x € S]. Hence, in any topos & we define the power object
functor P = [, Q] : 8% — &. In Set, the contravariant action sends a morphism f : X — Y to
the morphism PfsendingaV : Y — 2 to the composition Vof : X — Y — 2, which is equivalent
to the inverse image f~!(V); it therefore gives us an inverse image in &.

Now, evx o gives a map PX X X — Q which in Set sends U € X and x € X to [x € U];
in & we denote evx o by €x, calling it the membership map (or predicate). Note that this
map is obtained by adjunction from idpx, and we therefore call it the P-transpose of idpx; the
P-transpose of a general map f: X XY — Q is the adjunct map wx,y,o(f) : X = PY, and the
P-transpose of a map g : X — PY is similarly w;&Y/Q(g) : XXY — Q. For convenience we

simply denote transposition by ~.

Equality Given an X € &, the universal property of the product X X X ensures for any pair of
arrows f,g : Y — X an arrow h : Y — X X X yielding f and g upon projection. If f = g = idx,
we get an arrow Ax : X — X X X with mxAx = idx. This is known as the diagonal morphism;
if for f,g : Y — X we have Axf = Axg, then mxAxf = nmxAxg and therefore f = g, forcing Ax
monic. A similar construction gives us the epic codiagonal Vx : XII1 X — X.

The classifying map of Ax is written as dx : X X X — Q. In Set, 6x(x,x") = [x = x’], s0 dx is in
general referred to as the equality map (or predicate). Its P-transpose dx : X — PX will in Set

send x € X to {x}, and is in general referred to as the singleton map.

Images Given a monic f : X — Y, we will construct a direct image morphism 3¢ : PX — PY.
Pull t : 1 — Q back along €x to obtain a monic g : Z — PX x X. Compose g with the monic
idpx X f to get a monic Z — PX XY, take the characteristic map PX XY — (), and transpose to
getamap I : PX — PY. InSet, Z = {(U,x) € PXX X | x € U}, so the monic Z — PX XY sends
(U, x) to (U, f(x)), and its characteristic map sends (U, y) to [y € f(U)]; the transpose of this map
sends U to {y € Y | y € f(U)}, justifying our interpretation of 3¢ as a direct image map.

Now we will construct the image of an arbitrary morphism f : X — Y as a subobject of Y.
First, push f out along itself to get a pair of morphisms g, g’ : Y — Y +x Y with gf = g'f. Take
the equalizer of g with g’ to get a monic h : Z — Y with gh = g’h; its universal property yields
forany h' : Z/ — Y with gh’ = g’"h’ a morphism k : Z — Z with h’ = hk. For f, this universal
property gives an epic k : X — Z with f = hk. By the fact that this construction involves only

universal properties, this gives a factorization of any morphism f : X — Y into an epic X — Z
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followed by a monic Z — Y, the latter of which is known as the image of f.

Logic We can construct many logical operators using the categorical properties of 3. While
true : 1 — Q) is given by definition, we may define false : 1 — () to be the classifying arrow
of the monic initial arrow 0 — 1. Negation = : O — Q is given by Xfaise, A : QX Q — Q by
b, = : 00X 0 - Obyxs,and V: QX Q — Qby (true Xidg) LI (idg X true).

Furthermore, we may define the existential and universal quantifiers 3 and V as "internal"
adjoints to the power object functor P. Given f : X — Y, we can construct for each Z € & a map
Homg(Z, PY) — Homg(Z, PX) in the functorial manner; an internal left (right) adjoint is a left
(right) natural inverse. By Yoneda, existence of such inverses implies existence of natural maps
¢, V¢ : PX — PY (internally) adjoint to Pf : PY — PX.

In Set, this works as follows: 3¢(S) is the set {y € Y | Ix € X with f(x) = yand x € S}, i.e.
the direct image of S. V¢(S) is the set {y € Y | Vx € X, if f(x) = y then x € S}; there can be
no element of V¢(S) that is mapped to by an element outside of S. Consider for instance the
mapping f : Z — Z,n +— n?. 3¢(N) will return the non-negatives, while V¢(N) will return {0},

as 0 is the only integer for whichx? =0 = x € N.
To summarize, we have defined:
o The power object functor P = [-,Q] : EP — &
o The membership map €x= evx o
e Transposition™: E(X XY, Q) = E(X, PY).
o The diagonal morphism Ax : X — X x X
o The equality map dx = Xax : XXX —= Q
e The singleton map {-}x = dx : X = PX
o The direct image map 3¢ : PX — PY
o The image factorization X - imf »—> Y
e The logical operators A,V, = : QX Q — Qand -: Q — Q.

o The existential quantifiers V¢, 3¢ : PX — PY induced by anf: X — Y.
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3.24

Mitchell-Bénabou Language

The language of an elementary topos & consists of the following data:

For every 1 — X, a constant c of type X. This is often written c : X.

For every X, variables {xn : X}nen.

In the interpretation of this language, a term of type X with free variables of type Xy, ..., Xy will

be given by a morphism X; X ... X X;; — X. The terms of the language are defined inductively:

tirst, we proclaim every constant and variable of type X to be a term of type X, variables being

terms with one free variable. We shall write terms as «, f3, .. ..

true and false are terms of type (), also known as formulas; they have no free variables,

and are interpreted as their corresponding constants.

(Membership predicate) If « : X and 3 : PX have the same free variables x1,...,xn, x €

is a formula with the same free variables x;, ..., Xy, interpreted as the arrow €x o(f3 X «).

(Equality predicate) If o, 3 : X have the same free variables x1,...,xn, then x = 3 is a

formula with the same free variables xj, ..., xy, interpreted as the arrow dx o (X f3).

(Application) If o is a term of type X and f : X — Y a morphism, then f(x) is a term of
type Y, interpreted as f o «.

(Composition) If « is a term of type X with free variables x1,...,xn of types Xi,..., Xy,
and yi,...,Yn are terms of types Xy, ..., Xn sharing no bound variables with «, and each
with free variables y%, . ,y{“l, ceoYh, oy, then &(y, . . ., yn ) is a term of type X with
free variables y%, ..., yn ", interpreted as « o (TTiyi).

(Evaluation) Given o : X and B : YX, B(«) is a term of type Y, interpreted as evx y o (B X ).

(€x is a special case of this).

(Currying) Given a term o of type X with a free variable y of type Y, Ay.« is a term of type

XY, interpreted as the transpose of .

(Logic) If ¢, are formulas, then so are § = 1V, d AP, d VP, =, and so on. These are
interpreted in the obvious way.
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o (Quantification) If ¢ is a formula with free variables y,x1,...,xn of types Y, Xy,..., Xy,
then (3y € Y)$ and (Vy € Y) ¢ are formulas with free variables x1,...,xn. These are
interpreted by binding y via Ay.¢ : X1 X ... X X;; — PY, and composing with the V,, and
Jp : PY — Q = P1 generated by the terminal morphismp : Y — 1.

We can define further shortcuts using these symbols, such as the uniqueness quantifier 3!:
A% e X)(d(x)) &= @Fx e X)(d(x) A (VX € X)(d(X) = x =X))

the ¢ and # predicates (x ¢ X &= -(x € X),x # X' & —(x = x)) (though —(x ¢ x) isn't
necessarily equivalent to x € X and likewise for #), and so on. We may also rewrite quantifiers
when they are obvious from convention or usage, e.g. rewriting (Vx € X)(3y € Y) as Vx3y and
(Vx1 € X)(Vx; € X) as Vxq, x3.

A formula ¢ with free variable x : X, which we may also write as ¢(x), is equivalent via
interpretation to a morphism X — Q, and therefore (by Subg(X) = Homg(X, Q)) a subobject of
X. We write this subobject as {x € X | d(x)}, or just {x | ¢}. Consider for instance the subobject
of XY given by

Inj(Y, X) = {f € X¥' | (Vy, v )(f(y) = fly") = y=1y)}

which nominally classifies "injective” maps Y — X. We will translate this: the term f(y) =

f(y’) = y =1’ is the arrow
(=) % ((6x 0 (evx,y X evxy)) X dy) o T : XY X Y XY — Q

where T is the purely logistical morphism morally sending (f,y,y’) to (f,y,f,y’,y,y’). Call
this arrow ¢. We transpose ¢ to get a morphism XY XY — PY, apply V¥, to get a morphism
XY XY — Q, transpose to get XY — PY, apply ¥, to get X¥ — Q, and then take the fibered
product with true : 1 — Q to get the desired subobject Inj(Y, X) »> XY.

We will consider two other examples: for A, B : PX, let A U B be the subobject {S € PX | (Vs €
S)(s € AVseB)}.

In Set, for instance, ¢ takesamap f : Y — X and two elementsy,y’ of Y. It turns this triplet into
the sextuplet (f,y,f,y’,y,y’) via I, applies evx y to the first two pairs to obtain the quadruplet
(f(y), f(y’),y,y’), then applies dx and &y to each pair to obtain the pair ([f(y) = f(y')], [y = y’]) of
truth values, which it applies = to. Transposition and application of ¥V, returns the morphism
sending an f : X — Y to the truth of whether it satisfies ¢(f,y,y’) for all y,y’ € Y, and pullback

returns the subset of all f : X — Y that do satisfy this. The internal language allows us to reason
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about things such as injective functions as though they "really" existed.

A first-order formula in & is any formula that can be formed via these rules. We may
include rules allowing for infinitary conjunction and disjunction, leading to the infinitary first-
order formulas. A geometric formula is an infinitary first-order formula that does not involve
negation, implication, or infinitary conjunction; these are called geometric because their truth
is preserved by pullback along geometric morphisms f* 4 f, : & — ¥ . Logical morphisms

preserve the truth of all first-order formulas.

3.2.5 Kripke-Joyal Semantics

Semantics Every formula ¢(x) with free variable x : X has a corresponding subobject {x | ¢}.
Every morphism f : U — X also has a corresponding subobject imf; if imf < {x | ¢}, such that
f factors through the subobject {x | ¢}, we say that U forces ¢ on the "generalized element" f,
written as U I ¢(f), where ¢(f) := ¢ o f. Given this, the following relations on I, which state
the Kripke-Joyal semantics of &, hold:

1. Uk &(f) AP(f) iff U - g(f) and U I+ P(f).

2. U ¢(f) VU(f) iff there are arrows g: V — U, h: W — Usuch thatglITh: VIIW — U
is epi, with V I ¢(fg) and W I p(fh).

3. U ¢(f) = P(f)iff for any g : V — U such that V - ¢(fg), V also forces P(fg).

4. U ~¢(f) if for any g : V — U such that V I ¢(fg), V is the initial object.

5. U I Fy ¢(f,y) (for some formula ¢ : X X Y — Q and generalized element f : U — X) iff
there’s an epic e : V — U and generalized element g : V — Y such that V I ¢(fe, g).

6. U Ir Yy ¢(f,y) iff for every arrow h : V — U and generalized element g : V — Y we have
V I ¢(fh, g).

We say that a formula ¢(x1,...,%n) is true in &, writing & |= ¢, if the morphism 1 — Q given
by Vx1,...,Vxn $(x1,...,%xn) is equal to the arrow true : 1 — Q, or equivalently if we have
1IFVYXxy, ..., Vxn d(x1,...,Xn).

The language and semantics of a topos admit several rules for inference that we can use in
order to think about this language independent from its arrow-theoretic nature: for instance,
we have a modus ponens rule: if U - ¢(f) and U - ¢(f) = Y(f), then, since idy : U — U
has U I ¢(f o idy) = ¢(f), it follows that U I P(f). In general, we can carry out intuitionis-

tic logic, which is more or less the same as classical logic save for a lack of the PEM. So it is
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not generally true in a non-Boolean topos & that & = ¢ V=, norisittrue that & F - = ¢.

Axioms in Topoi There are many useful axioms we can assume our topos & to have, which
using &’s internal logic we can state precisely. We may have, for instance, the (internal) principle
of excluded middle (PEM):

& (YpeQ)(pV-p)

If this holds, we call & a Boolean topos; in such a topos we can obtain for every subobject S > X
a complement S¢ »— X.
The internal axiom of choice (IAC) is the internal statement that "every surjection has a section",

which in Set really is equivalent to the axiom of choice:
& F (VFeY)[(Vy e V)Ex e X)(f(x) =y) = (3s € X") (Vy' € V) (f(s(y") =y')]

This is strictly stronger than the PEM, but weaker than the external AC: the IAC can be true in &
without the actual statement "every surjection has a section" being true in &.

The axiom of infinity is not phrased in the internal language, but is far-reaching nevertheless: it
postulates the existence of a natural numbers object (n.n.o.), or an object N € & equipped with
two morphisms s : N — N, z : 1 — N which is universal in the sense that for any 1 5 X i> X,
there’s a unique h : N — X with hz = x and hs = fh.

Given an n.n.o. N, we can define an addition map + : NXN — N: this is the unique map such

that the following diagram is commutative:

IxN 29 N N 299 NN

. I &

Iﬂl > N ~—— N

To get this map, apply the universal property of N to the diagram 1 — N — NN, where the
first map is the transpose of the identity and the second is s%; this gives us amap ¥ : N — NN
with ¥ o z = idy and s" o ¥ = F o 5, which by transpose corresponds to a map + : Nx N — N
making the above diagram commutative.

Given an n.n.o. N, it is straightforward to mimic the construction of Z and Q. Recall that
in Set, Z is defined to be N X N modulo the relation that (a,b) ~ (¢c,d)if a+d = b+c. In
&, we can take the pullback of + along itself to get an object X morally representing all pairs

of pairs of integers with equal sums, along with projections 711, 1, : X — N X N. Taking the
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two projections 7}, 7, : NX N — N, we quotient by the equivalence relation by taking the
coequalizer of 7117'(1 X 1,1y with 75 X 7(’1712, giving us an integers object Z. We can similarly
define a multiplication * : Z — 7Z and use it to create a rational numbers object Q € &.

It is not as easy to get a real numbers object R, though; there are many different possible
constructions, and while these are equivalent in Set, they are not generally equivalent in ele-
mentary topoi. We shall use the Dedekind real numbers, which is the "largest” among many
popular constructions. A Dedekind cut in a topos & with rational numbers object Q is a pair of
subobjects L, U > Q such that the following hold in &:

o (Non-emptiness) (Ix € Q)(x € L) and (Ix € Q)(x € R)

e (Disjointness) (Yx)(~(x € L Ax € U))

o (Order) (Vx,y)(x <yAy el = yel)and (Vx,y)(x <yAx el = yel)

e (Dichotomy) (Vx,y)(x <y = (xe€LVyel))

o (Openness) (Vx)(x € L = (Jy)(y € LAx < y))and (¥x)(x € U = (Jy)(y € UAY < x)).

Taking the conjunction of all of these gives a formula ¢ on PQxPQ, the corresponding subobject
{(L,U) | ¢} of which is known as the (Dedekind) real numbers object R.

Objects in Topoi Given an object G € &, we may stipulate internal axioms amounting to the
existence of an algebraic structure on G: for instance, suppose we equip G with a morphism
0:1 — Gand amorphism + : GXG — G written infix, and assume that & models the following

sentences:
e (YgeG)0+g=g+0=g)
o (Yg,hK)((g+h)+k=g+(h+Kk).
e (Vg3h)(g+h =0).
e (Yg,h)(g+h="h+g).

This will be an abelian group from &’s point of view, and since the theory of abelian groups
can be expressed intuitionistically, objects which are abelian groups according to the internal
logic are also internal abelian groups; this holds for most similar theories, including rings and

modules.

105



3.3. Infinitesimals

We shall make particular use of a certain kind of object known as a Weil algebra. Given a ring
object R in a topos & (or a ringed topos (&, R)), a Weil algebra is a local ring (W, m) with an
R-algebra structure, such that W is finite-dimensional as an R-module and can be written as
the direct sum R @ m. In the ringed topos (Set, R), Weil algebras are equivalent to R-algebras,
finite-dimensional as vector spaces, of the form C3°(R™)/I, where C° denotes smooth functions
vanishing at 0. For instance, C;°(R)/ (x?) is the ring of dual numbers R[e] := R[x]/(x?). With
R-algebra homomorphisms mapping maximal ideals into maximal ideals, Weil algebras form a

category W(E).

3.3 Infinitesimals

3.3.1 The Kock-Lawvere Axiom

Given a commutative ring object R in a topos &, we define the subobject of infinitesimals of R
by D := {x € R | x*> = 0}. The Kock-Lawvere axiom for R reads

(Vf € RP)(3lc € R)((Ve € D)(f(e) = f(0) + ce))

Clearly 0 € D, so 0 : 1 — R factors through D. As a consequence, we have that if ci1e = cje
for all € € D, then ¢1 = c; (let f(e) = c1€). The KL axiom allows us to work with infinitesimals
as though they actually exist, using them to define derivatives around points. However, this
comes at a cost: we cannot in general exhibit non-zero infinitesimals.

In order to work with the KL axiom, we must explicitly reject the principle of excluded
middle: to see this, define a map f: D — R which sends € to 0 if € = 0 and to 1 otherwise; the
KL axiom implies that there’s a unique ¢ € R such that f(e) = c - € for all e € D. Assuming
the LEM, either D contains only 0 or D contains other elements. If D contains only 0, then c
cannot be unique; hence, it contains an € # 0, and a unique c such that ce = 1. It follows that
0 = (ce)? = 1% = 1, a contradiction. Hence, we must throw out the LEM, and work constructively.
Another consequence of this is the undecidability of R: the sentence (Vx,y)(x =y A x # y) is not
true. In particular, & cannot show that infinitesimals are non-zero.

This is in part because the KL axiom is very strong: fixinganx € R,f:R — R,andk:D — R
sending 0 to f(x) and € to k(e) = f(x + €), the KL axiom gives a unique cy in R such that

f(x + €) = f(x) + ce. We write f'(x) := c to get a function f' : R — R known as the derivative of
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f, and state Taylor’s formula:
Ve € D(f(x + €) = f(x) + ef’(x))

So KL implies that every function f : R — R is differentiable.

An Alternative Statement Here’s another statement equivalent to the KL axiom: take the
R-algebra R[e] = R X R with multiplication (a, b) - (¢, d) = (ac, ad + bc). Then (KL2), the map
o : Rle] = RP, a(a, b)(e) = a + €b is an R-algebra isomorphism.

It’s clear that (x(a,b)a(c,d))(e) = «(ac,ad + be)(e), as well as that this statement, KL2,
implies the original statement (KL1). To see the converse, assume KL1. Then, not only is
every function f of the form «(f(0), c), but for every «(a, b) there is a unique ¢ € R such that
a+ be = a(a,b)(e) = «(a, b)(0) + ce = a + ce for all €; b obviously satisfies this, and hence is
the only element of R that satisfies this, making it, and hence the pair (a, b) recoverable from
the function «(a, b). So KL1 is equivalent to KL2.

Spectra Givenanarbitrary R-algebra A € £ and a finitely generated R-algebra B = R[x1,...,xn]/I,
for instance a Weil algebra, the spectrum Spec, (B) is a subobject of A™ consisting of those

a = (ai,...,an) such that P(a) = 0 for all P € 1. For instance, SpecR(R[x]/(xz)) = {x € R|
x? = 0} = D. For W a Weil algebra, the object Specy (W) is known as the formal infinitesimals
object of R (with respect to W). The process of taking spectra with respect to R is functorial: a
morphism 1\ : W — W’ of Weil algebras generates a morphism ¥ : Spec,(W’) — Specy (W)

A third formulation of the KL axiom states that (KL3) the R-algebra homomorphism o :
W — RSPeW) o(P)(x1,...,%Xn) = P(X1,...,%Xn), is an isomorphism. In the topos &, every Weil
algebra W yields a functor (—)5P*W which is right adjoint to the functor — x Spec, W. If each
W satisfies the KL axiom and (—)%P¢®" is always a left adjoint as well, & is known as a smooth

topos. The right adjoint, known as the amazing right adjoint, is denoted (—)'/5Pes=W.

Differentiation The differentiation given by the KL axiom satisfies the usual properties: for
instance, consider two functions g, f : R — R. (gf)(x + €) is equal to (gf)(x) + e(gf)’(x), but
also equal to g(f(x) + ef’(x)), which since ef’(x) is an infinitesimal is itself equal to (gf)(x) +
ef’(x)g’(f(x)), implying that (gf)’(x) = f'(x)(g’f)(x), i.e. the chain rule. Similarly, differentiation
satisfies the product rule, is R-linear, sends constants to 0, and sends idr to 1.

We define D, to be the set of all nth order infinitesimals, or elements x € R such that x™*! = 0.
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(In particular, D = D1). D is defined to be the set of all nilpotent elements, or x € R such that
x™ = 0 for some n > 1. Supposing that 2,3, ... are invertible in R, the higher order extensions of

the KL axiom are as follows:
Vf € RPn3ley, ..., cn € R (Ve € Dn(f(e) = f(0) + c1e! + coe? + ...+ cne™))

and the corresponding Taylor formulas are
e? em
Ve € Dy [f(x + €) = f(x) + ef () + () + ..+ —FV(x)

An R-module V satisfying the following vector version of the KL axiom is known as a Eu-

clidean R-module:
Vf e VP3ly € V (Ve € D(f(e) = f(0) + € - v))

When V = R™, we can write X = (x1,...,Xn), and we have for a function g : R™ — R™" such that
g(X+e-y) =f(e)az € R" such that g(x+e-y) = g(X) + € - z. We define the directional derivative
d59 of g in the direction y to be this Z, and the ith partial derivative 9;f to be the directional

derivative in the direction of the ith unit vector. The map y — J59 is known as the differential

g’ of g.

3.3.2 Differential Geometry

Microlinear Spaces Given a topos & and a commutative ring object R satisfying the KL axiom,
take the nested categories Weil C R-Alggp C R-Alg of Weil algebras, finitely presented R-algebra
objects, and R-algebra objects, respectively. We have a pair of functors R™ : &% — & and
Specy, : R-Alg(;g 2 Weil’? — &. Given a finite limit diagram J of Weil algebras, D = Specg(J)
is, while not necessarily a colimit, at least a cocone. An object M € & is a microlinear space if M”
is a limit diagram for every J. Microlinear spaces will serve as our generalized manifolds. These
spaces contain R, are closed under limits (e.g., arbitrary products), and contain exponentials:
if M is microlinear and X an arbitrary object, M* is again microlinear. Thus, we already have
a rich abundance of microlinear spaces. A Lie group is a group internal to & which is also a

microlinear space; again, the trivial example is R.

Tangent Vectors Given a microlinear space M, a vector bundle over MisanepicE=m:E —

M such that 1(x) is a Euclidean R-module, and a section, also known as an E-vector field,
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of the vector bundle E is a morphism s : M — E such that s = idpm. The tangent bundle
of a microlinear space M is the object MP equipped with a map 7 : MP — M, t — t(0); its
elements are tangent vectors, and the tangent space of M at a point x is the collection MP of
t € MP with n(t) = t(0) = x. We write TM = MP, T,M = MP, and think of elements of MP as
probings of M in infinitesimal directions, hence tangent vectors. A TM-vector field, just known
as a vector field, is a map M — MDP satisfying the above properties; by cartesian closure, we
can look at a vector field X not just as a map M — MP, but as a map M X D — M, or even as
amapD — MM taking an infinitesimal d and giving us an infinitesimal deformation X4 of M.
Using this definition, the object X(M) of all vector fields on M becomes an R-module under the
action (rX)q = Xrq. This definition also allows isomorphisms ¢ to act on vector fields X: we
define (9.X)q = @Xq@ L. If @ is an endomorphism, we may define (¢*w)(v) = w(g o).

Given a v € MP", which we think of as a function taking in n infinitesimals and outputting
an element of the microlinear space M, as well as an r € R, we define rv(dy,...,dn) =
v(dy,...,rdy,...,dn). Given a o € S, we define v°(dy,...,dn) = v(ds1,...,don). An n-form
on M is a map w : MP" — R such that w(rxv) = Tw(v) and w(v°) = (=1)°w(v). The object
A™(M) of all n-forms on M is a microlinear space as well as a Euclidean R-module. We denote
by X *v the element of mP™! given by (X *v)(dy, ..., dn+1) = Xq,(v(d2, ..., dn+1)), and by ixw
the (n — 1)-form actingonaw € mpP"™ by (ixw)(w) = w(X*w).

For X,Y € X(M), we define [X, Y]a,a, = Y-a,X-d, Yd,Xd,; the vector field [X, Y] is also written
LxY, and is equivalently the unique vector field such that (X_4).Y =Y = dLxY. The exterior

derivative of an n-form w is given by

n+1

(dw)(v) = > (-DFFLY(0)
i=1

where Fi(e) = w(v(dy,...,di-1,€ dit1,...,dn)); as expected, it satisfies d? = 0. With this in
mind, we state Cartan’s three "magical formulae" without proof: Lx y; = Lix Ly}, ifx,v] = Lix iy},

and Lx = dix + ixd.

Formal Manifolds More specific than the microlinear spaces are the formal manifolds, which
take some effort to set up. A morphism f : X — Y is étale if for every element x : 1 — X and
morphism g from an infinitesimal object Spec, W to Y, there is a unique arrow h : Spec, W — X

which maps 0 € Specy W to x and satisfies fh = g, i.e. makes the diagram below commutative.
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—0> SpecR

e

X

s

If Y = R™ and f is monic, X is said to be an n-dimensional model object. An object M is

l

an n-dimensional formal manifold if there are étale monics X; — M, where each Xj is an

n-dimensional monic object, whose coproduct is a regular epic morphism I1; X; — M.

3.3.3 Smooth Algebras

Let CartSp be the subcategory of Diff consisting of the cartesian spaces {R™ } nen. A C*°-ring, or a
smooth algebra, is a product-preserving functor CartSp — Set, and a C*°-ring homomorphism
is a natural transformation of functors. These form a category which we will denote C*°-Alg.
Intuitively, C*°-rings are modeled on (but not restricted to) rings of the form C*>°(M), for some
smooth manifold M; for such a ring, we may define ®¢(¢1,..., on)(p) = f(@1(p),..., Pn(p)) to
geta C*-ring.

Given a C*®-ring A : CartSp — Set, we may endow A(R), and hence all A(R™), with the
structure of an R-algebra by using the images of the morphisms + : R> > Randc--: R — R:
for x,y € A(R) and ¢ € R, we denote by x +y the image of (x,y) € R? under the morphism
A(+) : A(R?) = A(R)> - A(R), and we denote by cx the image of x under the morphism
A(c- =) : A(R) — A(R). That the necessary R-algebra identities hold in CartSp imply that
they hold in Set as well. Hence, we may associate to every C*°-ring an underlying R-algebra
A(R). We will often identify A with A(R), though we can’t identify any given R-algebra X with
a C®-ring: it’s necessary that X lifts morphisms R™ — R™ to morphisms X™ — X™ in a nice
way. Specifically, we require an operation ®¢ : X™ — X for every smooth map f : R™ — R
such that, for h(xi,...,xn) = g(fi(x1,.-.,%Xn), ..., fm(x1,...,xn)), we have ®n(x1,...,xXn) =

Og(D, (X1, ., %n), oo, Pr (X1,...,xn)) as well as O (X1, ..., Xn) = Xi.

Finitely Generated Ideals Of particular consequence is when A is equivalent to C*°(R™)/I
for some ideal I of C*°(R™): when this happens, A is said to be finitely generated, and when
I =(iy,...,1m) is finitely generated as an ideal, A is said to be finitely presented. Every C*-ring
of the form C*°(M) for a smooth manifold M is finitely presented, for instance. If A islocal as a
normal ring, it’s known as a local C*°-ring. The primary example is, as encountered in algebraic

geometry, the stalk of the sheaf of smooth functions on R™, written C3°(R™).
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We define the category L°P to be the subcategory of C*°-Alg consisting of the finitely generated
algebras; the objects of L are known as loci, and written as (A, (B, ... (Where A, B are finitely
generated smooth algebras). A morphism {B — (A of L is a morphism A — B, or, if B =
C®(@R™)/J and A = C>*(R™)/I, an equivalence class [@] of functions R™ — R™ acting as
@(f) = f o @; we require each ¢ to satisfy f € I = ¢(f) € ], so that ¢ extends to a function
C*®(R™)/T — C®(R™)/], f+ (I) = @(f) + (J), and write ¢ ~ P if each 7ty o (@ — 1) : R™ — Riis
in [.

Sett™

is a Grothendieck topos (by equipping L with the indiscrete topology in which all
presheaves are sheaves). The functor s : Diff — L sending a smooth manifold M to {C*(M)
is full and faithful, and when combined with the full and faithful Yoneda embedding & : L —
Set"” evidences Diff as a subcategory of Set"™. So, Set” can be thought of as a category of
"generalized" smooth spaces, and at the same time as a category of "variable" sets. For a functor
P e Sett™, we say that a element of P at stage (A is an element x of the set P({A). By Yoneda,
these can be identified with natural transformations from (A to P (where we have silenced the
Yoneda embedding). A map ¢ : A — B in L yields a map ¢ : (B — (A in Set"”, and hence
maps elements of P at stage (A to elements of P at stage {B by composition; this is known as

restriction, and written as x| .

Smooth Reals In the topos Set”, the smooth real line R can be identified as the functor
R = {C>(R); elements of R at stage (A, or natural transformations {A — R, are just called reals
at stage {A. For A = C®(R™)/I, this is an equivalence class f(x) mod I, where f : R™ — R.
The internal ring structure on R derives from a ring structure on each set of reals at a given
stage (A given by simply taking pointwise addition and multiplication of functions mod I. The
terminal object ("point") is given by 1 = {(C*°(R)/(x)), and the object of nth order infinitesimals
is {(C>®(R)/(x™*1)). The smooth interval object [a, b] is given by ¢{(C>*(R)/ m‘[’z,b]), where mfj,b]
is the ideal consisting of functions that vanish on [a, b]. Again, we may analyze these objects by
their elements at stage (A for A = C>°(R™)/I: for instance, the nth order infinitesimals are those
smooth functions f such that f**! € 1. To prove all of this, we state the Kripke-Joyal semantics

for Sett™: letting x be an element of X at stage {A, we have

o (A IFP(x) A d(x) (resp. W(x) V $(x)) iff LA IF P(x) and (resp. or) LA I d(x).

o (AIFdp(x) = WY(x)iff forevery f: (B — (A in L, {B I d(x|¢) implies B - P(x]¢).

o (A I 3y € Fd(x,y) iff there’s an element yg of F at stage (A such that (A I d(x, yo).

o (A IFVy € Fod(x,y) iff for every f : (A — (B in L and element yo of F at stage {B we have
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LB I+ d(x|t, yo).

This allows us to prove that the KL axiom Vf € RP3!lc € R(Ve € D(f(e) = f(0) + ce)) is valid for

R, as well as the following integration axiom:
vf e RIVHUFIF e RIO(F = £ A F(0) = 0)

The function F whose derivative is f is known as the integral of f.

While L°P consists of the finitely generated smooth algebras, we define G°P to consist of
tinitely generated smooth algebras whose ideals are determined by germs. The category G,
then, consists of loci of the form {(C>(R™)/I), where I is such that f € I iff the germ of f at
an arbitrary point x € Z(I) (i.e.,, g(x) = 0 for all g € I) is in the germ of I. (The = part is
trivial, whereas the < part is the real restriction, and where the name "ideal determined by
germs" comes from). A second subcategory F°P C L°P is given by smooth algebras of the form
C>(R™)/I, where I is closed, or such that if for every x € Z(I), the Taylor series of a function f at
x resembles the Taylor series of some element of I at x, then f € I. Finally, an ideal I of C*°(R™)
is point determined if Z(f) 2 Z(I) = f € I. These generate the subcategory E°P.

Since the germ of a function contains its Taylor series, closed ideals are germ determined, so
that F°P € G°P and hence F C G C L; furthermore, since the Taylor series of f in particular tells us
about its vanishing points, point determined ideals are closed, and hence E C F € G C L. Every
ideal I of C*°(R™) admits a smallest germ determined ideal I given by the set of all f whose
germ is an element of the germ of I at all points x € Z(I); this assignment is functorial, and is
in fact left adjoint to the inclusion G°°? — L°P. The same formula gives us left adjoints to the
inclusions E°P — F°P, F°? — G°P, and hence a sequence of coreflective subcategory inclusions
E — F — G — L. Theright adjointsL — E,L — F, L — G are customarily denoted by v, k, and
A, respectively; we’ll also denote the right adjoints G — E,G — F,and F — E by v, k, and v, so
that y makes a finitely generated ideal in any of these categories point determined, k makes an
ideal closed, and A makes an ideal germ determined.

Given a function f € C®(R"), the most general solution to providing C*(R™) with an
inverse of f is given by the smooth algebra C®(f"}(R — {0})). We write this algebra as
C®(R™){f~!}, and associate to it a canonical morphism n¢ : C*®(R™) — C®(R™){f'} re-
stricting a smooth g on R™ to the subset of R™ on which f doesn’t vanish. We define
(C®RM)/D{f 1} = C*R™){f'}/n¢(1); while this construction doesn’t necessarily map ele-
ments of G°P to elements of G°P, C>®°(R™)/{f1}/n¢(I) will be finitely generated so long as
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C>(R™)/1is, and hence we can obtain a germ determined locus A¢((C>(R™)/I){f~}) equipped

with a canonical morphism into ¢(C>*(R™)/I).

The Topos G We define a Grothendieck topology ] on G as follows: a family {fy : (A, —
(A} «eq is a covering family if for every o« € Q there’s a function by € A such that f, factors
through the canonical map A(A{by!}) — (A, and the family {yfy}xcq covers yCA. ] sends (A
to its collection of covering families. The Grothendieck topos Sh(G, ]) is denoted G. As usual, we
have a sheafification functor —s" : Set®” — G left adjoint to the inclusion functor G — Set®”,
as well as a global sections functor I' : G — Set, I'(F) = F(1), right adjoint to the sheafification of
the constant presheaf functor A(S)(¢A) = S. Writing A = C*>(R™)/I, this sheafification sends (A
to the set of locally constant functions Z(I) — S. T is also left adjoint to the functor B sending a
set S to the sheaf sending (A to the set of all functions Z(I) — S.

The Kripke-Joyal semantics for G are equivalent to those of Set™” for the operators A, = ,

and V, but differ for the other connectives.

o (A IF @(x) V P(x) iff there’s a covering family {fy : {A — (A} such that, for each «,
(A& - @(x|f,) or LA & - P(x]¢, ).

o (A Ir Jy € Fd(x,y) iff there’s a covering family {fy : (A, — (A} such that, for each «,
there’s an element y, of F at stage (A« (i.e., Yo € F({A)) with (A4 - (X, Yu).

o (A I ~d(x) iff for every f: {B — (A such that (B I ¢(x|¢), B = 0.

JustasinSet"”, R = G(—, £C>®(R)) is a commutative ring object with orders <, <. The difference
is that, in G, R satisfies the following additional properties: G |= (0 =1),G =Vx,y € R(x+y €
UR) = x € UR)Vy € UR)), and G | Vx € RIn € N(x < n). Here, N is the natural
numbers object/sheaf sending (A to the set of locally constant functions {A — N. The first two
statements state that R is a local ring, and the third states that R is Archimedean. Furthermore,

R satisfies the field axiom
VX1,..o,Xn ER(A(x1 =0A...AXxp =0) = (x1 € UR) V...V xy € U(R)))

as well as the Kock-Lawvere and integration axioms from Set"”. Locality is often studied in the
form of an apartness relation # whereby x#y if x —y € U(R), or equivalently if x <y V x > y.

If we replace G with F and A in the definition of a covering family with k, we obtain a
Grothendieck topology ] on F whose corresponding Grothendieck topos Sh(F, ]) is denoted ¥ ;
the entirety of the above discussion of G holds for 7.
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3.3.4 Cohesive Topoi

Cohesion A topos over a base topos 8B is a topos & equipped with a geometric morphism
f=(f:8—>8&4f.:8 — B). Forinstance, if & = Sh(C,]) is a Grothendieck topos and
B = Set, there is a natural geometric moprhism which has as its left adjoint the sheafification of
the constant presheaf functor and as its right adjoint the global sections functor I'(F) = &(1, F).

The topos & over 8 is cohesive if f* has a further left adjoint f; which preserves all finite
products, including the terminal object, and f. has a further right adjoint f', so that we have an
adjoint quadruple f; 4 f* 4 f, 4 f". The canonical example is when 8 = Set and f. is the global
sections functor I'. As such, we often denote f. by T, f* by Disc, ' by coDisc, and f, by T, giving
us an adjunction

ITp 4 Disc 4 " 4 coDisc

The idea is that the global sections functor sends an object X € & to its set of (global) elements,
and its left and right adjoints send a set to its corresponding discrete and codiscrete, or indis-
crete, spaces in &E. Tlp sends X to its set of connected components, a la 71p : Top — Set. This
adjoint quadruple induces an adjoint triple Disc o Ty 4 Disc o I 4 coDisc o T, all of which are
endofunctors on &. The functor Disc o Ty drops information internal to connected components
while identifying each connected component, keeping the shape of an object X: it is known
as the shape modality . Disc o I' sends X to the discrete topology on its points, detaching its
points: it is known as the flat modality b. coDisc o I does the opposite, dissolving the structure
of X into a cohesive "blob": it is known as the sharp modality . The Disc 4 I' adjunction has
a counit n : Disc o' — 1 yielding for every X a canonical morphism e& : bX — X: in this
way, b is not just an endofunctor but an idempotent comonad. In the same way, [ and { are
idempotent monads on &, with units nf:1—-fandn/:1 - J. Objects for which e';< (hX =X
are known as discrete, and objects for which ﬂ§< : X = #X are known as codiscrete. If n§<
is at least a monomorphism, X is known as concrete. Since b and { are both idempotent, the

subcollection of (co)discrete objects of & assembles into a subcategory given by the image bE (#5).

For an example of a cohesive topos, put the following Grothendieck topology on CartSp: a
differentiably good open cover of R™ is a covering {f; : U; — R™}, where each U; € R™, such
that each non-empty finite intersection of the fi(U;) is diffeomorphic to R™. With | sending R™
to its set of differentiably good open covers, we define Sh(CartSp, J) to be the topos of smooth

sets, SmoothSet. A smooth set X can be thought of as a collection of sets {X™}nen, where
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X™ = X(R™) is thought of as the set of n-dimensional plots of X, along with maps Xf : X™ — X™
for every smooth "coordinate transformation” f : R™ — R™ satisfying the sheaf conditions.
For M a smooth manifold, the functorial assignment M, R™ — Diff(R™, M) yields a full and
faithful embedding of Diff into SmoothSet, of which we have as a special case the Yoneda
embedding X(R™) = CartSp(—, M) = Diff(—,M). An important subcategory of SmoothSet is
given by its concrete objects, which are known as diffeological spaces. These are characterized
by the property that they can be identified with an actual set X, with X(R™) being a subset of
Set(R™, X).

The adjoints Disc and I" between SmoothSet and Set are given by the constant sheaf and global
sections functor, as usual. For a set S, coDisc(S) is the sheaf that sends R™ to Set(R™, S); for a
smooth set X, TTp(X) is given by the colimit over the X(R™).

Elasticity Given a cohesive topos (&,TTg 4 Discg 4 I'g 4 coDiscg) over Set, take a cohesive
topos (7, T1# 4 Discg -4 I'r 4 coDiscy) over Set, and equip ¥ with a functor tinf : & = F with
a series of left adjoints

Linf ﬂinf - DiSCinf . rinf

such that TT# = Tlg o TTinr and likewise for Discg and I's. We say that ¥ is an elastic topos over

&, or differentially cohesive. So, the situation is as follows:

linf —»
<—Tlg — Tlins —
— Discg —» s Discinf — F
<—1Tg &— Ting —

— coDiscg —

—— coDiscg —— >

Set

Again, each of & and ¥ have their own co/monads (fg,be, te), (J#, b7, t#), but we now have
an addiitional adjoint triple tinf © TTinf 4 Discinf © TTins 4 Discinf © Tins of endofunctors on
F . tint © [Tinf is an idempotent comonad known as the reduction modality R, Discint o TTins
an idempotent monad known as the infinitesimal shape modality 3, and Discinf © l'ins an
idempotent comonad known as the infinitesimal flat modality &. We have a category R¥ of
reduced objects and a category 37 of coreduced objects. It is relatively straightforward to show
that &bX = X, and therefore &F 2 bF, and likewise IF DO [F. We write these relations as
&>band J > |.

For an example, consider the category FormalCartSp whose objects are smooth loci of the form

R™ x D, where {W is the formal dual of a Weil algebra, and whose morphisms are smooth
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maps; these are known as infinitesimally thickened Cartesian spaces. The coverings are of the
form {f; xid : Uy X D — R™ x D} for {f; : U; — R™} a covering of R™. The sheaf topos over
FormalCartSp is known as the Cahiers topos C7; its objects are known as formal smooth sets.
The inclusion of CartSp into FormalCartSp induces via left Kan extension an inclusion functor
linf : SmoothSet — C7T : namely, a smooth set X sends an infinitesimally thickened Cartesian
space R™ X D to the set LI ;neyFormalCartSp(R™ x D, R™) X X(R™) quotiented by the relation
identifying (x : R x D — R™, 3 : R™ — X) with (o : R* XD — R™, B’ : R™ — X) if there’s
an f : R™ — R™ such that fa = o, B’f = . The right adjoint TTin¢ to this inclusion functor
just restricts a formal smooth set X’ to the smooth set X(R™) = X'(R™). Discint sends a smooth
set X to the formal smooth set X(R™ x D) = X(R™), and I'in ¢ is given by the right Kan extension
of a formal smooth set X along Discin¢. The elastic topos C7 is, unlike SmoothSet, suited for

synthetic differential geometry, due to the addition of infinitesimals.

Solidity Take a cohesive topos & over Set and an elastic topos # over &, with the same notation
as before. We now add the third layer of cohesion: take a cohesive topos G over Set which is
elastic over &, bearing a functor I' : G — & fitting in an adjoint quadruple ¢ 4 TTp 4 Disc 4 T'.

Equip G with a functor even : G — ¥ fitting in an adjoint quintuple
even H tgyp 1 Msup 4 Discsyp 4 Tsup

such that 1 = t5p © tint, likewise for T, Disc, and I, and Tlg = Tlg o Ty ¢ o Tsyyp, likewise for

Discg and I'g. The situation is as follows:

<— even —
Linf % Lsup %
< g % Mine — % r[sup —
—— Discg —> — Discinf — — Discsup —
Set &
% I's % Fing — T % rsu.p — g
— coDiscg —>
—— coDiscg — >
coDiscg >

We again have a triplet of endofunctors: the idempotent monad ts,,p © even known as the
fermionic modality =3, the idempotent comonad sy, © Ty p known as the bosonic modality
~», and the idempotent monad Discgyyp © Tlsup known as the rheonomy modality Rh. The
topos G is known as solid, or super-differentially cohesive, over ¥ . By being elastic over & and
cohesive over Set, it also has the two previous triplets of modalities, and admits the relations

~»> R and Rh > 3. We therefore have three generations of modalities, which [nLab authors,
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2020] arranges into the progression

id 4 id
\Y \Y
= 4 ~» 4 Rh solidity
\Y \Y
R 4 I 4 & elasticity
\% \%
[ 4 b 4 { cohesion
\Y \Y
g4 =

including the trivial adjunctions id 4 id and @ 4 *, where & and * are the constant endofunctors
on the initial and terminal objects, respectively.

Our example, building on the previous two examples, is inspired by supersymmetry: in
physics, fermions are represented by (for now, real) numbers i,\;, ... which anticommute:
Pi; = ;. Bosons, on the other hand, are reals 0, 6;, ... which commute, 0;0; = 0;0;.
Define the real Grassmann algebra A*R9 to be the R-algebra freely generated by {\1,..., P4}
under the relations P1; = —pj1p;. We define the super-Cartesian space RPld by the relation
C(RPl9) = C>(RP) ®g A*RI. This is a commutative algebra over R, and hence an object of
the category CAlgg, and is Z/27Z graded, as we can split it into "fermions" with degree 1 and
"bosons" with degree 0. The degree of an object x is denoted |x|; we have |xy| = |x||y| mod 2 (note:
(Wi = =P = Pr(Pip;)) and xy = (=1)*IWlyx. These relations define a commutative
superalgebra, an object of a category sCAlgg. Just as Diff embeds fully and faithfully into CAl g]%p
via C*®(=), RP!9 can be identified within sCAIgE{p as the formal dual of C*°(RP!9). The set of all
RPI9,p, q € N, forms the subcategory SuperCartSp. The category SuperFormalCartSp is defined
in a manner completely analogous to FormalCartSp, as well as the topoi SSS = SuperSmoothSet
and S7 88 = SuperFormalSmoothSet. ST SS is solid over the Cahiers topos C7, with the functor

even stripping the degree 1 part from a super formal smooth set.
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3.4 Physical Models

3.4.1 General Relativity

Synthetic differential geometry allows us to construct an intuitionistic theory of spacetime in
which general relativity can be constructed; we will use the model of SDG provided by the
topos G of sheaves over the site of finitely generated smooth algebras with germ determined
ideals. Our plan will be to set up the elements of classical Riemannian geometry (connections,

curvature, and so on) in a synthetic manner, and study the interpretation of Einstein’s equations

ingG.

Connections and Curvature An infinitesimal n-cube on an object M is an element of MP" x
D™, and an infinitesimal n-chain is an element of the free R-module C,,(M) generated by all
infinitesimal n-cubes on M. Writing I = [0, 1], a finite (or "big") n-cube on M is a morphism
I — M, and a finite n-chain an element of the free R-module I'1(M) generated by finite
n-cubes.

A affine connection on a microlinear space M is a bilinear morphism V : TMxy TM — MP*D
(where the pullback is taken over the morphisms v +— v(0), so these are two tangent vectors at
the same point) such that V(v,w)(d,0) = v(d;1) and V(v,w)(0, d2) = w(dp). If V(v,w)(d1, dp) =
V(w,v)(dz, d1), V is said to be torsion-free. From a connection V on M, we may define another
function T which associates to each (v,d) € TM x D a parallel transport t4(v, —) : 7' (v(0)) =
7-1(v(d)); this map is linear in both v and its argument, is the identity for d = 0, and t4(Av, —) =
Tad(v, —). We identify 14(v,w) with the parallel transport of w along v for an infinitesimal
period of time d. Specifically, T4,(v, w)(d2) is defined to be V(v, w)(ds, d2).

Given a connection V on a microlinear space M, we would like to define the Riemann curvature
tensor in terms of the parallel transport of a vector along the boundary of an infinitesimal 2-
chain. Given such a 2-chain (y, di,d;) € MP? x D? based at a point x = y(0,0), we do this as
follows: take a vector v and transport it along y(—,0) for a period of d; "seconds". Transport
the new vector along y(d;, —) for a period of d; seconds, transport backwards along y(0, —) for
dy seconds and finally transport backwards along y(—, d») for d, seconds, before subtracting v

from the result. This gives a preliminary map

R,(‘Y/ dl/ d2/ V) = Tai (‘Y(_l dZ)/ Tai (‘Y(O/ _)/ Td, (Y(dll _)/ Td, (‘Y(_l O)/ V)))) -V
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Being bilinear in both d; and d,, we may define a map ¢(d;, d2) = R’(y, d1, d2, v) which induces
by microlinearity of TxM a function 1\ : D — TxM such that {(d;dz) = ¢(d1, d2). By KL, this
can be written as 1(d) = d9 for a unique v € T,M. We define R” : MP*P x5, TM — TM to send
a pair (v, v) to this ¥, and define the Riemann curvature tensor R : TMXp TMXp TM — TM by
R(v1,v2,v3) = R”(V(v1,Vv2),v3). If M is a formal manifold, we may work in local coordinates: the
connection V becomes a function that takes in a point x € M along with two vectors v,w € R™,
and returns an element of M X R™ X R™ x R™. The fourth component of this tuple is denoted
V4, and used to define the Christoffel symbols: in a basis {ey, ..., en} of R™, these are given by
Fi].k (x) = mi(Va(x, ex, ej)). The Riemann curvature tensor decomposes into components in the
usual manner: Reijk = 0 ngi — 8kl“‘3ji + Fe].m M - Fek
Hence, to a formal manifold M € G we may associate a Riemann curvature tensor R‘)'ijk to a

m !5 (again, at every point).

connection V. This gives us a Ricci curvature tensor Riy = RY. . and, with a Riemannian metric

ilk
gij, a scalar curvature R = gij Ri; and Einstein tensor Gij = Ryj — %Rgij.

Einstein’s Equations Consider R* filled with dust with 4-velocity u! and density p. The
classical Einstein equations read Gyi; = Tyj = kc2puiuy, where « is Einstein’s constant. In G, real
numbers become elements of R at stage {A for A = C*°(R™)/I; these are natural transformations
from X((A) to R = X({C>*(R)), which by Yoneda are in bijection with smooth functions ¢ :
R™ — R modulo I. So, using G as a model for SDG, an arbitrary real number r € R at stage
(A is really a "parametrized" element of R, changing smoothly as we vary the point v € (A.
Similarly, an event, or element of R* at stage (A is really a smooth function R" — R v >
(x°(v),x}(v), x2(v),x*(v)) mod I. Taking the reals at stage 1 = X(C°({*})) recovers the usual set
R. So, in SDG, the Einstein equations Gyj(x) = Tij(x),x € R* carry over without modification
at stage 1, stating that two pairs of 16 reals coincide at every point in R* (Goo(x)(*) = Too(x)(*)
and so on). At stage {C>®(R), the equations state that two pairs of 16 smooth curves through R*,
assigned to each point in R*, coincide; at stage {C*°(R?)/1, they become surfaces ¢ : R? — R*
modulo the ideal I, and so on. [Guts and Zvyagintsev, 2000] interprets the Einstein equations
for a dusty universe at various stages.

This interpretation of general relativity can be carried out in any other smooth topos, thereby

inheriting its internal logic instead of G’s logic; to quote [Guts and Grinkevich, 1996]],
"The resulting space-time theory will be non-classical, different from that of the Minkowski

space-time. This is a new theory of space-time, created in a purely logical manner. It will
reflect the real space-time properties to the same extent as the development of mathematical
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abstractions accompanies the development of the real world."

3.4.2 Classical Mechanics

Here’s where we bring in the language of cohesive topoi. Let S = SmoothSet be the cohesive
topos of smooth sets, constructed above as the sheaf topos on CartSp with the differentiably
good open cover topology. Letting QF (M) be the set of closed p-forms on a manifold M, we
define a smooth set QP by QP(R™) = QP(R™), as well as a morphism d : QP — QP*! dgn =
d : QP(R™) — QPT(R™). This smooth set is a "universal moduli space" for p-forms, in the
sense that for any smooth manifold M, considered as a smooth set, there’s a natural bijection
between morphisms M — QP and p-forms on M. Note that the machinery of smooth sets
is necessary to solve this moduli problem: QP is not the image of a smooth manifold, nor is
it even a diffeology. However, this anomaly allows us to lift the definition of p-forms from
manifolds to smooth sets: given an arbitrary smooth set X, a p-form w on X is a morphism
X — QF,and if dw = d o w = 0, w is closed. There is an object QF, of closed p-forms given by
QP (R™) = {closed p-forms on R™}.

Presymplectic Sets A presymplectic smooth setis a pair (X, w), where X is a smooth set and w
a closed 2-form on X. (While w is closed, we haven’t said anything about nondegeneracy, hence
presymplectic), or equivalently a morphism X — Qil. A p-form on Xis really just an assignment
to every plot ¢ € X(R™) of a p-form wgn(dp) on R™, so we can add and multiply them, and in
particular we can take the tensor product of presymplectic sets (X, w) ® (Y,n), which assigns
to every product plot ¢ X PX(R™) X Y(R™) the sum wgn(P) + Nrn(P). A symplectomorphism
between presymplectic sets (X, w) and (X’, w’) is just a morphism ¢ : X — X’ such that w’¢ = w.
Hence, presymplectic sets assemble into the slice topos S/ Qil. A presymplectic subset of a
presymplectic set (X, w) is simply a subobject ¢ : X’ > X, which induces by composition a
presymplectic set (X', w|x: = wd). If (wP)rn : X'(R™) — Q%l(]R“) = Qil(]R“) is the constant
morphism x — 0, and the dimension of X’ is half that of X, we call X" a Lagrangian subset of X.

Given two objects X, Y, we define a correspondence to be a diagram of the form X « C — Y,
and a equivalence of correspondences to be an isomorphism C = C’ forming a commutative

diagram
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X/C\Y
SN

C/
Given two correspondences X < C — Y « C’ — Z, their composition along Y is defined to be
the correspondence X «— CxyC’ — Z. Hence, we can for an arbitrary topos & define a 2-category
Corr(&) of correspondences whose 1-morphisms X — Y are correspondences X « C — Y and
whose 2-morphisms are morphisms between correspondences. The category Corr(S/ Qil), for

instance, has as its objects commutative squares

N
o Lo

2
ch

This is a symmetric monoidal category under the tensor product (X, w) ® (Y,n) = (XX Y, w +n)
and unit (*,0).

Smooth Groupoids Suppose that instead we would like X(R™) to capture not just plots of R™
in X, but gauge transformations — nontrivial isomorphisms — between plots. To do this, we need
a groupoid structure on each X(R™). A smooth groupoid is a functor X : CartSp°® — Grpd such
that both the set of objects of X(R™), denoted Xo(R™), and the set of morphisms, denoted X;(R™),
assemble into smooth sets. The category of smooth groupoids is denoted SmoothGrpd; this is
just a "refinement" of SmoothSet, and we’ll also denote it S. We may obtain smooth groupoids
by taking a smooth set X with an action of a smooth group G, and taking the smooth homotopy
quotient X//G, whose objects (X//G)o(R™) are the objects of X(R™), and whose morphisms are
of the form x — gx. For X an arbitrary one-point space, X//G is a groupoid with a single object
and an automorphism for each g € G, with composition of morphisms given by composition
of group elements. This groupoid is known as BG. We define BU(1)conn to be the smooth
groupoid to send R™ to the groupoid Q!(R)//Diff(R™, U(1)) (where the composition of two
smooth functions f, g : R™ — U(1) is (f - g)(v) = f(v) - g(v)).
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3.4. Physical Models

3.4.3 Quantum Mechanics

Take a smooth topos & with smooth real line R, and denote by U(R) the subobject of invertible

(non-infinitesmal) elements of R. Assume that R satisfies the field axiom,
VX1, ..., Xxn ER(A(x1 =0A...AXxp =0) = (x1 € UW(R) V...V x, € U(R)))

(Forinstance, we canagainlet & = G). Inparticular, forn = TwehaveVx € R(x #0 = x € U(R)).
Denoting by C the complex numbers object (a 2-dimensional R-algebra, which also satisfies the
tield axiom), we define a inner product on an R-module V to be a symmetric, bilinear map
(=,—) VXV — Csatisfyingv # 0 = (v,v) > 0. Note that, for V = R, we have for x # 0 that
(x,x) = x*(1,1) > 0, implying that x*> = 0 and hence x € U(R); it follows that the existence of an
inner product on R relies on the field axiom for n = 1.

We'll analyze the case of a spin 1/2 interaction, first in the classical case studied in [Sakurai
et al., 2014], and then in the case of SDG, exposited in [Fearns, 2002].

The Stern-Gerlach Experiment In the Stern-Gerlach experiment, silver atoms are shot at a
target, passing through an inhomogeneous magnetic field B which splits the silver atoms along
the z axis. The electron shell structure of silver is 2, 8, 18, 18, and 1: four full shells, followed by
a fifth shell with a single electron. The first four shells cancel each other out magnetically, so the
magnetic moment i of the atom is proportional to the spin S of the one electron. If the electron
behaved classically, the magnetic moment of the atom along the z axis, p,, would be distributed
anywhere between —[{i| and [fi], resulting in the silver atoms forming a continuous interval on
the target. What we observe in practice is two distinct spots on the target, indicating that the
electron spin along the z axis is either fully up, S, = h/2, or fully down, S, = —h/2. The same
holds when we reorient the machine to split the atoms along the x or y axes, suggesting that the
electron’s spin, when measured along a given axis, will take either an up or down spin along
that axis. We model this as follows: we have three axes x,y, z and three operators Sy, Sy, S,
each of which has two eigenvectors with eigenvalues +h/2. We can model these operators as

elements of C>*2: recalling the definition of the Pauli matrices

o1 , [0 -] 45 |1 o0
o = o =
10 i 0 0 -1

0_1_
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3.4. Physical Models

we write Sy, = Zot. So the spin of an electron with spin up along the z axis is modeled by the
ket |Sz;+) = [1,0]", and likewise [Sy; +) = [Li]7/V2, |Sx;+) = [1,1]7/V2.

Microlinear Lie Groups Moving to a smooth topos &, define the microlinear group G = SO(3)
to be the subobject of R¥*3 consisting of the orthogonal matrices with determinant 1. With matrix
multiplication, this is a Lie group internal to & with identity e = I3. The fiber TG, consisting of
all f : D — G such that f(0) = e, then has a bilinear operation [, =] : T.G X TG — T.G given as
[v, w](d1dz2) = w(=d2)v(—di)w(dz)v(d1). This is antisymmetric and satisfies the Jacobi identity,
so we call it the Lie algebra g associated to the Lie group G. s0(3) is, in fact, isomorphic to the
Lie algebra su(2) generated by the Pauli matrices, implying that we can consider these matrices,
and hence the spin operators themselves, as elements of T.G.

Now, suppose we have a system consisting of two interacting electrons, the total energy being
encapsulated in a unitary Hamiltonian operator H. The classical time-dependent Schrédinger
equation expressing the evolution of a time-dependent state |\; t) is ih%hl) ;) = HlW; t). In
SDG, we take t € R,d € D, and instead write [{;t + d) = [\; t) — %Hltl);t). As proven in the
paper [Kock, 1986, if & is well-adapted, possessing a full and faithful functor Diff — &, then

we have the following integration axiom for a Lie group G with Lie algebra g:
Vf € gRIIF € GR (F(0) = e AVt € R¥d € D (F(t + A)F(t)™' = f(t)(d)))

The Hamiltonian is a member of the Lie group U(4), and an infinitesimal perturbation to it, as
expressed by the SDG Schrodinger equation, is a member of 11(4); by the integration axiom, this
can be integrated to obtain a unique time evolution of [\).

While computing actual results in a well-adapted topos such as G would be tedious, this
result is a proof of concept that well-adapted topoi have the necessary structure required to

formulate quantum mechanics.
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Chapter 4
Quantum Logic

Topos quantum theory is a separate attempt to recast physics in the lanuage of topoi, and is
not nearly as geometrically inspired. Its focus is on the logical aspects of quantum mechanics,
in particular quantum contextuality, a strange feature of quantum systems that separate them
from classical ones.

Our sources include the four-part series of articles by Doring and Isham [Doring and Isham,
20084, Doring and Isham, 2008b, Doring and Isham, 2008c,[Doring and Isham, 2008d]] as well as
the two-part textbook series by Flori [Flori, 2013a, Flori, 2018]. The review [Flori, 2013b] is also
useful at conveying a broad overview of the topic. The talk [Isham, 2002] analyzes the role of
topos quantum theory in developing models of quantum gravity, one of the original inspirations

for the subject.

4.1 Quantum Contextuality

41.1 Realism

In classical physics, a system is endowed with a state space S and a set of physical quantities
O = {A)\ : S = R})en in a deterministic, context-free way; that is, for a subset U C R, there
is a Ay € A indexing over all the A) mapped to U by S (e.g., systems whose energy lies in
a given interval). The underlying logic of such a system is Boolean, in that it is either true or
false that A)(s) € U, i.e. the law of excluded middle holds. Hence, we can say that a system
in a given state has definite values of its physical quantities — a particle has a definite position,

energy, and so on. Because of this, classical physics is said to be realist. The topos of sets
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4.1. Quantum Contextuality

naturally accommodates realist theories, such as models of classical physics, but it has trouble
accommodating non-realist theories. Quantum physics is such a non-realist theory, as exhibited
by the Kochen-Specker theorem; this theorem is fundamental to understanding topos quantum

theory, so we will study it in detail.

4.1.2 The Kochen-Specker Theorem

Classical Logic In classical physics, we may apply a physical quantity A € O toastates € S to
obtain a real number. Hence, there isamap f : O XS — R, which by the cartesian closure of sets
corresponds both to a map O — (S = R),A — fa andamap S — (O — R),s — V. The map
V; associating to an observable A its value in the state s is known as a valuation function. We
require such valuation functions to satisfy the reasonable property that Vs(h o fa) = h(Vs(A))
for any sufficiently nice (generally Borel) function h : R — R. For instance, if our system has
a single particle with position x, measuring sin(x) should yield the same result as taking the
sine of a measurement of x. This property is known as the functional composition condition
(FUNC).

Valuation Functions In a quantum system with Hilbert space #, the physical quantities are
self-adjoint operators A" = A, but applying such an operator to an arbitrary state [1b) doesn’t
have to result in a real number unless | ) is an eigenvector of A. Hence, we postulate a more
flexible definition: a valuation function is a function V : O(H) — R such that V(A), which is
identified somehow as the value of A, is an eigenvalue of A, and the FUNC V(h(A)) = h(V(A))
holds. Here, we calculate h(A) by taking the eigenvector (spectral) decomposition

N N
A= Aleadenl = ) enPe,
n=1 n=1

and writing h(A) = Zl:]:l h(cn)Pe, . A consequence of the FUNC is that V(A +B) = V(A) + V(B),
and when [A,B] = 0, V(AB) = V(A)V(B). In particular, since [Py, Py] = 0 for projection
operators Py,, we must have V(Py)? = V(Pﬁ)) = V(Py), and hence V(Py,) € {0,1}. Since
propositions about the state of a quantum system can be formulated as projection operators, the

FUNC implies that a valuation function necessarily imposes a Boolean logic on propositions.
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4.1. Quantum Contextuality

The Kochen-Specker Theorem In order to have a realist model of quantum physics, it is
necessary that we be able to assign values to all self-adjoint operators simultaneously in a
way that respects the FUNC. The Kochen-Specker theorem states that this is impossible when
dim# > 2: namely, if we can construct a valuation function V : O(H) — R, then V cannot
satisfy the FUNC. We will not prove this in general, but instead give a special case. Given a
Hilbert space ‘H of dimension n > 2, we may take an orthogonal basis |e1), ..., |en) and con-
struct projection operators P, = |ei)({ei|. Since } ; Pe, = I, it follows that a valuation function V
must satisfy V(2 Pe,) = 23; V(Pe,) = 1, which since each V(P;) is either 0 or 1 implies that exactly
one of the P, is 1. We will exploit this property by constructing several different orthonormal
bases and showing that it is impossible to consistently assign values of 0 or 1 to each vector

in such a way that the vectors in each base sum to 1. In # = R*, we choose the following 11 bases:

1 2 3 4 5 6
e 1000 1,000 1,000 1000 -1111 -1,1,1,1
e 0100 0100 0010 0001 1,-1,11 11,-11
es 0010 0011 0101 0110 1,1-11 1,010
es 0001 001-1 010-1 01-10 1,1,1-1 01,01

7 8 9 10 11

e 1,111 11,11 01,10 001-1 1,010

e 1,111 1,1,1,-1 1,00-1 1,100 01,011

es 01,10 0011 1,111 1,111 1,1,-1,-1

es 100-1 1,-100 1,1,-11 1,1,-1-1 1,-1-11

The goal is to assign a 1 to exactly one member of each column. To see that this is impossible,

note that each vector appears an even number of times, so we’ll end up assigning 1 to an even

number of vectors, rather than the required 11.

It follows that we have to throw out either the Boolean logic which assigns a truth value

x € {0,1} to each projection, or the FUNC. We will dispose of the former by moving to an

intuitionistic topos.
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4.2. Topoi of Contexts

4.2 Topoi of Contexts

4.2.1 Von Neumann Algebras

A C-algebra M is a von Neumann algebra if it has a predual. By Gelfand-Naimark, we can
always assume that M C B(#) for some /. Defining the commutant of an arbitrary unital
C*-subalgebra M C B(H) to be

M’ :={A € B(H) | AB = BA forall B € M}

von Neumann’s double commutant theorem states that M is a von Neumann algebra if and
only if M = M”. Note that if a von Neumann algebra M is contained in its commutator M’,
it must be abelian; if it is in fact equal to its commutator, we call it maximally abelian. On
the other hand, a commutator might be called "maximally noncommutative" if M and M’ are
as disjoint as possible, having only in common scalar multiples of the identity. Such a von
Neumann algebra for which M N M’ = {zI | z € C} is known as a factor. The most obvious
example is B(H) itself.

Any von Neumann algebra can be reconstructed from its set of projections P(M), as M =
P(M)”. In this way, we can study M simply by studying its projections which, as noted
previously, form a lattice with meets and joins. We may put an equivalence relation on P(M),
whereby A ~ B if there’s an X € M satisfying XX = A and XX" = B. This generates a partial
ordering on P(M), whereby A < B if there is some A’ with R(A”) € R(B’) and A ~ A’. We can
"approximate" arbitrary operators P € P(#) from the perspective of an arbitrary von Neumann
algebra M by taking its outer M-support, or the smallest operator in M greater than or equal
to P:

5°(P)u = \{QePM) | Q= P}

We may also take its inner M-support, or the largest operator in M less than or equal to P:

5 (P)m = \/{Q e P(M) | Q < P}

In a von Neumann algebra M, there’s a natural embedding M. — M" given by taking a
¢ € M. and defining its action on M as $p(A) = A(®D). If a ¢ € M" can be obtained in this way,
and it is a state, it is known as a normal state. Normal states can additionally be characterized
by the following continuity property: for any countable family {P,} of mutually orthogonal
projections in M, ¢ (\ Pn) = 2} $(Pn). On the von Neumann algebra B(*), every normal state
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4.2. Topoi of Contexts

¢ acts on operators A as $(A) = Tr(PA) for some unique state @ € 7(H) € B(#H); in this context,

® is known as the density operator corresponding to ¢.

Gelfand Representations Given an abelian von Neumann algebra M, denote by X », the set of
C-algebra homomorphisms A : M — Csuch thatA(I) = 1, known asits Gelfand spectrum. With
the weak-* topology, X v( is a compact Hausdorff space. The Gelfand representation theorem
states that M is isomorphic as a C*-algebra to the C*-algebra of continuous complex functions on
Y v, this construction, which is functorial, is in fact half of a contravariant equivalence between
the categories of unital C*-algebras and compact Hausdorff spaces. The isomorphism sends an
operator A € M to a continuous function A : Zy; — C, A(A) = A(A), known as its Gelfand
transform; if A = A%, then A = KJF, implying that self-adjoint operators are transformed into
real functions.

Of particular interest is the image of projections P € M under the Gelfand transform, P(A) =
A(P). Since A(P)? = A(P?) = A(P) for any A € X, the range of P must be {0,1}. The function A
judges a projection P either true or false, and the transformed projection P judges a function A
as A judges P. We denote by Sp the set of A € 4 on which P is 1; since P is continuous, Sp is
closed, being F_l({l}), and open, being the complement of F_l({O}), making it a clopen subset
of X pq.

4.2.2 Daseination

Given a Hilbert space, consider the poset category V() of abelian von Neumann subalgebras
of B(H), where M — N if M C N. A quantum system is analyzed by means of self-adjoint
operators, which represent observable quantities, and a morphism M — A in general increases
the number of self-adjoint operators, giving us more physical information about the system; we
correspondingly identify the objects of V() as contexts from which one can view the system.

Elements of the presheaf category SetV(H)*

, then, are assignments of set-valued data to each
context in a manner consistent under restriction.

The spectral presheaf ~ on V(#) sends M to its Gelfand spectrum X, and an inclusion
M C N to the restriction morphism Xy — X,4; we think of an element of X, or a function
A : M — C, as a measurement taken in the context of M. From this point of view, the
question of contextuality comes down to the following question: can we assign to each operator
A € M C B(H) a measurement A(A) € C in a way that doesn’t depend on the context M? Such

an assignment is a natural transformation A : 1 = %, i.e. a global element A € T'Z; as such,
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4.2. Topoi of Contexts

the Kochen-Specker theorem should morally be equivalent to the statement that I'Z is empty.
The FUNC can be used to show this more concretely: let A : 1 = X be such a global element,
and let Apy = Apmq(x) : M — C be the measurement function it picks out for each M. Pick a
pair M c N € V(H), and a self-adjoint operator A in N that’s not in M. In general, we may
find a function f : R — R and self-adjoint operator B on M such that f(A) restricts to B, from
which it follows that f(Ax/(A)) = A (f(B)), and thereby assign values to all self-adjoint operators
simultaneously in a way that respects the FUNC. The Kochen-Specker theorem disallows this,
and is hence equivalent to the statement that 'z = @.

The outer presheaf O sends M to its set of projections P(M), and sends an inclusion M € N
to the M-support function §°(—)a : P(N) — P(M). For a fixed P € P(H), we can consider
8°(P) to be the M component of a natural transformation $°(P) : 1 = O, giving us a map
P(H) — TO, P - b(P). From the natural transformation 6(P) € 'O we may obtain a subfunctor
S° C X given by S°(P)(M) = Sso(p),,, the clopen subset of 4 consisting of those A sending
5°(P)m to 1. Being a subfunctor which is at every object of V() a clopen subset of X, we
call S a clopen subfunctor. The set of all clopen subfunctors of X is denoted Sub.((X), and the
map 8° : P(H) — Sub.1(X),P — S°(P) is known as (outer) daseination. Daseination sends
a projection P on the state space H to the set of all measurements on each context that judge
the restriction of P to that context to be true, "bringing it into existence"; the concept of dasein,
central to Heidegger’s existential philosophy, roughly translates into "existence". Daseination
maps the empty projection @ to the empty subobject C X, and the identity projection I to the
trivial subobject £ C X. It is injective, losing no information about P.

We may repeat the same process with &%, defining the inner presheaf I as sending M to P(M)
and M C N to 8'(-)ap : PN) — P(M). Taking &' : P(H) — Subci(L), 51 (P)(M) = Sgip),,
gives us inner daseination.

To daseinize an arbitrary self-adjoint operator A € O(#) (recall that O(H) consists of the
self-adjoint operators on H), it is first necessary to construct a spectral family of A. This is an R-
indexed right-continuous family {A 4} of projection operators such that x < 3 = Ay < Ag,
Iimy—seoAx = Iimy—_oo Ay =0, and Jch dA « = A. The spectral theorem asserts the existence
of such a family for all A € O(H), so we may construct an ordering <; on O(H): A < B if

Ay =< By for all x € R. We then define outer and inner daseination in the usual manner:
8°(Am= N\{BeOM)|B= A} 8" A= \/{BeOWM)|B <A}
The corresponding outer and inner presheaves, which send von Neumann algebras to their self-
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adjoint operators and inclusions to daseinations, are known as the outer and inner de Groote

presheaves O and L.

4.2.3 Measurement

While Set”™ has a real numbers object given by the constant presheaf on R, the Kochen-Specker
theorem advises us against using this object for the purposes of measurement. For any poset
(P, <), however, we can set up a better system. For posets (P, <), (Q, <), let OP(P, Q) be the set
of order-preserving functions P — Q, OR(P, Q) the set of order-reversing functions, and, for
X € P, define the sets

I X={XeP|X <X} TX={X"eP| X =X}

P generates the presheaf P> of order-reversing functions which sends M € V(H) to OR(]
M, P), and sends an inclusion M C N to the map OR(| N, P) — OR(l M, P), u = u|jm.
Likewise, the presheaf P= of order-preserving functions is given by replacing OR with OP.
We define a map 5° sending A € O(#) to a natural transformation £ = R= as follows: 5°(A)
sends a A : M — C € I, to the order-reversing function p :| M — R, M’ > A (A) ).
(Since A is self-adjoint, the range of A is R). 5! sends A to a natural transformation ¥ = RS,
SH A MAY M) = AEH(A)arr).

Finally, we define our quantity-value object by combining the two forms of daseination: R
is the presheaf sending M to OP(| M, R) x OR(]{ M, R) and sending inclusions to restrictions,
and & sends A to the natural transformation £ = R. § sends A to the natural transformation
§Y(A) X 8°(A). For a self-adjoint operator A in a context M, §(A)r sends A : M — C to the set

of possible measurements of A.

4.2.4 Quantum Systems

Given a quantum system S with state space Hs, we have seen how to define a topos &(S) =
Set”"s)" and endow it with a state object £ and quantity-value object R = R*, as well as how
to daseinize observables, realizing them as natural transformations £ = R via the map 5. Now,
we will introduce a language £(S) for reasoning about physical quantities in S, which admits a
model in &(S), separate from its Mitchell-Benabou language.

The basic type symbols of the language £(S) are 1, Q, the state object Z, and the quantity-value

object R, all of which are represented by their corresponding objects in E(S); we close these
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under finite products and the power object operation T +— PT = Q. To each type symbol T
is associated a countable set of variables t of type T, as well as a special symbol * of type 1. To
each pair of type symbols T, T’ there’s a set F(5)(T, T’) of function symbols writtenas f : T — T".
These are represented by natural transformations. As in the Mitchell-Benabou language, we
can take t1,tp : T,t: PT,and w : Q, and form the terms t; =t : Q, t;1 € t: Q, {t1|w} : PT. We
can also "evaluate"an A : T — T"atat: T togetan A(t) : T".

The Kochen-Specker theorem in a system S is given by the statement that F,(s)(1, Z) is empty.
It is conjectured that there are many other ways in which the representation of the local logics

L(S) in the topoi Set”*s)” resemble quantum mechanics.
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Chapter 5
Topological Quantum Field Theory

We have seen that the partition function Z associated to a quantum field theory is, in a sense, all
we need to know about it. We calculate this function for a given Riemannian manifold (M, g) by
integrating over the fields ¢ : Z — M; in general, Z(M) = fe‘is[‘b]/ " D¢ changes as we change g,
as the action warps along with the fabric of spacetime. Certain quantum field theories, however,
have actions which are independent of the metric, and thus compute topological invariants. Such
QFTs, which are called background independent, are known as topological quantum field
theories. The usefulness of background independence appears in many scenarios: general
relativity, for example, is diffeomorphism invariant, making it a topological (non-quantum)
field theory which we’d like to couple a quantum field theory tofll.

We will first study topological quantum field theories from a 1-categorical point of view,
largely following [Aspinwall, 2009], before moving on to the co-categorical point of view studied
in [Kapustin, 2010, |Lurie, 2009b]].

5.1 Categorical Organization

5.1.1 Functorial Quantum Field Theory

From a sufficiently abstract point of view, we may view a topological quantum field theory as
a functor from a "geometric" category to a "linear" category. There are many variations on this

theme: we will first explore the case in which our geometric category CoER(n) has as its objects

1In fact, it is very difficult to consistently couple GR to quantum field theories; this is what makes the study of
quantum gravity difficult, and TQFTs especially important to it.
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Riemannian (n — 1)-manifolds (including @) and as its morphisms Riemannian n-bordisms#,
and our linear category is C-Vect. Both of these categories are symmetric monoidal, CoER(n)
under the coproduct (disjoint union), so we may define a quantum field theory to be a symmetric
monoidal functor Z : CoﬁR(n) — C-Vect.

In the simplest case, n = 1, all elements of COER(n) are clusters of points, of the form N g0
Z sends an arbitrary bordism #I" — «1™ to a map H®™ — H®™, where H = Z(+). This case is

easily seen to have four defining features:

1. The bordism [0, t] : * — * is sent to a linear operator # — H; functoriality ensures that
splitting this interval up into bordisms [t,tn-1]0...0 [ty to] : * = * — ... — * does not
change this operator, and therefore that Z([0, t]) is of the form e~t" for some self-adjoint

operator H.

2. Thisbordism can also be interpreted as going from *11+ to @, which yields a linear operator
H ® H — C, or equivalently a bilinear operator H X H — H which we may interpret as

multiplication.

3. The bordism that connects * I » to * via a Y-shaped graph yields a linear operator Tr :

H ® H — H, which we may interpret as taking a trace of operators.

4. Aninterval can also be interpreted as a bordism from * to &, giving us a "trace" of elements
Tr:H—-C

5.1.2 Topological Quantum Field Theory

The setup used in [Lurie, 2009b] to describe topological quantum field theories from a functorial
point of view is similar, but we make some changes to emphasize the topological nature of the
theory. Let Cob(n) denote the category whose objects are oriented compact smooth (n — 1)-
manifolds without boundaryf, and whose morphisms are oriented bordismsH. With the same
symmetric monoidal structure as previously, we define a TQFT to be a functor Z : Cob(n) —

k-Vect. Again, many interesting phenomena can be immediately observed by the consideration

2Tragically, the word 'bordism’ is synonymous with "cobordism’. However, the notation Cob(n) is in common
use.

3We will assume that all manifolds are compact and smooth.

4Given oriented (n — 1)-manifolds M and N, this is a manifold X whose boundary 90X admits an orientation-

preserving diffeomorphism to M LI N, where (-) inverts orientation
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of elementary bordisms: for instance, every oriented manifold M has a cylinder M x [0, 1] with
boundary M II M, which can be considered as (a) the identity bordism on M, (b) a bordism
MIIM — @ which generates a canonical map Z(M)®Z(M) — %, and (c) abordism @ — MIIM
which generates a canonical map k — Z(M) ® Z(M). In fact, Z(M) is isomorphic to the dual
space of Z(M), with the map Z(M)® Z(M) — k being interpreted as function evaluation; for
this reason, we call this map the evaluation map evp, and its dual the coevaluation map coev .

As previously, the case of n = 1 is easily evaluated; the case of n = 2 is slightly more
interesting. All 1-dimensional compact smooth oriented manifolds without boundaries are
disjoint unions of S!, and the fact that there is an orientation reversing diffeomorphism on S!
provides an isomorphism Z(S!) = Z(S')*, so that in particular the vector space A = Z(S?) is
finite-dimensional. The "pair of pants" bordism S! [[ S! — S! yields a morphism A® A — A
which endows A with a commutative, associative multiplication the unit of which can be found
as the image of 1 under the morphism associated to the bordism D? : & — S!, and the bordism

D?: S! - g yields amap A — k again known as the trace.

Figure 5.1: A bordism between S; and S; LI S;.
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Every 2-manifold M can be interpreted as a bordism @ — @, and in particular gives us an
endomorphism Z(M) : k — k, which is uniquely determined by Z(M)(1); in this way, we can
think of an n-dimensional TQFT as an association of a diffeomorphism invariant element of k
to each n-manifold. In the case n = 2, the classification theorem of closed surfaces guarantees
that we simply need to know the genus g of a manifold M to find this element: when g =1,

for instance, we have M = T2, As a bordism @ — &, this is equivalent to the composition
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@ — S'[]S! — @, which after Z yields the composition k — A ® A — k. The first map sends
1 to ida, and the second sends ida to Tr(ida) = dim A; we see that a 2-dimensional TQFT Z
associates the dimension of its underlying vector space to T2. Note the method used here: we
break up the n-manifold T? into a collection of simpler (n — 1)-manifolds whose behavior we
understand. This method allows us to completely understand the behavior of 2-dimensional
TQFTs, but fails for higher dimensions: the n-manifolds grow incredibly complicated, as do the

(n — 1)-manifolds.

Figure 5.2: The evaluation of the bordism T? : @ — @ as the trace operator.

L
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5.1.3 Higher Categorical Organization

This prompts the question: what additional structure on an n-dimensional TQFT is required

to be able to "triangulate" arbitrary n-manifolds? The answer: move to a higher category
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where our n-bordisms are between (n — 1)-bordisms between (n — 2)-bordisms between....
More precisely, turn Cob(n) into an (oo, 1)-category Cob(n) by declaring 2-morphisms to be
orientation-preserving diffeomorphisms between bordisms, 3-morphisms isotopies between
diffeomorphismsf, and so on. We can combine these into a single (oo, n)-category Bord ,, as
follows: objects are unoriented 0-manifolds, 1-morphisms are bordisms, ..., n-morphisms are
bordisms between (n—1)-bordisms, (n+1)-morphisms are diffeomorphisms, (n+2)-morphisms

are isotopies, and so on. We will define what these terms mean.

5.2 Higher Categories

There are many different ways to view higher categories, each suggesting their own terminology
and notation, and as such this chapter is a chimera blended from many sources. These include
[Ceinster, 2004, Curie, 20094, Riehl and Verity, 2018], as well as the more topologically focused
[Cisinski, 2019} Lurie, 2009b]. [Riehl, 2014] discusses a lot of the necessary background, including

enrichment and lifting problems.

5.2.1 Simplices

The simplex category A consists of all finite non-empty (von Neumann) ordinals, considered as
ordered sets. We use the notation [n] to denote the ordered set (0,1, ...,n). The morphisms are
order-preserving set-maps; in particular, there are the elementary face operators §* : [n — 1] —
[n] and the elementary degeneracy operators ¢* : [n+1] — [n]. These act on an ordered set as
follows: 6*((0,1,...,n-1)) =(0,1,...,i-1,i+1,...,n—1,n) incrementsiand everything above it,
while o*((0,1,...,n+1)) = (0,1,...,i-1,i,i,i+1,...,1), decrementing i+1 and everything above
it. We define a face operator to be a composite of elementary face operators and a degeneracy
operator to be a composite of elementary degeneracy operators. In A, the epimorphisms are the
surjective maps are the degeneracy operators, whereas the monomorphisms are the injective
maps are the face operators. Every morphism in A can be factored as a degeneracy operator
followed by a face operator (the factorization can be determined algorithmically in the obvious
way).

A simplicial object in a category Cis a contravariant functor A°P — C; these can be organized

SThese are maps between homotopies X X I — Y X I such that each fiber X x {t} is mapped homeomorphically
onto Y x {t}.
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into the category of simplicial objects over C, sC = CA™. In particular, the category of simplicial
sets is given by the functor category sSet := Set®”". The standard n-simplex is the object
A™ = hpn) € sSet; by the Yoneda lemma, we have for an arbitrary simplicial set X that X, :=
X([n]) = sSet(A™, X). We can characterize the simplicial set X more directly, as an N-graded set
S = lIn X, with maps d; = X861 : Xy = Xpo1 and s; == Xot : X5y = Xna1, required to satisfy
commutativity conditions which arise in A itself f.

Every topological space X has a corresponding simplicial set SingX, whose n-simplices are the

n

usual singular n-simplicies, i.e. continuous maps Af, |

— X. SingX characterizes X up to weak
homotopy equivalence, and the functor Sing : Top — sSet has a left adjoint | - | : sSet — Top
known as geometric realization. Two simplicial sets are said to be weakly equivalent if their

geometric realizations are weakly equivalent.

Kan Complexes The horn A}’ is the subfunctor (simplicial subset) of A™ obtained by removing
both the interior and the face opposite the kth vertex. A simplicial set K is a Kan complex if, for
any 0 < k < n, any morphism A}> — K extends to a morphism A™ — K. Since |A}| is weakly
homotopy equivalent to A™ (retract it), any SingX is a Kan complex. Geometrically, K is not "too
complicated", in the sense that the image of any A}’ is enough to determine an entire A™.

The nerve of a category C is the simplicial set N(C), where N(C),, is defined to be the set of
all functors [n] — C ([n] denoting the category ) — *; — ... = #). So N(C);, is the set of all
sequences of morphisms Xg E) X1 E ... f—n> Xn. The face map d; cuts out X; by composing fi11
with f;, whereas s; doubles X; by inserting an idx;. C can be recovered up to isomorphism from
N(C) by regarding N(C)y as the vertices (applying so to get their identity morphisms), N(C); as
the morphisms, and N(C), as the associative composition data. In fact, we can characterize the
simplicial sets that are isomorphic to nerves of categories: they are the simplicial sets K such
that any map A’ — K has a unigue extension A™ — K. These neither contain or are contained
by the Kan complexes. However, we may define a weak Kan complex by requiring that any map
AL — K can be extended to a map A™ — K only for 0 < k < n. The nerve of any category is a
weak Kan complex, but not vice-versa; philosophically, this originates from the fact that weak
Kan complexes should come from categories where composition doesn’t hold up to equality but
up to some form of equivalence. We will define an (oo, 1)-category to be a weak Kan complex,

though there are different characterizations. Some examples of extensions of horns:

¢In particular, we have (1) did; = dj_1d; when i < j, (2) sisj = sj1s1if 1 < j, (3) dis; = sj1di if 1 < j, (4)
dij = dj+15j = idX“/ and (5) diSj =5j di_1 when1i > J + 1.
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Of course, in the categorical setting, only the extension of /\% should be possible (via compo-
sition); extension of A3 and A3 are only possible if we can invert morphisms, and hence should
be interpreted as particular to groupoids.

Kan complexes are, by definition, complexes where all such extensions A" — A™ are possible;
weak Kan complexes are those where i must be in 1,...,n — 1 for an extension to be possible.
Categorically, extension of A just represents composition of morphisms. Extension of /\? and A3
represent associativity: (A — B — C) - D = A — (B — C — D) can be witnessed by either an
(A—=B)=(A—=Cora(B — C)= (B — D). These two 2-morphisms yield a 2-isomorphism
between (A - B — C) - Dand A — (B — C — D). (In particular, associativity is witnessed
by isomorphism, not strict equality). Such 2-morphisms can themselves be composed, and are
associative up to 3-isomorphism. The idea is that the vertices of the simplicial set are the objects
of a category, the 1-simplices form the usual 1-morphisms, and the recursive nature of simplicial
sets provides us with higher morphisms; the weak Kan complex (extension) condition we require
of the simplicial set amounts to enforcing composition and higher associativity conditions.

Any Kan complex is a weak Kan complex, and (by definition) an (oo, 1)-category. This
includes the singular complex Sing X. Nerves of categories are (oo, 1)-categories as well. Given
a simplicial set S, we define its opposite to act on elements of A as S°P(ay;, — ... — ai,) =
S(ay, — ... — aiy). Sextends AT* to A™ if and only if S°P extends AT'_. to A™, so S is an

(00, 1)-category if and only if S°P, the opposite (oo, 1)-category, is.

Functors Reverting to the interpretation of co-categories as weak Kan complexes, we define
the category oo-(Cat as the corresponding full subcategory of Set®”” ; in particular, an co-functor
between oco-categories is simply a morphism of simplicial sets, or equivalently a natural transfor-
mation of the underlying functors A°? — Set. An co-functor F: € — D is essentially surjective
when the induced hF : h€ — hD is essentially surjective, and fully faithful when hF is fully
faithful as an hCW-enriched functor, i.e. an isomorphism hC(X,Y) — hD(FX,FY). A fully

faithful naturally surjective co-functor is an equivalence of co-categories.
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5.2. Higher Categories

A natural transformation 1 : F = G between oo-functors € — D is given by a simplicial
homotopy between the simplicial set maps F and G, which is a simplicial set map € x A[1] — D.
Noting that € x A[0] = €, we require that 1 o (ide X8') = Fand 1 o (ide x8°) = G.

CxA[1]

ldey WSO

[0] n € x A[0]
Sl

This structure generalizes in the obvious way, giving us for every pair (C, D) of (oo, 1)-

CxA

categories an (0o, 1)-category of functors € — D, denoted Fun(C, D). A pair of (oo, 1)-functors
F:C— Dand G:D — € form an co-categorical adjunction if Map,,(FX, Y) is equivalent as an
oo-groupoid to Map,(X, GY) forall X € C, Y € D.

Having described the basic idea of co-categories and their functors via one model, we will
introduce two more notions of an (oo, 1)-category: topological categories and simplicial cate-
gories, and then show that all three of them are equivalent, giving us multiple ways to think

about (oo, 1)-categories.

5.2.2 Topological and Simplicial Categories

Topological Categories A topological category is a CG-enriched category, where CG is the
convenient category of compactly generated Hausdorff spaces. Hence, in a topological category
C, the set C(X, Y) has the structure of a compactly generated space, which we denote the mapping
space Map,(X,Y). We equip these mapping spaces with associative composition laws axyz :
Map(X,Y) x Map(Y,Z) — Map(X, Z) (where the product is taken in CG). A functor F: € —
D between topological categories is a strong equivalence if it is essentially surjective and
induces homeomorphisms Map,(X,Y) = Map,,(FX,FY) (i.e,, it’s an equivalence of categories
that respects the enriched structure). The homotopy category hC of the topological category €
has the same objects, but hC(X, Y) := myMap,(X, Y).

A functor F : € — D between topological categories in particular contains a family of CG-
morphisms Map.(X, Y) — Map,,(FX, FY), all of which are continuous and hence send connected
components to connected components; in this way, functors between topological categories
descend to functors between their homotopy categories. F is a weak equivalence if the induced

hF : h€ — hD is an equivalence of categories. Strong equivalences are weak equivalences,
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and we can characterize weak equivalences as weaker in the sense that they only induce weak
homotopy equivalences Map.(X,Y) = Map,,(FX,FY) and are only essentially surjective in the
corresponding homotopy categories. Two topological categories are equivalent if there is a

weak equivalence between them.

Simplicial Categories The category sSet is cartesian monoidal, so we may consider sSet-
enriched categories, known as simplicial categories. With sSet-enriched functors serving as
morphisms, we have a category sCat of sSet-enriched categories. The term simplicial category
here may be misleading: while a simplicial set is a functor A°? — Set, simplicial categories are
not equivalent to functors A°? — Cat. In particular, a simplicial object X in Cat is a simplicial
category if and only if Obj(Xp) = Obj(X1) =....

Equivalences Restricting Sing to a functor CG — sSet, we have an adjoint pair | - | 4 Sing, both
of which commute with finite products; the unit and counit of this adjunction are both weak
homotopy equivalences.

Given a simplicial category C, we may define a topological category |C| by applying | - |
to all hom-simplicial sets; if we have a topological category D, we can apply Sing to each
hom-space to get a simplicial category SingD. In fact, the category obtained by inverting weak
homotopy equivalences in CGis equivalent to the category obtained by inverting weak homotopy
equivalences in sSet, so hC = h|C| and hD = hSingD. It follows that the unit and counit are
not just weak homotopy equivalences but isomorphisms on homotopy categories; if we wish to
work with categories up to equivalence, this gives us a way to swap simplicial and topological

categories freely.

5.2.3 Segal Spaces

A Segal space is a simplicial topological space X. = {Xy, } such that X4+ is weakly equivalent
to the space Xm Xx, XJ Xx, Xn (Where the map XJ — Xy is given by evaluation at 0). This
space is known as the homotopy pullback, and often denoted X, ><>R;0 Xn; it is the homotopy-
theoretic analogue of the ordinary pullback, in that it’s given by weakening commutativity and
isomorphism requirements into weak equivalences.

The idea behind this definition is that Xo yields the objects of the (0o, 1)-category, and the
mapping spaces Mapy (x,y) are given as {x} ><>R;0 X1 ><>R(0 {y}; Xi is the "generalized" space

of morphisms, from which ordinary morphisms can be extracted as connected components.
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Letting Hom(x,y) = mp(Map(x,y)) gives us the homotopy category hX,; given an f € X;
which is mapped by the zeroth and first boundary operators to x and y, we can obtain an
[f] € Homnx, (x,y) by sending the image of the composite map {f} — {x} xx, X1 Xx, {y} —
Mapy (x,y), where the first map is induced by the universal property of the pullback and the
second by the universal property of the homotopy pullback, to its connected component. f is
invertible if this [f] is an isomorphism.

The Segal space X, is called a complete Segal space when X, is weakly equivalent to the
subset of invertible elements of X;, with weak equivalence given by the degeneracy operator
8 : Xo — im(Xp) € Xy, since [8(x)] = idy in hX,, this allows us to identify isomorphisms with
paths, and extract an (0o, 0)-groupoid from X, by discarding non-invertible 1-morphisms. We
can therefore use complete Segal spaces as models for (oo, 1)-categories.

Because Cat is cartesian closed, a simplicial object in a category C2°" of simplicial objects is
equivalent to a functor A°P x A°? — C. Inspired by this, we say that a functor []i_; A°P — C
is an n-fold simplicial object X = X, .. of C; equivalently, an n-fold simplicial object of Cis a
simplicial object in the category of (n —1)-simplicial objects of C. Such an object comes equipped
with n different boundary and degeneracy operators, one for each of the n coordinate indices.
In general, properties of n-fold simplicial objects may be considered at a coordinate-wise level
(i.e., at the level of C): for instance, two n-fold simplicial spaces are weakly equivalent if they are
coordinate-wise weakly equivalent, and a homotopy-commutative square of n-fold simplicial
spaces is a homotopy pullback square if it is so coordinate-wise.

An n-fold simplicial space X is essentially constant if all Xy,,. 1, are weakly equivalent to
Xo,...0, and constant if this weak equivalence is witnessed by the face operator(s) Xo,... 0 —
Xki,... k- Given an n-fold simplicial space X regarded as a simplicial object X, of (n — 1)-fold
simplicial spaces, we call X an n-fold Segal space if each Xy is an (n — 1)-fold Segal space,
Xir = X Xio X¢ (that is, the associated square is a homotopy pullback square as defined
above), and X is essentially constant; X is complete if, recursively, each X,, is complete, and if
the simplicial space Y, given as Yx = Xx,... 0 is complete. We use complete n-fold Segal spaces

as models for (oo, n)-categories.

5.3 Higher Bordism Categories

Earlier, we declared Cob(n) to be an (0o, 1)-category and Bord ;, an (oo, n)-category. We will also

equip these categories with a symmetric monoidal structure with (in the case of Cob(n)) duals.
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5.3. Higher Bordism Categories

First, we must make precise what this means in the (co, n)-categorical setting.

Earlier, we declared Cob(n) to be an (oo, 1)-category and Bord ,, an (oo, n)-category. We will
also equip these categories with a symmetric monoidal structure with (in the case of Cob(n))
duals. First, we must make precise what this means in the (0o, n)-categorical setting.

Letting a symmetric monoidal (0o, n)-category be a commutative monoid object in the cate-
gory of (0o, n)-categories, we define a dualizable object in a symmetric monoidal (oo, n)-category
C to be a dualizable object in the homotopy category hC, or an object V that admits an object
V* and evaluation/coevaluation maps evy : V® V* — 1, coevy : 1 — V*® V such that
(evy®idy) o (idy ®coevy) : V - VR V' ® V — V and (idy ® coevy) o (evy ®idy) : V* —
V:'®V® V" — V* reduce to the identities on V and V*. In the symmetric monoidal cate-
gory Vect, the dualizable objects are precisely the finite-dimensional vector spaces; in general,
dualizability is a categorical generalization of the notion of "finiteness".

Given a symmetric monoidal (0o, n)-category €, not necessarily with duals, we may consider
the slice category of symmetric monoidal (oo, n)-categories with duals over €. This category has

a terminal object, or a symmetric monoidal (co, n)-category with duals €4

efd

equipped with a
symmetric monoidal functor i : — €, such that all other symmetric monoidal functors from
categories with duals into C factor through i. Passing from € to C'¢ is essentially equivalent
to making every element of € dualizable in the most efficient possible way. For instance, in
k-Vect, viewed as an (0o, 1)-category, k-Vect'® consists of the finite-dimensional vector spaces.
An element X € C is fully dualizable if it is isomorphic to i(Xy) for some Xq € €74,

Let Bord I: be the (oo, n)-subcategory of Bord , whose objects/k-morphisms are n-framed
manifolds, or manifolds M with stably trivial tangent bundles TM @ R™*"4mM =~ Rn_ The
cobordism hypothesis states that, for a symmetric monoidal (oo, n)-category with duals €, the
(00, n)-category Fun®(Bord ff, ) of symmetric monoidal (oo, n)-functors Bord ff — Cis equiv-
alent to the underlying oo-groupoid of € given by discarding non-invertible morphisms, with
equivalence given by the evaluation functor Z +— Z(*) (evaluation on the one-point manifold,

which is trivially n-framed). In particular, Fun®(Bord f:, @) is an co-groupoid.
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Appendix A

Sets and Categories

A.1 Large Categories and Sets

Previously, we brushed over set-theoretic issues in our discussion of category theory, using
proper classes with reckless abandon; this has severe implications for the consistency of category
theory. We will first demonstrate such implications, and then introduce modern set-theoretic
constructs designed to deal with them. For set theory, our primary source is [Jech, 2013], and for
its implications for category theory we use [Shulman, 2008] and [Muller, 2001]]; [McLarty, 2010]
provides an interesting discussion on the use of Grothendieck universes in algebraic geometry,
and in particular on the provability of Fermat’s Last Theorem in ZFC.

So far, we have assumed that our categories are locally small, if not just small; as we will show,
these assumptions are essential, the primary reason being that if we want to work within a
reasonable system of axioms such as ZFC, we need to limit ourselves to set-theoretic reasoning.
We will survey specific instances of this, before discussing the limitations of ZFC and alternative

foundations of category theory.

Adjoint Functor Theorems Adjoint functor theorems make clear the necessity of size issues
in category theory.

For instance, Freyd’s Special Adjoint Functor Theorem states that if a locally small, complete
category C has (a) for each object a set’s worth of subobjects (is well-powered), (b) a set Q = {Qa}
of objects such that whenever f, g : X = Y are distinct morphisms, there’san h : Y — Q, with
hf # hg (a cogenerating set), and (c) for each set {X, } of subobjects of X a pullback, then a functor

R : C — D is a right adjoint if and only if it preserves small limits and pullbacks of families of
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monomorphisms.

A stronger version: Freyd’s Adjoint Functor theorem states that a functor R from a locally
small, complete category C to a category D is a right adjoint iff it preserves all small limits and
satisfies the solution set condition: every Y € D admits a set of arrows {f) : Y — RX,} such that
every g : Y — RX factors as Gt o f; : Y — RX;) — RX. If we only have a proper class {f)}, then
the deal is off, and R fails to be a right adjoint!

Categories of Sets Set is, strictly, the category whose objects are sets. What a set is, however,
depends on your axiomatic system. There is no true Set; rather, its nature depends on the
system of choice. ZFC is generally the default, but it presents difficulties: for one, we cannot
reason about proper classes from within it, since its axioms only apply to sets. Indeed, we can’t

even state that Set exists from within ZFC, since the collection of its objects is not a set.

A.2 Set Theory

A.2.1 Axiomatic Set Theory

Definition: A set is an object whose existence can be deduced from an axiomatic set theory.
Clearly, this definition is useless without an axiomatic set theory to plug in. The most
commonly used theory is ZFC, or Zermelo-Fraenkel set theory with the axiom of choice. The

alphabet of the first-order language Lc of ZFC consists of

e The logical symbols for universal and existential quantification, V and 3, as well as those
for conjunction (A), disjunction (V), negation (—), and one/two-sided implication ( =

and & ).

e The non-logical symbols = and € denoting equality and set membership. These binary

relations are the primitives of ZFC.
The axioms of ZFC are as follows:

1. (Extensionality) If two sets X and Y have the same elements, then X =Y.
2. (Pairing) For any two sets a and b, there is a a pair set {a, b}.

3. (Separation Schema) For any formula ¢(x) in Lc with one free variable x, and any set X,
there is a set {x € X | ¢(x)}.
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4. (Power Set) For any set X, there is a power set P(X) whose elements are subsets of X.

1

. (Union) For any set X, there is a set Uycxx given by taking the union of all elements of X.

(o)

. (Infinity) There exists an infinite set.

7. (Replacement Schema) The image of a set under a set function is also a set.

Qo

. (Regularity) Every non-empty set X contains an element disjoint from X.

\O

. (Choice) We can pick a single representative for each set in a family of arbitrarily large sets

through a choice function.

(The schemata each represent infinitely many axioms, one for each formula ¢; this works around
the fact that we cannot directly iterate over the formulae of L¢). For instance, the existence of
the empty set @ can be deduced from the infinite set X postulated by the axiom of infinity and
the axiom of separation for the fallacious formula ¢(x) := (x € x) A =(x € x) applied to X. Any
class (collection of sets) whose existence cannot be proved by ZFC is known as a proper class.
The prototypical example is the "set of all sets" S, whose existence is contradicted by ZFC: the

pair "set" {S, S} obviously has no elements disjoint from itself, violating the axiom of regularity.

A.2.2 The Von Neumann Universe

An especially important family of sets is given by the ordinals: an ordinal is a set « such that
every x € « is a subset of &, and « is well-ordered by €. The successor of an ordinal is given by
« + 1 := a U {«}; an ordinal which is the successor of another ordinal is known as a successor
ordinal, and an ordinal which is neither empty nor a successor ordinal is known as a limit
ordinal.

The class Ord of all ordinals is well ordered by the relation x < 3 := « € 3, so limit ordinals
can be thought of as "jumps" in this ordinal hierarchy. In fact, an arbitrary ordinal « is equivalent
to the set of all ordinals 3 that are less than «. The first ordinal is trivially &, and we can proceed
to define the von Neumann ordinalsas 0 = @, 1 = {0} = {o},2 = {0,1} = {2, {@}}, and so on.
The first limit ordinal is the limit of the von Neumann ordinals, w = {0,1,2,...}.

Using ordinals, we can construct a cumulative hierarchy {V} of sets, which is built up in stages,
one stage for each ordinal number. We start by defining Vj as @ and, for each successor ordinal

o + 1, define V41 = P(Vy). For each limit ordinal 3, we define Vg = Jyp V. Finally, we
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define the (proper) class V to be the union of all stages: V := [ J, V«. The rank of a set is defined
to be the ordinal at which it is introduced in this hierarchy. This is the standard set-theoretic
approach to building a universe of sets, and is useful in discussing the category Set of sets —
which, by definition, is dependent on one’s idea of what a "set" is supposed to be. In other set

theories, e.g. ZFC with additional axioms, we will have a different Set.

A.2.3 Large Cardinals

Bijection is an equivalence relation on the proper class of all sets; naively, we may quotient
the proper class of sets by this relation to obtain a notion of the cardinality, or size, of a set.
Unfortunately, the equivalence classes are not in general sets. A slightly subtler definition which
relies on the axiom of choice fixes this: a cardinal is an ordinal that is not in bijection with any
of its proper subsets. The cardinality |S| of a set S is the least ordinal & admitting a bijection
with S.

The natural numbers are all cardinals, and w is the first infinite cardinal; since |w| = |w + 1| =
..., we write this cardinal as 8y rather than w, though cardinals still admit well-orderings as
ordinals.

An important property of a cardinal k is its cofinality cf(x), defined to be the smallest car-
dinality among the subsets of k all of whose sets have maximal cardinality in k; the definition
generalizes to any well-ordered set, ordinals in particular. Example: the cofinality of any
nonzero finite ordinal is 1. An ordinal « such that cf(x) = « is known as a regular ordinal; all
successor ordinals are regular.

Cantor’s theorem states that |S| < |P(S)| for every set S [, giving us an infinite hierarchy
of cardinals Jy := No,Jn = 27n1 := |P(Jn-1)|. Another infinite hierarchy is given by the
successor cardinal operation, which associates to a cardinal k the next largest cardinal k*; we have
Nn+1 = Nf. Np and the natural numbers are the only countable cardinals; all other cardinals
are called uncountable. A successor cardinal is a cardinal which is some cardinal’s successor.
As with ordinals, we can define limit cardinals, but we must define two flavors: a weak limit
cardinal k is a cardinal which is neither a successor cardinal nor zero. A strong limit cardinal A
is a cardinal such thatp < A = 2P < A.

Strong limit cardinals are weak limit cardinals, since obviously p* < 2°, and Ny is the first

1Proof: suppose there were a bijection f, use replacement to construct the set T = {s € S | s ¢ f(s)} € P(S), and
attempt to find an s € S with f(s) =T, wehave s € T <= s ¢ T, a contradiction.
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strong limit cardinal. For limit ordinals A, we define X, = (J, ) Ny, which is in general a weak
limit cardinal.

So far, we have stayed within what is provable from ZFC alone. However, weak limit cardinals
are as far as ZFC can go; in this sense, such cardinals measure the "strength" of ZFC. We may
postulate stronger conditions on the size of a cardinal k, but there is no guarantee that ZFC
can prove the existence of k. Such cardinals are known as large cardinals. The first condition,
or large cardinal property, is given by inaccessibility: a cardinal k is weakly inaccessible if it
is an uncountable regular weak limit cardinal, and strongly inaccessible if it is an uncountable
regular strong limit cardinal.

ZFC can neither prove nor disprove the existence of weakly or strongly inaccessible cardinals;

in fact, the existence of a weakly inaccessible cardinal would prove the consistency of ZFC.

A.3 Alternatives to ZFC

A.3.1 Von Neumann-Bernays-Godel Set Theory

In ZFC, we cannot directly talk about classes; they are an informal notion. The von Neumann-
Bernays-Godel (NBG) set theory fixes this by formalizing the notion of a class. NBG is built
from ZFC by making the primitive notion that of a class, rather than a set, and introducing a
predicate M(S) stating that S is a set. We modify the axiom of extensionality to act on classes,
generalize images, unions, power sets, and functions to classes, and we also add a few axioms

and axiom schemata:

e (Class comprehension schema) For every formula ¢(x) € L quantifying over sets, there
isaclass C = {S | $(S)}.

e (Separation) Every subclass of a set is a set.

e (Global choice) There is a choice function that chooses an element from every non-empty

set. Equivalently, V is well-ordered.

Though it seems different, the axiom of global choice is a proper class-based generalization of
the axiom of choice: it is equivalent to the statement that every class is well-ordered (and hence
strictly stronger than choice). Global choice implies another axiom, the axiom of the limitation
of size, which characterizes the proper classes: a class is a proper class if and only if it is in

bijection with the von Neumann universe V.
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A.3. Alternatives to ZFC

NBG allows us to reason about classes, and thus coherently talk about large categories. For
instance, we can use global choice to collapse isomorphism classes of proper classes, and thus
construct skeletons of large categories, choose for every Y in a large category "a" product X X Y
rather than an isomorphism class (evidencing X X — as a functor), and so on. We can speak of
the category of sets Set, as well as the category of small categories Cat; unfortunately, however,
there is no category of all categories CAT, since proper classes in NBG cannot contain other
proper classes. For the same reason, we cannot speak of a functor category D¢ when both C and

D are large.

A.3.2 Grothendieck Universes

Grothendieck universes were invented by Grothendieck as a convenient way to side-step set
theoretic issues in category theory. A Grothendieck universe is a set U which is closed under
set-indexed union, power set, pair formation, and is transitive, in the sense that any element of
an element of U is itself an element of U.

ZFC cannot prove the existence of Grothendieck universes, but the extent to which it can’t can
be measured precisely by a large cardinal property: a set U is a Grothendieck universe if and
only if there is a strongly inaccessible cardinal k such that U = V|, where V. is the set at stage
in the von Neumann hierarchy. In order to work properly in a Grothendieck universe, we must
introduce to ZFC an axiom stating that a strongly inaccessible cardinal exists, and hence assume
that ZFC is consistent.

Grothendieck universes play the starring role in Tarski-Grothendieck (TG) set theory. This is,
like NBG, an extension of ZFC, though unlike NBG it goes further, in being able to prove things
from within L¢ that ZFC can’t prove; the main extension is given by Tarski’s axiom, which states

that every set belongs to some Grothendieck universe.
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Appendix B

A Categorical Bestiary

We will catalogue many of the categories we commonly encounter, defining their objects, mor-

phisms, and many of their more salient properties.

Set-Like Categories

Set: Objects are the sets which can be proven to exist within some axiomatic set theory (which
we assume to be at least as strong as ZFC), and morphisms are functions. This category
is complete, cocomplete, and cartesian closed. The product is the cartesian product, the
coproduct is the disjoint union, the initial object is the empty set, and the terminal object is
any singleton. If necessary, we may choose to work in a Grothendieck universe U, in which

case the objects of Set are the sets in UL

FinSet: Objects are finite sets, morphisms are functions. Neither complete nor cocomplete, but

has the same finite limits and colimits as Set, and is cartesian closed.

Rel: Objects are sets, morphisms are relations R € Xx Y. Composition of relations R : X — Y and
S:Y — Zisgivenby SoR = {(x,z) e XXZ | Fy € Y((x,y) € RA(y,z) € S)}. Equivalent to its
opposite, and hence all limits are colimits and vice versa. Neither complete nor cocomplete.

The biproduct is the disjoint union.

A: Objects are finite non-empty von Neumann ordinals [n] = {0,...,n} and morphisms are

order-preserving set maps [n] — [m]. Also known as the simplex category; contravari-
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ant functors A°? — C are known as simplicial objects of C, and assemble into a category

sC = CA” which usually has all the limits and colimits that C does, calculated pointwisel.

Categorical Categories

Cat: Objects are small categories, morphisms are functors. Complete, cocomplete, and cartesian
closed. The product is the product of categories, the coproduct is the "disjoint union" (place
the categories side by side), the initial object is the empty category, and the terminal object

is the trivial category with one object and one identity morphism.

CAT: Objects are small and large categories, morphisms are functors. To avoid Russell’s para-

dox, this must be not a large category but a "very large" category.

Grpd: Objects are groupoids, morphisms are functors. Complete, cocomplete, and cartesian
closed. Both a reflective and coreflective subcategory of Cat, and hence limits and colimits

are the same as in Cat when they exist in Grpd.

Algebraic Categories

Grp: Objects are groups, morphisms are group homomorphisms. A concrete category. Com-
plete and cocomplete. The product is the direct product G X H, and the coproduct is the
free product G * H. The zero object is the trivial group 0. Not an abelian category, as it is not
additive.

R-Mod: Objects are modules over a commutative ring R, and morphisms are R-module homo-
morphisms. The product is the direct product M x N, which coincides with the direct sum
in the finite case, and the coproduct is the direct sum M @ N. The zero object is the trivial
module 0. Has a closed monoidal structure with tensor product ®g and unit R. An abelian

category.

1In general, functor categories CP bear all the (co)limits of C, computed pointwise, and if C is (co)complete we're
done; if not, CP may bear (co)limits not found in C.
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Ab: equivalent to Z-Mod. Objects are abelian groups, morphisms are group homomorphisms.

A concrete category and reflective subcategory of Grp. Complete and cocomplete.

CRing: Objects are commutative rings, morphisms are ring homomorphisms. Not balanced.
The product is the product of rings, and the coproduct is the tensor product of rings. The
opposite category of the geometric category Aff.

R-Alg: Objects are algebras over a commutative ring R, morphisms are R-algebra homomor-

phisms.
FdVect: Objects are finite-dimensional vector spaces over a field k, morphisms are k-linear maps.
Hilb: Objects are Hilbert spaces over a field k = R or C, morphisms are operators.

FdHilb: Objects are finite-dimensional Hilbert spaces, morphisms are operators. Symmetric
monoidal under the tensor product ® and dagger compact with A" being the adjoint of A.

The direct sum @ is the finite biproduct.

VB (X): Objects are k-vector bundles on a topological space X, morphisms are vector bundle

homomorphisms. A symmetric monoidal category under the tensor product ®.

Geometric Categories
Categories of Topological Objects

Top: Objects are topological spaces, morphisms are continuous maps. A concrete category.
Complete and cocomplete. The initial object is the empty set, the terminal object is any
singleton, the product is given by the product topology, the coproduct by the disjoint union
topology, the equalizer by the subspace topology, and the coequalizer by the quotient topol-

ogy.

CG: Objects are compactly generated (weak hausdorff k-)spaces, morphisms are continuous

maps. Complete and cocomplete, contains the CW complexes, and cartesian closed, and
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hence a convenient category of topological spaces. Contains the compact and locally com-

pact spaces, as well as the (topological) manifolds.

hTop: Objects are topological spaces, morphisms are homotopy classes of continuous maps.

Neither concrete, complete, or cocomplete.

ManP: Objects are CP manifolds, morphisms are CP maps. Concrete, but neither complete nor
cocomplete. The product is the product of manifolds, and the coproduct of a countable
family of manifolds exists when all manifolds share the same dimension, and is the disjoint

union.
Diff: Objects are smooth manifolds, morphisms are smooth maps. See Man? for p = oc.
CartSp: Objects are cartesian spaces, or smooth manifolds of the form R™, morphisms are smooth

maps.

Categories of Algebro-Geometric Objects

Sch: Objects are schemes, morphisms are morphisms of schemes.

Aff: Objects are affine schemes, morphisms are morphisms of schemes. This is the opposite

category of CRing, and hence bears all duals of its properties.

Sh(X): Objects are sheaves on a topological space X, morphisms are morphisms of sheaves. A

reflective subcategory of the presheaf category Set®P(X)”,

QCoh(X): Objects are quasi-coherent sheaves on a topological space or variety X, morphisms are

morphisms of sheaves.

Coh(X): Objects are coherent sheaves on a topological space or variety X, morphisms are mor-

phisms of sheaves.

152



Topoi

For reference, we list the Kripke-Joyal semantics for an elemetary topos &: for f : U — X and a

formula ¢, we have the following;:

1. Uk &(f) A(f) iff U - G(f) and U I P(f).

2. U ¢(f) V() iff there are arrows g: V — U, h: W — Usuch thatgIlITh: VIIW — U
is epi, with V I $(fg) and W I ¢(fh).

3. U ¢(f) = P(f) iff for any g : V — U such that V - ¢(fg), V also forces P(fg).

4. U —d(f) if for any g : V — U such that V I ¢(fg), V is the initial object.

5. U Jy ¢(f,y) (for some formula ¢ : X X Y — Q and generalized element f : U — X) iff
there’s an epic e : V — U and generalized element g : V — Y such that V I ¢(fe, g).

6. U - Vy &(f,y) iff for every arrow h : V — U and generalized element g : V — Y we have
V I ¢(fh, g).

Set: The aforementioned category of sets and set maps. The subobject classifier is given by
Q =2 = {0,1}, and the exponential is given by Y* = Homge(X, Y). Its logic is classical logic.

Sh(C,]): Objects are functors P : C°P — Set satisfying the sheaf condition, morphisms are
natural transformations between functors. The subobject classifier () sends an object U € C
to the set Q(U) of closed sieves on U. The exponential is given by QP (X) = Hom(hx X P, Q).
The natural transformation true : 1 — Q sends 1(X) = 1 to the maximal sieve tx. When ]
is indiscrete, such that Sh(C, J) = Set®™, all sieves are closed, so Q(X) is simply the set of all
sieves on X.

Semantics:

1. (Unchanged)

2. U Ik o(f) V(f) iff there’s a covering {fy : Uy — U}rea with either Uy I d(f) or Uy IF P(f)
forall A € A.

3. (Unchanged)

4. U - —¢(f) if for any g : V — U such that V I ¢(fg),

Set”:

Gg:
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SmoothSet:

SetV().

Higher Categories

Cob(n): an (oo, 1)-category whose objects are oriented compact smooth (n — 1)-dimensional
manifolds without boundary, 1-morphisms are oriented bordisms, 2-morphisms are diffeo-
morphisms between bordisms, 3-morphisms are isotopies between diffeomorphisms, and

SO On.

Bord ,,: an (oo, n)-category whose objects are unoriented 0-manifolds, 1-morphisms are 1-
bordisms, 2-morphisms are 2-bordisms between 1-bordisms, . . ., n-morphisms are n-bordisms
between (n — 1)-bordisms, (n + 1)-morphisms are diffeomorphisms, (n + 2)-morphisms are
isotopies between diffeomorphisms, and so on.
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