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Introductioan

This is a book about applicable philosophy, and most of the articles contain all
four of the ingredients philosophy, probability, statistics, and mathematics.

Some people believe that clear reasoning about many important practical and
philosophical questions is impossible except in terms of probability. This belief
has permeated my writings in many areas, such as rational decisions, statistics,
randomness, operational research, induction, explanation, information, evidence,
corroboration or weight of evidence, surprise, causality, measurement of knowl-
edge, computation, mathematical discovery, artificial intelligence, chess, com-
plexity, and the nature of probability itself. This book contains a selection of
my more philosophical and less mathematical articles on most of these topics.

To produce a book of manageable size it has been necessary to exclude many
of my babies and even to shrink a few of those included by replacing some of
their parts with ellipses. (Additions are placed between pairs of brackets, and a
few minor improvements in style have been made unobstrusively.) To compen-
sate for the omissions, a few omitted articles will be mentioned in this intro-
duction, and a bibliography of my publications has been included at the end of
the book. (My work is cited by the numbers in this bibliography, for example,
#26; a boldtype number is used when at least a part of an article is included in
the present collection.)

About 85% of the book is based on invited lectures and represents my work
on a variety of topics, but with a unified, rational approach. Because the ap-
proach is unified, there is inevitably some repetition. I have not deleted all of it
because it seemed advisable to keep the articles fairly self-contained so that they
can be read in any order. These articles, and some background information, will
be briefly surveyed in this introduction, and other quick overviews can be
obtained from the Contents and from the Index (which also lightly covers the
bibliography of my publications).

ix



x INTRODUCTION

Some readers interested in history might like to know what influences helped
to form my views, so I will now mention some of my own background, leaving
aside early childhood influences. My first introduction to probability, in high
school, was from an enjoyable chapter in Hall and Knight's elementary textbook
called Higher Algebra. I then found the writings on probability by J. M. Keynes
and by F. P. Ramsey in the Hendon public library in North West London. I
recall laboriously reading part of Keynes while in a queue for the Golders Green
Hippodrome. My basic philosophy of probability is a compromise between the
views of Keynes and Ramsey. In other words, I consider (i) that, even if physical
probability exists, which I think is probable, it can be measured only with the
aid of subjective (personal) probability and (ii) that it is not always possible to
judge whether one subjective probability is greater than another, in other words,
that subjective probabilities are only "partially ordered." This approach comes
to the same as assuming "upper and lower" subjective probabilities, that is,
assuming that a probability is interval valued. But it is often convenient to
approximate the interval by a point.

I was later influenced by other writers, especially by Harold Jeffreys, though
he regards sharp or numerical logical probabilities (credibilities) as primary. (See
#1160, which is not included here, for more concerning Jeffreys's influence.) I
did not know of the work of Bruno de Finetti until Jimmie Savage revealed it to
speakers of English, which was after #13 was published. De Finetti's position is
more radical than mine; in fact, he expresses his position paradoxically by
saying that probability does not exist.

My conviction that rationality, rather than fashion, was a better approach to
truth, and to many human affairs, was encouraged by some of the writings of
Bertrand Russell and H. G. Wells. This conviction was unwittingly reinforced by
Hitler, who at that time was dragging the world into war by making irrationality
fashionable in Germany.

During Hitler's war, I was a cryptanalyst at the Government Code and Cypher
School (GC & CS), also known as the Golf Club and Chess Society, in Bletchley,
England, and I was the main statistical assistant in turn to Alan Turing (best
known for the "Turing Machine"), Hugh Alexander (three times British chess
champion), and Max Newman (later president of the London Mathematical
Society). In this cryptanalysis the concepts of probability and weight of evi-
dence, combined with electromagnetic and electronic machinery, helped greatly
in work that eventually led to the destruction of Hitler.

Soon after the war I wrote Probability and the Weighing of Evidence (#13),
though it was not published until January 1950. It discussed the theory of
subjective or personal probability and the simple but powerful concept of Bayes
factors and their logarithms or weights of evidence that I learned from Jeffreys
and Turing. (For a definition, see weight of evidence in the Index of the present
book.) I did not know until much later that the great philosopher of science
C. S. Peirce had proposed the name "weight of evidence" in nearly the same
technical sense in 1878, and I believe the discrepancy could be attributed to a
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mistake that Peirce made. (See #1382.) Turing, who called weight of evidence
"decibannage," suggested in 1940 or 1941 that certain kinds of experiments
could be evaluated by their expected weights of evidence (per observation)
%p;\og(p;/qi), where p,- and q,- denote multinomial probabilities. Thus, he used
weight of evidence as a quasiutility or epistemic utility. This was the first im-
portant practical use of expected weight of evidence in ordinary statistics, as
far as I know, though Gibbs had used an algebraic expression of this form in
statistical mechanics. (See equation 292 of his famous paper on the equilibrium
of heterogeneous substances.) The extension to continuous distributions is
obvious. Following Turing, I made good use of weight of evidence and its
expectation during the war and have discussed it in about forty publications.
The concept of weight of evidence completely captures that of the degree to
which evidence corroborates a hypothesis. I think it is almost as much an intel-
ligence amplifier as the concept of probability itself, and I hope it will soon be
taught to all medical students, law students, and schoolchildren.

In his fundamental work on information theory in 1948, Shannon used the
expression —Zp/logp/ and called it "entropy." His expression Sp/ylogfp///
(Pi.P.j)} f°r mutual information is a special case of expected weight of evidence.
Shannon's work made the words "entropy" and "information" especially
fashionable, so that expected weight of evidence is now also called "discrimi-
nation information," or "the entropy of one distribution with respect to anoth-
er," or "relative entropy," or "cross entropy," or "dinegentropy," or "dientro-
py," or even simply "entropy," though the last name is misleading. Among the
many other statisticians who later emphasized this concept are S. Kullback, also
an excryptanalyst, and Myron Tribus. The concept is used in several places in the
following pages.

Statistical techniques and philosophical arguments that depend (explicitly) on
subjective or logical probability —as, for example, in works of Laplace, Harold
Jeffreys, Rudolf Carnap, Jimmy Savage, Bruno de Finetti, Richard Jeffrey,
Roger Rosenkrantz, and myself in #13 —are often called Bayesian or neo-Bayes-
ian. The main controversy in the foundations of statistics is whether such tech-
niques should be used. In 1950 the Bayesian approach was unpopular, largely
because of Fisher's influence, and most statisticians were so far to my "right"
that I was regarded as an extremist. Since then, a better description of my
position would be "centrist" or "eclectic," or perhaps "left center" or advocat-
ing a Bayes/non-Bayes compromise. It seems to me that such a compromise is
forced on anyone who regards nontautological probabilities as only interval
valued because the degree of Bayesianity depends on the narrowness of the
intervals. My basic position has not changed in the last thirty-five years, but the
centroid of the statistical profession has moved closer to my position and many
statisticians are now to my "left."

One of the themes of #13 was that the fundamental principles of probability,
or of any scientific theory in almost finished form, can be categorized as "axi-
oms," "rules," and "suggestions." The axioms are the basis of an abstract or
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mathematical theory; the rules show how the abstract theory can be applied; and
suggestions, of which there can be an unlimited number, are devices for eliciting
your own or others' judgments. Some examples of axioms, rules, and suggestions
are also given in the present book.

#13 was less concerned with establishing the axiomatic systems for subjective
probabilities by prior arguments than with describing the theory in the simplest
possible terms, so that, while remaining realistic, it could be readily understood
by any intelligent layperson. I wrote the book succinctly, perhaps overly so, in
the hope that it would be read right through, although I knew that large books
look more impressive.

With this somewhat perfunctory background let's rapidly survey the contents
of the present book. It is divided into five closely related parts. (I had planned a
sixth part consisting of nineteen of my book reviews, but the reviews are among
the dropped babies. I shudder to think of readers spending hours in libraries
hunting down these reviews, so, to save these keen readers some work, here are
my gradings of these reviews (not of the books reviewed) on the scale 0 to 20.
#761: 20/20; ##191, 294, 516, 697, 844, 956, 958, 1217, 1221, and 1235:
18/20; ##541 A and 754: 17/20; #162: 16/20; ##115 and 875 with 948: 15/20;
##75 and 156: 14/20.)

The first part is about rationality, which can be briefly described as the
maximization of the "mathematical expectation" of "utility" (value). #13 did
not much emphasize utilities, but they were mentioned nine times. Article #26
(Chapter 1 of Part I of this volume) was first delivered at a 1951 weekend
conference of the Royal Statistical Society in Cambridge. It shows how very
easy it is to extend the basic philosophy of #13 so as to include utilities and
decisions. It also suggests a way of rewarding consultants who estimate probabil-
ities—such as racing and stock-market tipsters, forecasters of the weather,
guessers of Zener cards by ESP, and examinees in multiple-choice examinations
— so as to encourage them to make accurate estimates. The idea has popular
appeal and was reported in the Cambridge Daily News on September 25, 1951.
Many years later I found that much the same idea had been proposed indepen-
dently a year earlier by Brier, a meteorologist, but with a different (quadratic)
fee. My logarithmic fee is related to weight of evidence and its expectation, and,
when there are more than two alternatives, it is the only fee that does not
depend on the probability estimates of events that do not later occur. (This fact
apparently was first observed by Andrew Gleason.) The theory is improved
somewhat in #43 (Chapter 16). The topic was taken up by John McCarthy
(1956) and by Jacob Marschak (1959), who said that the topic opened up an
entirely new field of economics, the economics of information. There is now a
literature of the order of a hundred articles on the topic, including my #690A,
which was based on a lecture invited by Marschak for the second world confer-
ence on econometrics. #690A is somewhat technical and is not included here,
but I think it deserves mention.

The logarithmic scoring system resembles the score in a time-guessing game
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that I invented at the age of thirteen when I was out walking with my father in
Princes Risborough, Buckinghamshire. The score for an error of t minutes,
rounded up to an exact multiple of a minute, is —log?. When there are two
players whose errors are ti and t2, the "payment" is Iog(f1/f2). The logarithms
of 1, 2, 3, . . . , 10, to base 101'40, are conveniently close to whole numbers,
which, when you think about it, is why there are twelve semitones in an octave.
For probability estimators in our less sporting application, the "payment" is
\og(plq], where p and q are the probability estimates of two consultants, round-
ed up to exact multiples of say 1/1000 so as not to punish too harshly people
who carelessly estimate a nontautological probability as zero. If you hired only
one consultant, you could define q as your own probability of the event that
occurs. Then, the expected payoff is a "trientropy" of the form S7r/log(/?//<7/),
where the ir/ is a "true" probability, and it pays the consultant in expectation
to choose his or her p's equal to the TT'S. If the consultant agrees with your
estimates, he or she earns nothing, except perhaps some constant fee, because
log 1 = 0.

One way to interpret the logarithmic payoff is that it rewards most highly
the consultant who is the least surprised by the outcome, where surprise is also
measured logarithmically. We return to this topic when reviewing Part IV.

Another subject discussed in #26 is that of hierarchies of probabilities. For
example, the probability of a statement containing probabilities of type 1 is
itself of type 2. This hierarchical Bayesian approach is developed in several of
my statistical articles, and I believe it is an essential "psychological" technique in
the application of neo-Bayesian methods to problems containing many param-
eters, although Savage (1954, p. 58) summarily dismisses it. It is one example of
the influence of philosophy on statistics. Some history of the hierarchical
Bayesian technique is surveyed in #1230 (Chapter 9 of this volume).

An article not included in this book is #290 because its ideas are mostly
covered by later articles. In addition, it argues that the concept of Bayesian
rationality should be understood by the managers of large firms and that this
would greatly increase the value of operational research. Bayesian rationality is
now widely taught in college courses in departments of economics, business,
engineering, statistics, political science, and psychology, but this was not true
twenty years ago. The article incidentally contains two natural measures of the
precision of a probability judgment.

#679 (Chapter 2) is an attempt to collect together and to codify the basic
foundations of rationality, as I understand it, into twenty-seven brief "priggish
principles." Axiomatic systems for probability and rationality are esteemed by
mathematicians because of their succinctness and sharpness, and I thought it
useful to attempt a codification of my own views that goes beyond a formal
axiomatic system. Note that "Type II rationality," in principle number 6,
again leads naturally to a Bayes/non-Bayes compromise, or synthesis, as well
as to other compromises, such as between subjectivism and credibilism. #765
(Chapter 3) is another attempt at classification, this time of the varieties of
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philosophies that have been called Bayesian. The number of categories turns out
to exceed the number of members of the American Statistical Association.

#838 (Chapter 4) describes some of the Bayesian influence in statistics and
also some of the tricks used in non-Bayesian techniques to cover up subjectivity.
This article includes an elaboration of the codification #679.

Part II deals mainly with probability. #85A (Chapter 5), half of which is
omitted, asks whether probability or statistics is historically or logically primary
and comes up with an eggs-and-hens answer. It contains some early criticisms of
some conventional statistical concepts. #182 (Chapter 6) discusses kinds of
probability, again with some historical background. #230 (Chapter 7), originally
a 1960 lecture, describes the theory of #13 as a "black box" theory and shows
how it can be used to generate an axiomatic system for upper and lower subjec-
tive or logical probabilities. The resulting axiomatic system is somewhat related
to work by B. O. Koopman (1940a, b). It also turned out to be related to
C. A. B. Smith (1961), and this was not surprising since Smith's aim was to
produce a prior justification for the philosophy of partially ordered subjective
probabilities.

#815 (Chapter 8) is a discussion of randomness that was delivered in a
symposium on randomness dedicated to the memory of Jimmie Savage. The
main topic of the article is the place of randomization in statistics. An omitted
page gives a clear intuitive reason, in terms of "generalized decimals," for believ-
ing in the mathematical "existence" of infinite random sequences, though no
such sequence can be explicitly defined.

I have already mentioned #1230, which is included as Chapter 9.
In #13 it had been mentioned that, if we wish to talk about the probabilities

of mathematical theorems, we need to make a small adjustment to the usual
axioms of probability. The same point occurs when we say that the output of a
computer gives information. The most standard notation, among mathematicians
and statisticians, for the probability of A given B is P(A|B), and a familiar
beginner's error is to forget about B when discussing the probability of A. But
even with A and B both mentioned, one's subjective probability ^(AIB) can vary
in time just by thinking or by computing. This is especially clear in a game of
"perfect information" such as chess. I have called such probabilities "evolving,"
"sliding," or "dynamic." Dynamic probability is the really fundamental variety
of subjective probability. This may be true even in the limiting case of ordinary
logic, a case briefly considered by Henri Poincare. The statement "all statements
by Cretans are false," itself asserted by a Cretan, oscillates rapidly between truth
and falsehood as one considers its implications until one conjectures that the
word "other" needs to be inserted into the statement. The concept of dynamic
or evolving probability must be invoked, as in #599, to resolve an important
paradox in the philosophy of science that had been brought to my attention by
Joseph Agassi. I have reluctantly omitted #599, which is one of my favorites,
because it is largely superseded by #1000, Chapter 23 in Part V, and because
#938, Chapter 10 in Part II, deals in detail with dynamic probability.



INTRODUCTION xv

For further surveys of degrees of belief and of axiomatic systems for proba-
bility, see my encyclopedia articles ##1300 and 1313, neither of which is
included in this book. I wish there had been room for them.

Part III deals mainly with corroboration, hypothesis testing, and simplicity.
##518 and 600 (Chapter 11 and 12) resolve "Hempel's paradox of confirma-
tion," in which "confirmation" means "corroboration" and can be best inter-
preted as weight of evidence, although this fact is not essential to the statement
or to the resolution of the paradox. The somewhat surprising conclusion reached
in these two short articles is that seeing a black crow does not necessarily con-
firm the hypothesis that all crows are black. Also an explanation is given for why
this seems surprising. It is incidentally unfortunate that many philosophers have
been confusing themselves by sometimes using "confirmation" to mean "proba-
bility." Bad choices of terminology often have bad effects, even though logically
they shouldn't.

#603B (Chapter 13) was written in an attempt to decide whether the Titius-
Bode "law" of planetary distances could be due to chance, an issue that many
astronomers had decided by means of snap judgments but not always in the
same direction. The Bayesian evaluation of scientific theories, in more than
purely qualitative terms, has not yet been well developed, and I thought it would
be interesting to begin with a fairly "numerological" law. The Titius-Bode law is
not entirely numerological, and it receives some indirect support especially from
a similar law for the moons of Saturn, which I called "Dabbler's law." I pointed
out that Dabbler's law had some predictive value regarding the satellite Phoebe,
but it "predicts" another moon (or ring?) at a distance of 4 million miles from
Saturn, and this has not been observed.

The interesting question about both the Titius-Bode law and Dabbler's law is
not whether they are "true," for obviously they are not, but whether they
deserve an explanation. Most of #603B is omitted because it is long and techni-
cal and because it would, in fairness, be necessary to discuss later literature on
the topic. (See Bode in the Index and Efron [1971], and Nieto [1972].) The
editor had invited me to include a summary of my views on probability and
induction and that is almost the only part of the article reprinted here. It is
somewhat repetitive of material in other articles, but it is extremely succinct.
The reader who likes some fun could refer to the original for the heated dis-
cussion.

#1234 (Chapter 14) discusses hypothesis testing using various possible tools:
tail-area probabilities, Bayes factors or weights of evidence, surprise indexes, and
a Bayes/non-Bayes compromise. Of course, the probability of an observation,
described in complete detail, given a single hypothesis, is usually exceedingly
small and by itself does not help us to evaluate the hypothesis, and that is why
tail-area probabilities were invented.

The third part ends with #846 (Chapter 15), which surveys the topic of
corroboration. This article includes a few pages on my philosophy of probability
and rationality as well as sections on complexity and on checkability. A section
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on "explicativity" is mostly omitted here because it is covered by #1000. Ano-
ther omitted article that is relevant to Part III is #1330, which deals with the
philosophy of the analysis of data. The reason qualitative Bayesian thinking is
basic to this topic is that the analysis of data necessarily involves the implicit
or explicit formulation of hypotheses, and these hypotheses can have various
degrees of "kinkosity."

Part IV begins with some parts of #43 (Chapter 16), much of what is omit-
ted, having been covered by #26. Here Warren Weaver's surprise index is general-
ized and related to Shannon's entropy. The topic was continued in #82, which is
not included. As mentioned in #82, "Perhaps the main biological function of
surprise is to jar us into reconsidering the validity of some hypothesis that we
had previously accepted." That article also points out the relationship between
surprise and simplicity. (See also #755.) ##43 and 82 anticipated measures of
information often attributed to the eminent probabilist Renyi.

G. L. S. Shackle had proposed that business decisions were usually based on
the concept of potential surprise and not on subjective probability. I argued
that, since surprise can be measured in terms of subjective probability, feelings
of potential surprise can help you to make probability judgments and vice versa,
so that the two forms of judgment can be used to enrich one another. I did not
persuade Shackle of this. I think that anyone who disagrees strongly with my
view had his mind in shackles.

#77 deals with the terminology and notation of information theory, but it
is not included here. In it I proposed, simultaneously with Lindley, that infor-
mation in Shannon's sense could be used as a quasi-utility in the design of
experiments. The idea had been suggested in 1953 by Cronbach in a technical
report, but the idea of using expected weight of evidence for this purpose had
been long anticipated by Turing, as I mentioned before, and comes to essentially
the same thing. Fisher had even earlier used his own measure of information for
the same purpose, though he never thought of it as a substitute for utility. For
an account of Turing's statistical work during World War II, see #1201 which is
not included in the present book.

Perhaps the term "quasiutility" should be reserved for a quantity whose
expectation it is reasonable to maximize in the design of a statistical experiment.
A necessary condition for a quasiutility is additivity for independent experi-
ments. Examples of "quasiutilities" are (i) Fisher's measure of information con-
cerning the value of a parameter, (ii) Shannon's mutual information, (iii) more
generally weight of evidence, (iv) logarithmic surprise indexes, and (v) explica-
tivity (see #1000).

There is a theorem which owes its existence to Abraham Wald, that a "least
favorable" prior is minimax. (Readers interested in less technical subjects could
skip the rest of this paragraph.) He intended "least favorable" to be interpreted
in terms of utilities, but it was pointed out in ##618 and 622, which are omitted
and are therefore denoted by timid type, that we can apply the theorem with
the utilities replaced by quasiutilities and that this shows that the "principle of
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maximum entropy" and the "principle of minimum discriminability" for formu-
lating hypotheses (Kullback, 1959; and very explicitly p. 913 of #322) and
Jeffreys's "invariant prior," are all minimax procedures. This fact sheds light
on both the advantages and the disadvantages of these techniques. (Maximum
entropy was originally suggested by E. T. Jaynes for the generation of credibi-
listic priors.) A principle of minimum Fisherian information could also be tried
for hypothesis formulation in the absence of a sample: it can be seen to lead, for
example, to the hypothesis of independence for multivariate normal distribu-
tions, as does also the principle of maximum entropy. Similarly, the maximiza-
tion of entropy leads to the hypothesis of independence for contingency tables
and to that of the vanishing of interactions of various orders for multidimen-
sional contingency tables (see #322). But, when the prior probabilities of the
hypotheses are already known, or assumed, the minimax method is meaningless,
so there is no principle of minimum explicativity unless the probabilities of the
hypotheses are interval valued instead of being sharp.

#508 (Chapter 17) explains in detail, in terms of rationality, why it pays, at
any rate in one's own judgment, to acquire new evidence when it is free, a
question that was raised by A. J. Ayer at a conference of distinguished philoso-
phers of science, none of whom had come up with the answer. But #855 (Chap-
ter 18) shows that, from the point of view of another person who knows more
than you do, it can sometimes in expectation be to your disadvantage to acquire
a small amount of new evidence.

#659 (Chapter 19) is a quick survey of my work on the topics of informa-
tion, evidence, surprise, causality, explanation, and utility. Its appendix was
#679, which constitues Chapter 2.

#814 (Chapter 20) points out that, contrary to an opinion expressed by
Eddington, we should not be surprised that our galaxy is unusually large.

Part V deals with probabilistic causality and explanation. Most philosophical
writings on causality interpret causality and explanation in a strictly determin-
istic sense, but probabilistic causality is of more practical importance (for
example, when assigning blame and credit), and anyway strict causality is a
special case. The only serious philosophical work on probabilistic causality that I
know of, preceding my work, was by Hans Reichenbach and by Norbert Wiener.
#223B (Chapter 21), which uses a desideratum-explicatum approach, is more
ambitious than Reichenbach's work in the sense of suggesting a quantitative
explicatum (in terms of weight of evidence) for the degree to which one event
tends to cause another one. Wiener's work dealt with stochastic processes instead
of with events. The writing of #223B kept me off the streets for a year of
evenings and weekends. A relationship between Wiener's work and mine might
well emerge from the application of my explication to regression theory, as in
#1317, but this mathematical article is not included. #1336 (Chapter 22)
simplifies some of the argument of #223B. Although #223B is somewhat
mathematical, I thought its omission would damage too much the picture of my
work on foundations. Recently, there has been increasing interest in the topic of
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probabilistic causality. See, for example, Suppes (1970), Salmon (1980), and
Humphreys (1980), reviewed or answered, respectively, in ##754, 1263, 1331,
and 1333. See also Mayr (1961), Simon (1978), Sayre (1977), and Rosen
(1978), and ##928 and 1157.

The final article is #1000 (Chapter 23), which deals with "explicativity," a
topic already mentioned in this introduction. Some of the ideas had already
appeared in #599. Explicativity is a measure of the explanatory strength of a
hypothesis or theory in relation to given observations, and its maximization can
be regarded as a sharpening of the razor of Duns and Ockham. The explication
proposed can be regarded as a compromise, or synthesis, between Bayesian and
Popperian views. The article contains a brief discussion of "predictivity." A
feature of #1000 of interest in applied philosophy is that the explication for
explicativity can be used in statistical problems of both estimation and signifi-
cance testing. The explicatum, which again uses logarithms of probabilities, is
thus supported not just by the strong prior desiderata but by the deduction of
sensible results resembling those in classical statistical theory. Nevertheless, these
statistical applications are somewhat technical and have been omitted from this
book. The complete article was reprinted, as #1161, in the volume of essays in
honor of Harold Jeffreys. That volume also contained #1160, which dealt with
the contributions of Jeffreys to Bayesian statistics. Although the statistical part
of #1000 has been omitted, this article makes an appropriate conclusion to the
present book because of its intimate blend of philosophy and statistics.
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CHAPTER 1

Rational Decisions (#26)

SUMMARY

This paper deals with the relationship between the theory of probability and the theory of
rational behavior. A method is then suggested for encouraging people to make accurate
probability estimates, a connection with the theory of information being mentioned. Finally
Wald's theory of statistical decision functions is summarised and generalized and its relation
to the theory of rational behavior is discussed.

1. INTRODUCTION

I am going to discuss the following problem. Given various circumstances, to
decide what to do. What universal rule or rules can be laid down for making
rational decisions? My main contention is that our methods of making rational
decisions should not depend on whether we are statisticians. This contention is a
consequence of a belief that consistency is important. A few people think there
is a danger that overemphasis of consistency may retard the progress of science.
Personally I do not think this danger is serious. The resolution of inconsistencies
will always be an essential method in science and in cross-examinations. There
may be occasions when it is best to behave irrationally, but whether there are
should be decided rationally.

It is worth looking for unity in the methods of statistics, science and rational
thought and behavior; first in order to encourage a scientific approach to non-
scientific matters, second to suggest new statistical ideas by analogy with ordinary
ideas, and third because the unity is aesthetically pleasing.

Clearly I am sticking my neck out in discussing this subject. In most subjects
people usually try to understand what other people mean, but in philosophy and
near-philosophy they do not usually try so hard.

3
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2. SCIENTIFIC THEORIES

In my opinion no scientific theory is really satisfactory until it has the following
form:

(i) There should be a very precise set of axioms from which a purely abstract
theory can be rigorously deduced. In this abstract theory some of the words or
symbols may remain undefined. For example, in projective geometry it is not
necessary to know what points, lines and planes are in order to check the cor-
rectness of the theorems in terms of the axioms.

(ii) There should be precise rules of application of the abstract theory which
give meaning to the undefined words and symbols.

(iii) There should be suggestions for using the theory, these suggestions
belonging to the technique rather than to the theory. The suggestions will not
usually be as precisely formulated as the axioms and rules.

The adequacy of the abstract theory cannot be judged until the rules of
application have been formulated. These rules contain indications of what the
undefined words and symbols of the abstract theory are all about, but the
indications will not be complete. It is the theory as a whole, i.e., the axioms and
rules combined, which gives meaning to the undefined words and symbols. It is
mainly for this reason that a beginner finds difficulty in understanding a scientific
theory.

It follows from this account that a scientific theory represents a decision and
a recommendation to use language and symbolism in a particular way, and
possibly also to think and act in a particular way. Consider, for example, the
principle of conservation of energy, or energy and matter. Apparent exceptions
to the principle have been patched up by extending the idea of energy, to poten-
tial energy, for example. Nevertheless the principle is not entirely tautological.

Some theoreticians formulate theories without specifying the rules of applica-
tion, so that the theories cannot be understood at all without a lot of experience.
Such formulations are philosophically unsatisfactory.

Ordinary elementary logic can be regarded as a scientific theory. The recom-
mendations of elementary logic are so widely accepted and familiar, and have
had so much influence on the educated use of language, that logic is often
regarded as self-evident and independent of experience. In the empirical sciences
the selection of the theories depends much more on experience. The theory of
probability occupies an intermediate position between logic and empirical
sciences. Some people regard any typical theory of probability as self-evident,
and others say it depends on experience. The fact is that, as in many philosophi-
cal disputes, it is a question of degree: the theory of probability does depend on
experience, but does not require much more experience than does ordinary
logic. There are a number of different methods of making the theory seem nearly
tautological by more or less a priori arguments. The two main methods are those
of "equally probable cases" and of limiting frequencies. [It is questionable
whether these are still the main methods.] Both methods depend on idealizations,
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but it would be extremely surprising if either method could be proved to lead to
inconsistencies. When actually estimating probabilities, most of us use both
methods. It may be possible in principle to trace back all probability estimates
to individual experiences of frequencies, but this has not yet been done. Two
examples in which beliefs do not depend in an obvious way on frequencies are
(i) the estimation of the probability that a particular card will be drawn from a
well-suffled pack of 11 7 cards; (ii) the belief which newly-born piglings appear
to have that it is a good thing to walk round the mother-pig's leg in order to
arrive at the nipples. (This example is given for the benefit of those who interpret
a belief as a tendency to act.)

3. DEGREESOF BELIEF

I shall now make twelve remarks about degrees of belief.
(i) I define the theory of probability as the logic of degrees of belief. There-

fore degrees of belief, either subjective or objective, must be introduced. Degrees
of belief are assumed, following Keynes, to be partially ordered only, i.e., some
pairs of beliefs may not be comparable.

(ii) F. Y. Edgeworth, Bertrand Russell, and others use the word "credibilities"
to mean objective rational degrees of belief. A credibility has a definite but
possibly unknown value. It may be regarded as existing independently of human
beings.

(iii) A subjective theory of probability can be developed without assuming
that there is necessarily a credibility of E given F for every E and F, where E and
F are propositions. This subjective theory can be applied whether credibilities
exist or not. It is therefore more general and economical not to assume the
existence of credibilities as an axiom.

(iv) Suppose Jeffreys is right that there is a credibility of E given F, for every
E and F. Then either the theory will tell us what this credibility is, and we must
adjust our degree of belief to be equal to the credibility. Or on the other hand
the theory will not tell us what the credibility is, and then not much is gained,
except perhaps a healthier frame of mind, by supposing that the credibility exists.

(v) A [simple] statistical hypothesis H is an idealized proposition such that
for some E, /'(EIH) is a credibility with a specified value. Such credibilities may
be called "tautological probabilities."

(vi) There is an argument for postulating the existence of credibilities other
than tautological probabilities, namely that probability judgments by different
people have some tendency to agree.

(vii) The only way to assess the cogency of this argument, if it can be assessed
at all, is by the methods of experimental science whose justification is by means
of a subjective theory.

(viii) My own view is that it is often quite convenient to accept the postulate
that credibilities exist, but this should be regarded as a suggestion rather than an
axiom of probability theory.
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(ix) This postulate is useful in that it enables other people to do some of our
thinking for us. We pay more attention to some people's judgment than to
others'.

(x) If a man holds unique beliefs it is possible that everybody else is wrong.
If we want him to abandon some of his beliefs we may use promises, threats,
hypnotism and suggestion, or we may prefer the following more rational method:
By asking questions we may obtain information about his beliefs. Some of the
questions may be very complicated ones, of the form, "I put it to you that the
following set of opinions is cogent: . . . ." We may then show, by applying a
subjective theory of probability, that the beliefs to which the man has paid lip-
service are not self-consistent.

(xi) Some of you may be thinking of the slogan "science deals only with what
is objective." If the slogan were true there would be no point for scientific
purposes in introducing subjective judgments. But actually the slogan is false.
For example, intuition (which is subjective) is the main instrument of original
scientific research, according to Einstein. The obsession with objectivity arises
largely from the desire to be convincing in published work. There are, however,
several activities in which it is less important to convince other people than to
find out the truth for oneself. There is another reason for wanting an objective
theory, namely that there is a tendency to wishful thinking in subjective judg-
ments. But objectivity is precisely what a subjective theory of probability is for:
its function is to introduce extra rationality, and therefore objectivity, into your
degrees of belief.

(xii) Once we have decided to objectify a rational degree of belief into a
credibility it begins to make sense to talk about a degree of belief concerning the
numerical value of a credibility. It is possible to use probability type-chains (to
coin a phrase) with more than two links, such as a degree of belief equal to 1/2
that the credibility of H is 1/3 where H is a statistical hypothesis such that
/'(EIH) = ]4. It is tempting to talk about reasonable degrees of belief of higher
and higher types, but it is convenient to think of all these degrees of belief as
being of the same kind (usually as belonging to the same body of beliefs in the
sense of section 4) by introducing propositions of different kinds. In the above
example the proposition which asserts that the credibility of H is 1/3 may itself
be regarded as a statistical hypothesis "of type 2." Our type-chains can always
be brought back ultimately to a subjective degree of belief. All links but the first
will usually be credibilities, tautological or otherwise.

4. UTILITIES

The question whether utilities should be regarded as belonging to the theory of
probability is very largely linguistic. It therefore seems appropriate to begin with
a few rough definitions.

Theory of reasoning: A theory of logic plus a theory of probability.
Body of beliefs: A set of comparisons between degrees of belief of the form
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that one belief is held more firmly than another one, or if you like a set of
judgments that one probability is greater than (or equal to) another one.

Reasonable body of beliefs: A body of beliefs which does not give rise to a
contradiction when combined with a theory of reasoning.

A reasonable degree of belief is one which occurs in a reasonable body of
beliefs. A probability is an expression of the form P(E|F) where E and F are
propositions. It is either a reasonable degree of belief "in E given F," or else it is
something introduced for formal convenience. Degrees of belief may be called
"probability estimates."

Principle of rational behavior: The recommendation always to behave so as to
maximize the expected utility per time unit.

Theory of rational behavior: Theory of reasoning plus the principle of rational
behavior.

Body of decisions: A set of judgments that one decision is better than another.
Hypothetical circumstances may be considered as well as real ones (just as for a
body of beliefs).

Reasonable body of decisions: A body of decisions which does not give rise
to a contradiction when combined with a theory of rational behavior.

A reasonable decision is one which occurs in a reasonable body of decisions.
We see that a theory of reasoning is a recommendation to think in a particular

way while a theory of rational behavior is a recommendation to act in a particular
way.

Utility judgments may also be called "value judgments." The notion of utility
is not restricted to financial matters, and even in financial matters utility is not
strictly proportional to financial gain. Utilities are supposed to include all human
values such as, for example, scientific interest. Part of the definition of utility is
provided by the theory of rational action itself.

It was shown by F. P. Ramsey (1931) how one could build up the theory of
probability by starting from the principle of maximizing expected utilities. L. J.
Savage has recently adopted a similar approach in much more detail in some
unpublished notes. The main argument for developing the subject in the Ramsey-
Savage manner is that degrees of belief are only in the mind or expressed ver-
bally, and are therefore not immediately significant operationally in the way
that behavior is. Actions speak louder than words. I shall answer this argument
in four steps:

(i) It is convenient to classify knowledge into subjects which are given names
and are discussed without very much reference to the rest of knowledge. It is
possible, and quite usual, to discuss probability with little reference to utilities.
If utilities are introduced from the start, the axioms are more complicated and it
is debatable whether they are more "convincing." The plan which appeals to me
is to develop the theory of probability without much reference to utilities, and
then to adjoin the principle of rational behavior in order to obtain a theory of
rational behavior. The above list of definitions indicates how easily the transition
can be made from a theory of probability to a theory of rational behavior.
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(ii) People's value judgments are, I think, liable to disagree more than their
probability judgments. Values can be judged with a fair amount of agreement
when the commodity is money, but not when deciding between, say, universal
education and universal rowing, or between your own life and the life of some
other person.

(iii) The principle of maximizing the expected utility can be made to look
fairly reasonable in terms of the law of large numbers, provided that none of the
utilities are very large. It is therefore convenient to postpone the introduction of
the principle until after the law of large numbers has been proved.

(iv) It is not quite clear that infinite utilities cannot occur in questions
of salvation and damnation (as suggested, I think, by Pascal), and expressions
like °° — °° would then occur when deciding between two alternative reli-
gions. To have to argue about such matters as a necessary preliminary to lay-
ing down any of the axioms of probability would weaken the foundations
of that subject.

5. AXIOMS AND RULES

The theory of probability which I accept and recommend is based on six axioms,
of which typical ones are —

A1. P(E\ F) is a non-negative number (E and F being propositions).
A4. If E is logically equivalent to F then P(E\G) = />(F|G), P(G\E) = /'(GIF).
There is also the possible modification —
A4'. If you have proved that E is logically equivalent to F then P(E\G) =

^(FIG), etc. The adoption of A4' amounts to a weakening of the emphasis on
consistency and enables you to talk about the probability of purely mathematical
propositions.

The main rule of application is as follows: Let P'(E\ F) >/y(G|H) mean that
you judge that your degree of belief in E given F (i.e., if F were assumed) would
exceed that of G given H. Then in the abstract theory you may write P(E.\F) >
P(G|H) and conversely.

Axiom A1 may appear to contradict the assumption of section 3 that degrees
of belief are only partially ordered. But when the axioms are combined with the
above rule of application it becomes clear that we cannot necessarily effect the
comparison between any pair of beliefs. The axioms are therefore stronger than
they need be for the applications. Unfortunately if they are weakened they
become much more complicated. (See Koopman, 1940a.)

6. EXAMPLES OF SUGGESTIONS

(i) Numerical probabilities can be introduced by imagining perfect packs of
cards perfectly shuffled, or infinite sequences of trials under essentially similar
conditions. Both methods are idealizations, and there is very little to choose
between them. It is a matter of taste: that is why there is so much argument
about it.
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(ii) Any theorem of probability theory and anybody's methods of statistical
inference may be used in order to help you to make probability judgments.

(iii) If a body of beliefs is found to be unreasonable after applying the abstract
theory, then a good method of patching it up is by being honest (using unemo-
tional judgment). This suggestion is more difficult to apply to utility judgments
because it is more difficult to be unemotional about them.

7. RATIONAL BEHAVIOR

I think that once the theory of probability is taken for granted, the principle of
maximizing the expected utility per unit time [or rather its integral over the
future, with a discounting factor decreasing with time, depending on life ex-
pectancy tables] is the only fundamental principle of rational behavior. It
teaches us, for example, that the older we become the more important it is to
use what we already know rather than to learn more.

In the applications of the principle of rational behavior some complications
arise, such as —

(i) We must weigh up the expected time for doing the mathematical and
statistical calculations against the expected utility of these calculations. Appar-
ently less good methods may therefore sometimes be preferred. For example, in
an emergency, a quick random decision is [usually] better than no decision. But
of course theorizing has a value apart from any particular application.

(ii) We must allow for the necessity of convincing other people in some
circumstances. So if other people use theoretically inferior methods we may be
encouraged to follow suit. It was for this reason that Newton translated his
calculus arguments into a geometrical form in the Principle. Fashions in modern
statistics occur partly for the same reason.

(iii) We may seem to defy the principle of rational action when we insure
articles of fairly small value against postal loss. It is possible to justify such
insurances on the grounds that we are buying peace of mind, knowing that we
are liable to lapse into an irrational state of worry.

(iv) Similarly we may take on bets of negative expected financial utility
because the act of gambling has a utility of its own.

(v) Because of a lack of precision in our judgment of probabilities, utilities,
expected utilities and "weights of evidence" we may often find that there is
nothing to choose between alternative courses of action, i.e., we may not be
able to say which of them has the larger expected utility. Both courses of
action may be reasonable and a decision may then be arrived at by the operation
known as "making up one's mind." Decisions reached in this way are not usually
reversed, owing to the negative utility of vacillation. People who attach too large
a value to the negative utility of vacillation are known as "obstinate."

(vi) Public and private utilities do not always coincide. This leads to ethical
problems.

Example. — An invention is submitted to a scientific adviser of a firm. The
adviser makes the following judgments:
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(1) The probability that the invention will work is p.
(2) The value to the firm if the invention is adopted and works is V.
(3) The loss to the firm if the invention is adopted and fails to work is L.
(4) The value to the adviser personally if he advises the adoption of the

invention and it works is v.
(5) The loss to the adviser if he advises the adoption of the invention and it

fails to work is C.
(6) The losses to the firm and to the adviser if he recommends the rejection

of the invention are both negligible, because neither the firm nor the adviser
have rivals.

Then the firm's expected gain if the invention is accepted is pV — (1 — p}L
and the adviser's expected gain in the same circumstances \spv- (1 — p)C. The
firm has positive expected gain if p/(1 —p) >/./!/, and the adviser has positive
expected gain if p/(1 — p}>%v. If 6f>p/(1 — p} > L/V, the adviser will be
faced with an ethical problem, i.e., he will be tempted to act against the interests
of the firm. Of course real life is more complicated than this, but the difficulty
obviously arises. In an ideal society public and private expected utility gains
would always be of the same sign.

What can the firm do to prevent this sort of temptation from arising? In my
opinion the firm should ask the adviser for his estimates of p, V and L, and
should take the onus of the actual decision on its own shoulders. In other words,
leaders of industry should become more probability-conscious.

If leaders of industry did become probability-conscious there would be quite
a reaction on statisticians. For they would have to specify probabilities of
hypotheses instead of merely giving advice. At present a statistician of the
Neyman-Pearson school is not permitted to talk about the probability of a
statistical hypothesis.

8. FAIR FEES

The above example raises the question of how a firm can encourage its experts
to give fair estimates of probabilities. In general this is a complicated problem,
and I shall consider only a simple case and offer only a tentative solution.
Suppose that the expert is asked to estimate the probability of an event E in
circumstances where it will fairly soon be known whether E is true or false, e.g.,
in weather forecasts.

It is convenient at first to imagine that there are two experts A and B whose
estimates of the probability of E are pl =/>

1(E) and p2 = P2(E). The suffixes
refer to the two bodies of belief, and the "given" propositions are taken for
granted and omitted from the notation. We imagine also that there are objective
probabilities, or credibilities, denoted by P. We introduce hypotheses HX and H2

where H! (or H2) is the hypothesis that A (or B) has objective judgment. Then

p1=p(E!H1),P2=P(E112).
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Therefore, taking "H! or H2" for granted, the factor in favour of H! (i.e., the
ratio of its final to its initial odds) if E happens is p\\Pi. Such factors are
multiplicative if a series of independent experiments are performed. By taking
logs we obtain an additive measure of the difference in the merits of A and B,
namely \ogp\ — log/?2 if E occurs or log(1 ~Pi)~log(1 —p-^} if E does not
occur. By itself log/?! (or log(1 — p \ ] } is a measure of the merit of a probability
estimate, when it is theoretically possible to make a correct prediction with
certainty. It is never positive, and represents the amount of information lost
through not knowing with certainty what will happen.

A reasonable fee to pay an expert who has estimated a probability aspi is
k log(2p!) if the event occurs and k log(2 — 2p\) if the event does not occur. If
Pi > 1/2 the latter payment is really a fine, (k is independent of PI but may
depend on the utilities. It is assumed to be positive.) This fee can easily be seen
to have the desirable property that its expectation is maximized if PI — p, the
true probability, so that it is in the expert's own interest to give an objective
estimate. It is also in his interest to collect as much evidence as possible. Note
that no fee is paid if PI = 1/2. The justification of this is that if a larger fee were
paid the expert would have a positive expected gain by saying that pl — Vi,
without looking at the evidence at all. If the class of problems put to the expert
have the property that the average value of p is x, then the factor 2 in the
above formula for the fee should be replaced by x~x(\ — x}~(\~*} = b, say.
(For more than two alternatives the corresponding formula for b is log 6 =
—Sx/logA1/, the initial "entropy." [But see p. 176.]) Another modification of
the formula should be made in order to allow for the diminishing utility of
money (as a function of the amount, rather than as a function of time). In fact
if Daniel Bernoulli's logarithmic formula for the utility of money is assumed, the
expression for the fee ceases to contain a logarithm and becomes c\[bp\ }k — 1|
or —c(l — (b — bpl )&}, where c is the initial capital of the expert.

This method could be used for introducing piece-work into the Meteorological
Office. The weather-forecaster would lose money whenever he made an incorrect
forecast.

When making a probability estimate it may help to imagine that you are to be
paid in accordance with the above scheme. It is best to tabulate the amount to
be paid as a function of PI .

9. LEGAL AND STATISTICAL PROCEDURES COMPARED

\n legal proceedings there are two men A and B known as lawyers and there is a
hypothesis H. A is paid to pretend that he regards the probability of H as 1 and
B is paid to pretend that he regards the probability of H as 0. Experiments are
performed which consist in asking witnesses questions. A sequential procedure is
adopted in which previous answers influence what further questions are asked
and what further witnesses are called. (Sequential procedures are very common
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indeed in ordinary life.) But the jury, which has to decide whether to accept or
to reject H (or to remain undecided), does not control the experiments. The two
lawyers correspond to two rival scientists with vested interests and the jury
corresponds to the general scientific public. The decision of the jury depends on
their estimates of the final probability of H. It also depends on their judgments
of the utilities. They may therefore demand a higher threshold for the probability
required in a murder case than in a case of petty theft. The law has never both-
ered to specify the thresholds numerically. In America a jury may be satisfied
with a lower threshold for condemning a black man for the rape of a white
woman than vice versa (News-Chronicle 32815 [1951], 5). Such behavior is
unreasonable when combined with democratic bodies of decisions.

The importance of the jury's coming to a definite decision, even a wrong one,
was recognized in law at the time of Edward 1 1 1 (c. 1350). At that time it was
regarded as disgraceful for a jury not to be unanimous, and according to some
reports such juries could be placed in a cart and upset in a ditch (Enc. Brit.,
11th ed., 1 5, 590). This can hardly be regarded as evidence that they believed in
credibilities in those days. I say this because it was not officially recognized that
juries could come to wrong decisions except through their stupidity or corruption.

10. MINIMAX SOLUTIONS

For completeness it would be desirable now to expound Wald's theory of
statistical decision functions as far as his definition of Bayes solutions and mini-
max solutions. He gets as far as these definitions in the first 1 8 pages of Sta-
tistical Decision Functions, but not without introducing over 30 essential
symbols and 20 verbal definitions. Fortunately it is possible to generalize and
simplify the definitions of Bayes and minimax solutions with very little loss of
rigour.

A number of mutually exclusive statistical hypotheses are specified (one of
them being true). A number of possible decisions are also specified as allowable.
An example of a decision is that a particular hypothesis, or perhaps a disjunction
of hypotheses, is to be acted upon without further experiments. Such a decision
is called a "terminal decision." Sequential decisions are also allowed. A sequential
decision is a decision to perform further particular experiments. I do not think
that it counts as an allowable decision to specify the final probabilities of the
hypotheses, or their expected utilities. (My use of the word "allowable" here has
nothing to do with Wald's use of the word "admissible.") The terminal and
sequential decisions may be called "non-randomized decisions." A "randomized
decision" is a decision to draw lots in a specified way in order to decide what
non-randomized decision to make.

Notice how close all this is to being a classification of the decisions made in
ordinary life, i.e., you often choose between (i) making up your mind, (ii) getting
further evidence, (iii) deliberately making a mental or physical toss-up between
alternatives. I cannot think of any other type of decision. But if you are giving
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advice you can specify the relative merits or expected utilities of taking various
decisions, and you can make probability estimates.

A non-randomized decision function is a (single-valued) function of the
observed results, the values of the function being allowable non-randomized
decisions. A randomized decision function, 5, is a function of the observed
results, the values of the function being randomized decisions.

Minus the expected utility [strictly, a constant should be added to the utility
to make its maximum value zero, for any given F and variable decisions] for a
given statistical hypothesis F and a given decision function 6 is called the risk
associated with F and 5, r(F, 5). (This is intended to allow for utilities including
the cost of experimentation. Wald does not allow for the cost of theorizing.) If a
distribution £ of initial probabilities of the statistical hypotheses is assumed, the
expected value of r(F, 5) is called r*(}-, 5), and a decision function 5 which
minimizes /"*(£, 5) is called a Bayes solution relative to £.

A decision function 5 is said to be a minimax solution if it minimizes
maxFr(F, 6).

An initial distribution £ is said to be least favorable if it maximizes min§r*(|,
5). Wald shows under weak conditions that a minimax solution is a Bayes solu-
tion relative to a least favorable initial distribution. Minimax solutions seem to
assume that we are living in the worst of all possible worlds. Mr. R. B. Braith-
waite suggests calling them "prudent" rather than "rational."

Wald does not in his book explicitly recommend the adoption of minimax
solutions, but he considered their theory worth developing because of its impor-
tance in the theory of statistical decision functions as a whole. In fact the book
is more concerned with the theory than with recommendations as to how to
apply the theory. There is, however, the apparently obvious negative recom-
mendation that Bayes solutions cannot be applied when the initial distribution I-
is unknown. The word "unknown" is rather misleading here. In order to see this
we consider the case of only two hypotheses H and H'. Then £ can be replaced
by the probability, p, of H. I assert that in most practical applications we regard
p as bounded by inequalities something like -1 <p < -8. For if we did not think
that -1 < p we would not be prepared to accept H on a small amount of evi-
dence. Is | unknown if -1 < p < -8? Is it unknown if -4 <p < -5; if 49999
p < -500001? In each of these circumstances it would be reasonable to use the
Bayes solution corresponding to a value of p selected arbitrarily within its
allowable range.

In what circumstances is a minimax solution reasonable? I suggest that it is
reasonable if and only if the least favorable initial distribution is reasonable
according to your body of beliefs. In particular a minimax solution is always
reasonable provided that only reasonable If's are entertained. But then the
minimax solution is only one of a number of reasonable solutions, namely all the
Bayes solutions corresponding to the various £'s.

It is possible to generalize Wald's theory by introducing a distribution f of the
£'s themselves. We would then be using a probability type-chain of type 3. (See
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section 3.) The expected value of /**(!-, 5) could be called r**($, §), and a
decision function 5 which minimizes /"**(£, 6) could be called a "Bayes solution
of type 3" relative to f. For consistency we could then call Wald's Bayes solu-
tions "Bayes solutions of type 2." When there is only one available statistical
hypothesis F we may define a "Bayes solution of type 1" relative to F as one
which maximizes r(F, 5). The use of Bayes solutions of any type is an applica-
tion of the principle of rational behavior.

One purpose in introducing Bayes solutions of the third type is in order to
overcome feelings of uneasiness in connection with examples like the one
mentioned above, where -1 <p < -8. One feels that if p = -09 has been com-
pletely ruled out, then p = -11 should be nearly ruled out, and this can only be
done by using probability type-chains of the third type. It may be objected that
the higher the type the woollier the probabilities. It will be found, however, that
the higher the type the less the woolliness matters, provided the calculations do
not become too complicated. Naturally any lack of definition in £" is reflected in
ambiguity of the Bayes solution of type 3. This ambiguity can be avoided by
introducing a minimax solution of type 2, i.e., a decision function which mini-
mizes max£r*(£, 5). [A more accurate definition is given in #80.]

By the time we had gone as far as type-chains of type 3 I do not think we
would be inclined to objectify the degrees of belief any further. It would there-
fore probably not be necessary to introduce Bayes solutions of type 4 and
minimax solutions of type 3.

Minimax solutions of type 1 were in effect originated by von Neumann in the
theory of games, and it is in this theory that they are most justifiable. But even
here in practice you would prefer to maximize your expected gain. You would
probably use minimax solutions when you had a fair degree of belief that your
opponent was a good player. Even when you use the minimax solution you may
be maximizing your expected gain, since you may already have worked out the
details of the minimax solution, and you would probably not have time to work
out anything better once a game had started. To attempt to use a method other
than the minimax method would lead to too large a probability of a large loss,
especially in a game like poker. (As a matter of fact I do not think the minimax
solution has been worked out for poker.)

I am much indebted to the referee for his critical comments.



CHAPTER 2

Twenty-seven Principles
of Rationality (#679)

In the body of my paper for this symposium I originally decided not to argue
the case for the use of subjective probability since I have expressed my philoso-
phy of probability, statistics, and (generally) rationality on so many occasions in
the past. But after reading the other papers I see that enlightenment is still
required. So, in this appendix I give a succinct list of 27 priggish principles. I
have said and stressed nearly all of them before, many in my 1950 book, but
have not brought so many of them together in one short list. As Laplace might
have said, they are au fond le bon sens, but they cannot be entirely reduced to a
calculus. [The writers who influenced me are mentioned in the Introduction.]

1. Physical probabilities probably exist (\ differ from de Finetti and L. J.
Savage here) but they can be measured only with the help of subjective probabil-
ities. There are several kinds of probability. (##182, 522. The latter paper
contains a dendroidal categorization.)

2. A familiar set of axioms of subjective probability are to be used. Kol-
mogorov's axiom (complete additivity) is convenient rather than essential. The
axioms should be combined with rules of application and less formal suggestions
for aiding the judgment. Some of the suggestions depend on theorems such as
the laws of large numbers which make a frequency definition of probability
unnecessary. (It is unnecessary and insufficient.)

3. In principle these axioms should be used in conjunction with inequality
judgments and therefore they often lead only to inequality discernments. The
axioms can themselves be formulated as inequalities but it is easier to incorporate
the inequalities in the rules of application. In other words most subjective
probabilities are regarded as belonging only to some interval of values the end
points of which may be called the lower and upper probabilities. (Keynes, 1921;
Koopman, 1940a; ##1 3, 230; C. A. B. Smith, 1961.)

4. The principle of rationality is the recommendation to maximize expected
utility.

15
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5. The input and output to the abstract theories of probability and rationality
are judgments of inequalities of probabilities, odds, Bayesian factors (ratios of
final to initial odds), log-factors or weights of evidence, information, surprise
indices, utilities, and any other functions of probabilities and utilities, (For
example, Good, 1954.) It is often convenient to forget about the inequalities for
the sake of simplicity and to use precise estimates (see Principle 6).

6. When the expected time and effort taken to think and do calculations are
allowed for in the costs, then one is using the principle of rationality of type II.
This is more important than the ordinary principle of rationality, but is seldom
mentioned because it contains a veiled threat to conventional logic by incor-
porating a time element. It often justifies ad hoc [and non-Bayesian] procedures
such as confidence methods and this helps to decrease controversy.

7. The purposes of the theories of probability and rationality are to enlarge
bodies of beliefs and to check them for consistency, and thus to improve the
objectivity of subjective judgments. This process can never be [the words "known
to be" should be inserted here to cope with Dr. Barnard's comment that followed
this paper] completed even in principle, in virtue of Godel's theorem concerning
consistency. Hence the type II principle of rationality is a logical necessity.

8. For clarity in your own thinking, and especially for purposes of com-
munication, it is important to state what judgments you have used and which
parts of your argument depend on which judgments. The advantage of likelihood
is its mathematical independence of initial distributions (priors), and similarly
the advantage of weight of evidence is its mathematical independence of the
initial odds of the null hypothesis. The subjectivist states his judgments whereas
the objectivist sweeps them under the carpet by calling assumptions knowledge,
and he basks in the glorious objectivity of science.

9. The vagueness of a probability judgment is defined either as the difference
between the upper and lower probabilities or else as the difference between the
upper and lower log-odds (#290). I conjecture that the vagueness of a judgment
is strongly correlated with its variation from one judge to another. This could be
tested.

10. The distinction between type I and type II rationality is very similar to
the distinction between the standard form of subjective probabilities and what I
call evolving or sliding [or dynamic] probabilities. These are probabilities that
are currently judged and they can change in the light of thinking only, without
change of empirical evidence. The fact that probabilities change when empirical
evidence changes is almost too elementary a point to be worth mentioning in
this distinguished assembly, although it was overlooked by ... R. A. Fisher in
his fiducial argument. More precisely he talked about the probabilities of certain
events or propositions without using the ordinary notation of the vertical stroke
or any corresponding notation, and thus fell into a fallacy. . . . Evolving
probabilities are essential for the refutation of Popper's views on simplicity (see
#599 [or p. 223]). [Great men are not divine.]

11. My theories of probability and rationality are theories of consistency
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only, that is, consistency between judgments and the basic axioms and rules of
application of the axioms. Of course, these are usually judgments about the
objective world. In particular it is incorrect to suppose that it is necessary to
inject an initial probability distribution from which you are to infer a final
probability distribution. It is just as legitimate logically to assume a final distri-
bution and to infer from it an initial distribution. (For example, pp. 35 and 81
of #13.) To modify an aphorism quoted by Dr. Geisser elsewhere, "Ye priors
shall be known by their posteriors."

12. This brings me to the device of imaginary results (#13) which is the
recommendation that you can derive information about an initial distribution by
an imaginary (Gedanken] experiment. Then you can make discernments about
the final distribution after a real experiment. . . .

13. The Bayes/non-Bayes compromise (p. 863 of #127, and also many more
references in #398 under the index entry "Compromises"). Briefly: use Bayesian
methods to produce statistics, then look at their tail-area probabilities and try to
relate these to Bayes factors. A good example of both the device of imaginary
results and of the Bayes/non-Bayes compromise was given in #541. I there
found that Bayesian significance tests in multiparameter situations seem to be
much more sensitive to the assumed initial distribution than Bayesian estimation
is.

14. The weakness of Bayesian methods for significance testing is also a
strength, since by trying out your assumed initial distribution on problems of
significance testing, you can derive much better initial distributions and these
can then be used for problems of estimation. This improves the Bayesian methods
of estimation!

15. Compromises between subjective probabilities and credibilities are also
desirable because standard priors might be more general-purpose than non-
standard ones. In fact it is mentally healthy to think of your subjective probabil-
ities as estimates of credibilities (p. 5). Credibilities are an ideal that we cannot
reach.

16. The need to compromise between simplicity of hypotheses and the degree
to which they explain the facts was discussed in some detail in #599, and the
name I gave for the appropriate and formally precise compromise was "a Sharp-
ened Razor." Ockham (actually his eminent predecessor John Duns Scotus) in
effect emphasized simplicity alone, without reference to degrees of explaining
the facts. (See also #1000.)

17. The relative probabilities of two hypotheses are more relevant to science
than the probabilities of hypotheses tout court (pp. 60, 83-84 of #13).

18. The objectivist or his customer reaches precise results by throwing away
evidence; for example (a) when he keeps his eyes averted from the precise choice
of random numbers by using a Statistician's Stooge; (b) when his customer uses
confidence intervals for betting purposes, which is legitimate provided that he
regards the confidence statement as the entire summary of the evidence.

19. If the objectivist is prepared to bet, then we can work backwards to infer
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constraints on his implicit prior beliefs. These constraints are of course usually
vague, but we might use precise values in accordance with type II rationality.

20. When you don't trust your estimate of the initial probability of a hypoth-
esis you can still use the Bayes factor or a tail-area probability to help you decide
whether to do more experimenting (p. 70 of #1 3).

21. Many statistical techniques are legitimate and useful but we should not
knowingly be inconsistent. The Bayesian flavor vanishes when a probability is
judged merely to lie in the interval (0,1), but this hardly ever happens.

22. A hierarchy of probability distributions, corresponding in a physical
model to populations, superpopulations, etc., can be helpful to the judgment
even when these superpopulations are not physical. I call these distributions of
types I, II, III, . . . " (partly in order to be noncommittal about whether they
are physical) but it is seldom necessary to go beyond the third type (##26, 398,
547). [When we are prepared to be committal, the current names for types II
and III are "priors" and "hyperpriors."]

23. Many compromises are possible, for example, one might use the generali-
zations of the likelihood ratio mentioned on p. 80 of #198.

24. Quasi'- or pseudoutilities. When your judgments of utilities are otherwise
too wide it can be useful [in the planning of an experiment] to try to maximize
the expectation of something else that is of value, known as a quasiutility or
pseudoutility. Examples are (a) weight of evidence, when trying to discriminate
between two hypotheses; (b) information in Fisher's sense when estimating
parameters; (c) information in Shannon's sense when searching among a set of
hypotheses; (d) strong explanatory power [explicativity] when explanation is
the main aim: this includes example (c); (e) and (ea) tendency to cause (or a
measure of its error) if effectiveness of treatment (or its measurement) is the
aim; (f) /"(error) in estimation problems, where f(x) depends on the applica-
tion and might, for example, reasonably be 1 — g—A* (or might be taken as
x2 for simplicity) [the sign should be changed]; (g) financial profit when other
aims are too intangible. In any case the costs in money and effort have to be
allowed for. [After an experiment is designed, a minimax inference minimizes
the quasiutility. Minimax procedures cannot be fully justified but they lead to
interesting proposals. See #622 or p. 198 of #618.]

25. The time to make a decision is largely determined by urgency and by the
current rate of acquisition of information, evolving or otherwise. For example,
consider chess timed by a clock.

26. In logic, the probability of a hypothesis does not depend on whether it
was typed accidentally by a monkey, or whether an experimenter pretends he has
a train to catch when he stops a sequential experiment. But in practice we do allow
for the degree of respect we have for the ability and knowledge of the person who
propounds a hypothesis.

27. All scientific hypotheses are numerological but some are more numerologi-
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cal than others. Hence a subjectivistic analysis of numerological laws is relevant
to the philosophy of induction (#603B).

I have not gone systematically through my writings to make sure that the
above list is complete. In fact there are, for example, a few more principles listed
in ##85A, 293. But I believe the present list is a useful summary of my position.



46656 Varieties
of Bayesians (#765)

Some attacks and defenses of the Bayesian position assume that it is unique so it
should be helpful to point out that there are at least 46656 different interpreta-
tions. This is shown by the following classification based on eleven facets. The
count would be larger if I had not artificially made some of the facets discrete and
my heading would have been "On the Infinite Variety of Bayesians."

All Bayesians, as I understand the term, believe that it is usually meaningful to
talk about the probability of a hypothesis and they make some attempt to be con-
sistent in their judgments. Thus von Mises (1942) would not count as a Bayesian,
on this definition. For he considered that Bayes's theorem is applicable only when
the prior is itself a physical probability distribution based on a large sample from
a superpopulation. If he is counted as a Bayesian, then there are at least 46657
varieties, which happens to rhyme with the number of Heinz varieties. But no
doubt both numbers will increase on a recount.

Here are the eleven facets:
1. Type I/rationality, (a) Consciously recognized; (b) not. Here Type II ration-

ality is defined as the recommendation to maximize expected utility allowing for
the cost of theorizing (#290). It involves the recognition that judgments can be
revised, leading at best to consistency of mature judgments.

2. Kinds of judgments, (a) Restricted to a specific class or classes, such as
preferences between actions; (b) all kinds permitted, such as of probabilities and
utilities, and any functions of them such as expected utilities, weights of evidence,
likelihoods, and surprise indices (#82; Good, 1954). This facet could of course
be broken up into a large number.

3. Precision of Judgments, (a) Sharp; (b) based on inequalities, i.e. partially
ordered, but sharp judgments often assumed for the sake of simplicity (in accor-
dance with 1 fa l ) .

20
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4. Extremeness, (a) Formal Bayesian procedure recommended for all applica-
tions; (b) non-Bayesian methods used provided that some set of axioms of intui-
tive probability are not seen to be contradicted (the Bayes/non-Bayes compromise:
Hegel and Marx would call it a synthesis); (c) non-Bayesian methods used only
after they have been given a rough Bayesian justification.

5. Utilities, (a) Brought in from the start; (b) avoided, as by H. Jeffreys;
(c) utilities introduced separately from intuitive probabilities.

6. Quasiutilities. (a) Only one kind of utility recognized; (b) explicit recog-
nition that "quasiutilities" (##690A, 755) are worth using, such as amounts of
information or "weights of evidence" (Peirce, 1978 [but see #1382]; #13); (c)
using quasiutilities without noticing that they are substitutes for utilities. The
use of quasiutilities is as old as the words "information" and "evidence," but I
think the name "quasiutility" serves a useful purpose in focussing the issue.

1 .Physicalprobabilities, (a) Assumed to exist; (b) denied; (c) used as if they
exist but without philosophical commitment (#61 7).

8. Intuitive probability, (a) Subjective probabilities regarded as primary; (b)
credibilities (logical probabilities) primary; (c) regarding it as mentally healthy to
think of subjective probabilities as estimates of credibilities, without being sure
that credibilities really exist; (d) credibilities in principle definable by an inter-
national body. . . .

9. Device of imaginary results, (a) Explicit use; (b) not. The device involves
imaginary experimental results used for judging final or posterior probabilities
from which are inferred discernments about the initial probabilities. For example
see ##13, 547.

10. Axioms, (a) As simple as possible; (b) incorporating Kolmogorov's axiom
(complete additivity); (c) using Kolmogorov's axiom when mathematically con-
venient but regarding it as barely relevant to the philosophy of applied statistics.

11. Probability "types. " (a) Considering that priors can have parameters with
"Type III" distributions, as a convenient technique for making judgments; (b)
not. Here (a) leads, by a compromise with non-Bayesian statistics, to such tech-
niques as Type II maximum likelihood and Type II likelihood-ratio tests (#547).

Thus there are at least 24 • 36 • 4 = 46656 categories. This is more than the
number of professional statisticians so some of the categories must be empty.
Thomas Bayes hardly wrote enough to be properly categorized; a partial attempt
is b-aaa?-b~. My own category is abcbcbccaca. What's yours?



CHAPTER 4

The Bayesian Influence,
or How to Sweep Subjectivism
under the Carpet (#838)

ABSTRACT

On several previous occasions I have argued the need for a Bayes/non-Bayes
compromise which I regard as an application of the "Type II" principle of ration-
ality. By this is meant the maximization of expected utility when the labour and
costs of the calculations are taken into account. Building on this theme, the pres-
ent work indicates how some apparently objective statistical techniques emerge
logically from subjective soil, and can be further improved if their subjective
logical origins (if not always historical origins) are not ignored. There should in
my opinion be a constant interplay between the subjective and objective points
of view, and not a polarization separating them.

Among the topics discussed are, two types of rationality, 27 "Priggish Prin-
ciples," 46656 varieties of Bayesians, the Black Box theory, consistency, the un-
obviousness of the obvious, probabilities of events that have never occurred
(namely all events), the Device of Imaginary Results, graphing the likelihoods,
the hierarchy of types of probability, Type II maximum likelihood and likelihood
ratio, the statistician's utilities versus the client's, the experimenter's intentions,
quasiutilities, tail-area probabilities, what is "more extreme"?, "deciding in ad-
vance," the harmonic mean rule of thumb for significance tests in parallel, den-
sity estimation and roughness penalities, evolving probability and pseudorandom
numbers and a connection with statistical mechanics.

1. PREFACE

. . . There is one respect in which the title of this paper is deliberately ambig-

uous: it is not clear whether it refers to the historical or to the logical influence

of "Bayesian" arguments. In fact it refers to both, but with more emphasis on

the logical influence. Logical aspects are more fundamental to a science or phil-

osophy than are the historical ones, although they each shed lighten the other.

The logical development is a candidate for being the historical development on

another planet.
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I have taken the expression the "Bayesian influence" from a series of lectures
in mimeographed form (#750). In a way I am fighting a battle that has already
been won to a large extent. For example, the excellent statisticians L. J. Savage,
D. V. Lindley, G. E. P. Box (R. A. Fisher's son-in-law) and J. Cornfield were
converted to the Bayesian fold years ago. For some years after World War II,
I stood almost alone at meetings of the Royal Statistical Society in crusading
for a Bayesian point of view. Many of the discussions are reported in the Journal,
series B, but the most detailed and sometimes heated ones were held privately
after the formal meetings in dinners at Berterolli's restaurant and elsewhere,
especially with Anscombe, Barnard, Bartlett, Daniels, and Lindley. [Lindley
was a non-Bayesian until 1954.] These protracted discussions were historically
important but have never been mentioned in print before as far as I know. There
is an unjustifiable convention in the writing of the history of science that science
communication occurs only through the printed word. . . .

II. INTRODUCTION

On many previous occasions, and especially at the Waterloo conference of 1970,
I have argued the desirability of a Bayes/non-Bayes compromise which, from on
Bayesian point of view, can be regarded as the use of a "Type II" principle of
rationality. By this is meant the maximization of expected utility when the labour
and costs of calculations and thinking are taken into account. Building on this
theme, the present paper will indicate how some apparently objective statistical
techniques emerge logically from subjective soil, and can be further improved by
taking into account their logical, if not always historical, subjective origins. There
should be in my opinion a constant interplay between the subjective and objec-
tive points of view and not a polarization separating them.

Sometimes an orthodox statistician will say of one of his techniques that it
has "intuitive appeal." This is I believe always a guarded way of saying that it
has an informal approximate Bayesian justification.

Partly as a matter of faith, I believe thatc/// sensible statistical procedures ca
be derived as approximations to Bayesian procedures. As I have said on previous
occasions, "To the Bayesian all things are Bayesian."

Cookbook statisticians, taught by non-Bayesians, sometimes give the impres-
sion to their students that cookbooks are enough for all practical purposes. Any
one who has been concerned with complex data analysis knows that they are
wrong: that subjective judgment of probabilities cannot usually be avoided, even
if this judgment can later be used for constructing apparently non-Bayesian pro-
cedures in the approved sweeping-under-the-carpet manner.

(a) What Is Swept under the Carpet?

I shall refer to "sweeping under the carpet" several times, so I shall use the
abbreviations UTC and SUTC. One part of this paper deals with what is swept
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under the carpet, and another part contains some examples of the SUTC process.
(The past tense, etc., will be covered by the same abbreviation.)

Let us then consider what it is that is swept under the carpet. Maurice Bartlett
once remarked, in a discussion at a Research Section meeting of the Royal Statis-
tical Society, that the word "Bayesian" is ambiguous, that there are many varie-
ties of Bayesians, and he mentioned for example, "Savage Bayesians and Good
Bayesians," and in a letter in the American Statistician I classified 46656 varie-
ties (#765). There are perhaps not that number of practicing Bayesian statist!
cians, but the number comes to 46656 when your cross-classify the Bayesians
in a specific manner by eleven facets. Some of the categories are perhaps logical-
ly empty but the point I was making was that there is a large variety of possible
interpretations and some of the arguments that one hears against the Bayesian
position are valid only against some Bayesian positions. As so often in contro-
versies "it depends what you mean." The particular form of Bayesian position
that I adopt might be called non-Bayesian by some people and naturally it is my
own views that I would like most to discuss. I speak for some of the Bayesians
all the time and for all the Bayesians some of the time. In the spoken version
of this paper I named my position after "the Tibetan Lama K. Caj Doog,"and
I called my position "Doogian." Although the joke wears thin, it is convenient
to have a name for this viewpoint, but "Bayesian" is misleading, and "Goodian"
or "Good" is absurd, so I shall continue with the joke even in print. (See also
Smith, 1961, p. 18, line minus 15, word minus 2.)

Doogianism is mainly a mixture of the views of a few of my eminent pre-1940
predecessors. Many parts of it are therefore not original, but, taken as a whole
I think it has some originality; and at any rate it is convenient here to have a
name for it. It is intended to be a general philosophy for reasoning and for
rationality in action and not just for statistics. It is a philosophy that applies to
all activity, to statistics, to economics, to the practice and philosophy of science,
to ordinary behavior, and, for example, to chess-playing. Of course each of thes
fields of study or activity has its own specialized problems, but, just as the the-
ories of each of them should be consistent with ordinary logic, they should in
my opinion be consistent also with the theory of rationality as presented here
and in my previous publications, a theory that is a useful and practically necessary
extension of ordinary logic. . . .

At the Waterloo conference (#679), I listed 27 Priggish Principles that sum-
marize the Doogian philosophy, and perhaps the reader will consult the Pro-
ceedings and some of its bibliography for a more complete picture, and for his-
torical information. Here it would take too long to work systematically through
all 27 principles and instead I shall concentrate on the eleven facets of the Bayes-
ian Varieties in the hope that this will give a fairly clear picture. I do not claim
that any of these principles were "discovered last week" (to quote Oscar Kemp-
thorne's off-the-cuff contribution to the spoken discussion), in fact I have de-
veloped, acquired or published them over a period of decades, and most of them
were used by others before 1940, in one form or another, and with various
degrees of bakedness or emphasis. The main merit that I claim for the Doogian
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philosophy is that it codifies and exemplifies an adequately complete and simple
theory of rationality, complete in the sense that it is I believe not subject to the
criticisms that are usually directed at other forms of Bayesianism, and simple in
the sense that it attains realism with the minimum of machinery. To pun some-
what, it is "minimal sufficient."

(b) Rationality, Probability, and the Black Box Theory

In some philosophies of rationality, a rational man is defined as one whose
judgments of probabilities, utilities, and of functions of these, are all both con-
sistent and sharp or precise. Rational men do not exist, but the concept is use-
ful in the same way as the concept of a reasonable man in legal theory. A ration-
al man can be regarded as an ideal to hold in mind when we ourselves wish to be
rational. It is sometimes objected that rationality as defined here depends on
betting behavior, and people sometimes claim they do not bet. But since their
every decision is a bet I regard this objection as unsound: besides they could in
principle be forced to bet in the usual monetary sense. It seems absurd to me to
suppose that the rational judgment of probabilities would normally depend on
whether you were forced to bet rather than betting by free choice.

There are of course people who argue (rationally?) against rationality, but
presumably they would agree that it is sometimes desirable. For example, they
would usually prefer that their doctor should make rational decisions, and, when
they were fighting a legal case in which they were sure that the evidence "proved"
their case, they would presumably want the judge to be rational. I believe that
the dislike of rationality is often merely a dishonest way of maintaining an in-
defensible position. Irrationality is intellectual violence against which the pacifism
of rationality may or may not be an adequate weapon.

In practice one's judgments are not sharp, so that to use the most familiar
axioms it is necessary to work with judgments of inequalities. For example,
these might be judgments of inequalities between probabilities, between utilities,
expected utilities, weights of evidence (in a sense to be defined . . .), or any
other convenient function of probabilities and utilities. We thus arrive at a
theory that can be regarded as a combination of the theories espoused by
F. P. Ramsey (1926/31/50/64), who produced a theory of precise subjective
probability and utility, and of J. M. Keynes (1921), who emphasized the impor-
tance of inequalities (partial ordering) but regarded logical probability or cred-
ibility as the fundamental concept, at least until he wrote his obituary on Ramsey
(Keynes, 1933).

To summarize then, the theory I have adopted since about 1938 is a theory
of subjective (personal) probability and utility in which the judgments take the
form of inequalities (but see Section III [iii] below). This theory can be formu-
lated as the following "black box" theory. . . .[See pp. 75-76.]

To extend this theory to rationality, we need merely to allow judgments
of preferences also, and to append the "principle of rationality," the recom-
mendation to maximize expected utility. (##13, 26, 230.)
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The axioms, which are expressed in conditional form, have a familiar appear-
ance (but see the reference to "evolving probability" below), and I shall not
state them here.

There is emphasis on human judgment in this theory, based on a respect for
the human brain. Even infrahuman brains are remarkable instruments that can-
not yet be replaced by machines, and it seems unlikely to me that decision-mak-
ing in general, and statistics in particular, can become independent of the human
brain until the first ultraintelligent machine is built. Harold Jeffreys once re-
marked that the brain may not be a perfect reasoning machine but is the only
one available. That is still true, though a little less so than when Jeffreys first
said it. It [the brain] has been operating for millions of years in billions of in-
dividuals and it has developed a certain amount of magic. On the other hand I
believe that some formalizing is useful and that the ultraintelligent machine
will also use a subjectivistic theory as an aid to its reasoning.

So there is this respect for judgment in the theory. But there is also respect
for logic. Judgments and logic must be combined, because, although the human
brain is clever at perceiving facts, it is also cunning in the rationalization of
falsity for the sake of its equilibrium. You can make bad judgments so you need
a black box to check your subjectivism and to make it more objective. That then
is the purpose of a subjective theory; to increase the objectivity of your judg-
ments, to check them for consistency, to detect the inconsistencies and to remove
them. Those who want their subjective judgments to be free and untrammeled
by axioms regard themselves as objectivists: paradoxically, it is the subjectivists
who are prepared to discipline their own judgments!

For a long time I have regarded this theory as almost intuitively obvious, part-
ly perhaps because I have used it in many applications without inconsistencies
arising, and I know of no other theory that I could personally adopt. It is the
one and only True Religion. My main interest has been in developing and apply-
ing the theory, rather than finding a priori justification for it. But such a justi-
fication has been found by C. A. B. Smith (1961), based on a justification by
Ramsey (1926/31/50/64), de Finetti (1937/64), and L. J. Savage (1954) of a
slightly different theory (in which sharp values of the probabilities and utilities
are assumed). These justifications show that, on the assumption of certain com-
pelling desiderata, a rational person will hold beliefs, and preferences, as //he
had a system of subjective probabilities and utilities satisfying a familiar set of
axioms. He might as well be explicit about it: after all it is doubtful whether
any of our knowledge is better than of the "as if" variety.

Another class of justifications, in which utilities are not mentioned, is exem-
plified by Bernstein (1921/22), Koopman (1940a, b), and R. T. Cox (1946,
1961). (See also pp. 105-106 of #13; also Good, 1962d.) A less convincing, but
simpler justification is that the product and addition axioms are forced (up to a
monotonic transformation of probabilities) when considering ideal games of
chance, and it would be surprising if the same axioms did not apply more
generally. Even to deny this seems to me to show poor or biased judgment.
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Since the degrees of belief, concerning events over which he has no control,
of a person with ideally good judgment, should surely not depend on whether
he intends to use his beliefs in any specific manner, it seems desirable to have
justifications that do not mention preferences or utilities. But utilities neces-
sarily come in whenever the beliefs are to be used in a practical problem in-
volving action.

(c) Consistency and the Unobviousness of the Obvious

Everybody knows, all scientists know, all mathematicians know, all players
of chess know, that from a small number of sharp axioms you can develop a
very rich theory in which the results are by no means obvious, even though they
are, in a technical sense, tautological. This is an exciting feature of mathematics,
especially since it suggests that it might be a feature of the universe itself. Thus
the completion of the basic axioms of probability by Fermat and Pascal led to
many interesting results, and the further near completion of the axioms for the
mathematical theory of probability by Kolmogorov led to an even greater ex-
pansion of mathematical theory.

Mathematicians are I think often somewhat less aware that a system of rules
and suggestions of an axiomatic system can also stimulate useful technical ad-
vances. The effect can be not necessarily nor even primarily to produce theorems
of great logical depth, but sometimes more important to produce or to emphasize
attitudes and techniques for reasoning and for statistics that seem obvious enough
after they are suggested, but continue to be overlooked even then.

One reason why many theoretical statisticians prefer to prove mathematical
theorems rather than to emphasize logical issues is that a theorem has a better
chance of being indisputably novel. The person who proves the theorem can
claim all the credit. But with general principles, however important, it is usually
possible to find something in the past that to some extent foreshadows it. There
is usually something old under the sun. Natural Selection was stated by Aristotle,
but Darwin is not denied credit, for most scientists were still overlooking this
almost obvious principle.

Let me mention a personal example of how the obvious can be overlooked.
In 1953, I was interested in estimating the physical probabilities for large con-

tingency tables (using essentially a log-linear model) when the entries were very
small, including zero. In the first draft of the write-up I wrote that I was con-
cerned with the estimation of probabilities of events that had never occurred
before (#83). Apparently this concept was itself an example of such an event,
as far as the referee was concerned because he felt it was too provocative, and I
deleted it in deference to him. Yet this apparently "pioneering" remark is ob-
vious: every event in life is unique, and every real-life probability that we estimate
in practice is that of an event that has never occurred before, provided that we do
enough cross-classification. Yet there are many "frequentists" who still sweep
this fact UTC.

A statistical problem where this point arises all the time is in the estimation of
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physical probabilities corresponding to the cells of multidimensional contingency
tables. Many cells will be empty for say a 220 table. A Bayesian proposal for this
problem was made in Good (p. #75 of #398), and I am hoping to get a student
to look into it; and to compare it with the use of log-linear models which have
been applied to this problem during the last few years. One example of the use
of a log-linear model is, after taking logarithms of the relative frequencies, to ap-
ply a method of smoothing mentioned in #146 in relation to factorial experi-
ments: namely to treat non-significant interactions as zero (or of course they
could be "flattened" Bayesianwise instead for slightly greater accuracy).

Yet another problem where the probabilities of events that have never oc-
curred before are of interest is the species sampling problem. One of its aspects
is the estimation of the probability that the next animal or word sampled will be
one that has not previously occurred. The answer turns out to be approximately
equal to A7 lyW, where n\ is the number of species that have so far occurred just
once, and N is the total sample size: see ##38 & 86; this work was originated
with an idea of Turing's (1940) which anticipated the empirical Bayes method
in a special case. (See also Robbins, 1968.) The method can be regarded as non-
Bayesian but with a Bayesian influence underlying it. More generally, the prob-
ability that the next animal will be one that has so far been represented r times is
approximately (r + 1)^+1 IN, where nr is the "frequency of the frequency r"
that is, the number of species each of which has already been represented r times.
(In practice it is necessary to smooth the/7r's when applying this formula, to get
adequate results, when r>1.) I shall here give a new proof of this result. Denote
the event of obtaining such an animal by Er. Since the order in which the N ani-
mals were sampled is assumed to be irrelevant (a Bayesian-type assumption of
permutability), the required probability can be estimated by the probability that
Er would have occurred on the last occasion an animal was sampled if a random
permutation were applied to the order in which the N animals were sampled. But
Er would have occurred if the last animal had belonged to a species represented
r + 1 times altogether. This gives the result, except that for greater accuracy we
should remember that we are tal king about the (N + 1 )st trial, so that a more ac-
curate result is (r + 1)£/v+i (nr+\}l(N + 1). Hence the expected physical prob-
ability qr corresponding to those nr species that have so far occured r times
is

This is formula (15) of #38 which was obtained by a more Bayesian argument.
The "variance" of qr was also derived in that paper, and a "frequency" proof of
it would be more difficult. There is an interplay here between Bayesian and
frequency ideas.

One aspect of Doogianism which dates back at least to F. P. Ramsey (1926/
31/50/64) is the emphasis on consistency: for example, the axioms of probability
can provide only relationships between probabilities and cannot manufacture a
probability out of nothing. Therefore there must be a hidden assumption in
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Fisher's fiducial argument. (This assumption is pinpointed in #659 on its p. 139
omitted herein. The reason Fisher overlooked this is also explained there.)

The idea of consistency seems weak enough, but it has the following immed-
iate consequence which is often overlooked.

Owing to the adjectives "initial" and "final" or "prior" and "posterior," it is
usually assumed that initial probabilities must be assumed before final ones can
be calculated. But there is nothing in the theory to prevent the implication be-
ing in the reverse direction: we can make judgments of initial probabilities and
infer final ones, or we can equally make judgments of final ones and infer initial
ones by Bayes's theorem in reverse. Moreover this can be done corresponding to
entirely imaginary observations. This is what I mean by the Device of Imaginary
Results for the judging of initial probabilities. (See, for example, Index of #13).
I found this device extremely useful in connection with the choice of a prior
for multinomial estimation and significance problems (#547) and I believe the
device will be found to be of the utmost value in future Bayesian statistics.
Hypothetical experiments have been familiar for a long time in physics, and in
the arguments that led Ramsey to the axioms of subjective probability, but the
use of Bayes's theorem in reverse is less familiar. "Ye priors shall be known by
their posteriors" (p. 17). Even the slightly more obvious technique of imag-
inary bets is still disdained by many decision makers who like to say "That pos-
sibility is purely hypothetical." Anyone who disdains the hypothetical is a
Philistine.

III. THE ELEVENFOLD PATH OF DOOGIANISM

As I said before, I should now like to take up the 46656 varieties of Bayesians,
in other words the eleven facets for their categorization. I would have discussed
the 27-fold path of Doogianism if there had been space enough.

(i) Rationality of Types I and II

I have already referred to the first facet. Rationality of Type I is the recom-
mendation to maximize expected utility, and Type II is the same except that it
allows for the cost of theorizing. It means that in any practical situation you
have to decide when to stop thinking. You can't allow the current to go on cir
culating round and round the black box or the cranium forever. You would like
to reach a sufficient maturity of judgments, but you have eventually to reach
some conclusion or to make some decision and so you must be prepared to sac-
rifice strict logical consistency. At best you can achieve consistency as far as
you have seen to date (p. 49 of #13). There is a time element, as in chess, and
this is realistic of most practice. It might not appeal to some of you who love
ordinary logic, but it is a mirror of the true situation.

It may help to convince some readers if I recall a remark of Poincare's that
some antinomies in ordinary (non-probabilistic) logic can be resolved by bring-
ing in a time element. ["Temporal," "evolving" or "dynamic" logic?]

The notion of Type II rationality, which I believe resolves a great many of the
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controversies between the orthodox and Bayesian points of view, also involves a
shifting of your probabilities. The subjective probabilities shift as a consequence
of thinking. . . . [See p. 107.] The conscious recognition of Type II ration-
ality, or not, constitutes the two aspects of the first facet.

Another name for the principle of Type II rationality might be the Principle
of Non-dogmatism.

(ii) Kinds of Judgment

Inequalities between probabilities and between expected utilities are perhaps
the most standard type of judgment, but other kinds are possible. Because of my
respect for the human mind, I believe that one should allow any kind of judg-
ments that are relevant. One kind that I believe will ultimately be regarded as
vying in importance with the two just mentioned is a judgment of "weights of
evidence" (defined later) a term introduced by Charles Sanders Peirce (1878)
although I did not know this when I wrote my 1950 book. . . .

It will encourage a revival of reasoning if statisticians adopt this appealing
terminology . . .. [But Peirce blew it. See #1382.]

One implication of the "suggestion" that all types of judgments can be used is
to encourage you to compare your "overall" judgments with your detailed ones;
for example, a judgment by a doctor that it is better to operate than to apply
medical treatment, on the grounds perhaps that this would be standard practice
in the given circumstances, can be "played off" against separate judgments of
the probabilities and utilities of the outcomes of the various treatments.

(jii) Precision of judgments

Most theories of subjective probability deal with numerically precise proba-
bilities. These would be entirely appropriate if you could always state the lowest
odds that you would be prepared to accept in a gamble, but in practice there is
usually a degree of vagueness. Hence I assume that subjective probabilities are
only partially ordered. In this I follow Keynes and Koopman, for example, ex-
cept that Keynes dealt primarily with logical probabilities, and Koopman with
"intuitive" ones (which means either logical or subjective). F. P. Ramsey (1926/
31/50/64) dealt with subjective probabilities, but "sharp" ones, as mentioned
before.

A theory of "partial ordering" (inequality judgments) for probabilities is a
compromise between Bayesian and non-Bayesian ideas. For if a probability is
judged merely to lie between 0 and 1, this is equivalent to making no judg-
ment about it at all. The vaguer the probabilities the closer is this Bayesian
viewpoint to a non-Bayesian one.

Often, in the interests of simplicity, I assume sharp probabilities, as an ap-
proximation, in accordance with Type II rationality.
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(iv) Eclecticism

Many Bayesians take the extreme point of view that Bayesian methods should
always be used in statistics. My view is that non-Bayesian methods are acceptable
provided that they are not seen to contradict your honest judgments, when com-
bined with the axioms of rationality. This facet number (iv) is an application of
Type II rationality. I believe it is sometimes, but not by any means always, easier
to use "orthodox" (non-Bayesian) methods, and that they are often good enough,
It is always an application of Type II rationality to say that a method is good
enough.

(v) Should Utilities Be Brought in from the Start in the Development
of the Theory?

I have already stated my preference for trying to build up the theory of sub-
jective probability without reference to utilities and to bring in utilities later.
The way the axioms are introduced is not of great practical importance, provided
that the same axioms are reached in the end, but it is of philosophical interest.
Also there is practical interest in seeing how far one can go without making use
of utilities, because one might wish to be an "armchair philosopher" or "fun
scientist" who is more concerned with discovering facts about Nature than in
applying them. ("Fun scientist" is not intended to be a derogatory expression.)
Thus, for example, R. A. Fisher and Harold Jeffreys never used ordinary util-
ities in their statistical work as far as I know (and when Jeffreys chaired the
meeting in Cambridge when I presented my paper #26 he stated that he had
never been concerned with economic problems in his work on probability).
See also the following remarks concerned with quasiutilities.

(vi) Quasiutilities

Just as some schools of Bayesians regard subjective probabilities as having
sharp (precise) values, some assume that utilities are also sharp. The Doogian
believes that this is often not so. It is not merely that utility inequality judg-
ments of course vary from one person to another, but that utilities for indiv-
iduals can also often be judged by them only to lie in wide intervals. It con-
sequently becomes useful and convenient to make use of substitutes for utility
which may be called quasiutilities or pseudoutilities. Examples and applications
of quasiutilities will be considered later in this paper. The conscious recognition
or otherwise of quasiutilities constitutes the sixth facet.

(vii) Physical Probability

Different Bayesians have different attitudes to the question of physical
probability, de Finetti regards it as a concept that can be defined in terms of
subjective probability, and does not attribute any other "real existence" to it.
My view, or that of my alter ego, is that it seems reasonable to suppose that
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physical probabilities do exist, but that they can be measured only be means of
a theory of subjective probability. For a fuller discussion of this point see de
Finetti (1968/70) and #617. The question of the real existence of physical
probabilities relates to the problem of determinism versus indeterminism and I
shall have something more to say on this.

When I refer to physical probability I do not assume the long-run frequency
definition: physical probability can be applied just as well to unique circum-
stances. Popper suggested the word "propensity" for it, which I think is a good
term, although I think the suggestion of a word cannot by itself be regarded as
the propounding of a "theory." [See also p. 405 of Feibleman, 1969.] As I have
indicated before, I think good terminology is important in crystallizing out
ideas. Language can easily mislead, but part of the philosopher's job is to find
out where it can lead. Curiously enough Popper has also stated that the words
you use do not matter much: what is important is what they mean in your
context. Fair enough, but it can lead to Humpty-Dumpty-ism, such as Popper's
interpretation of simplicity [or Carnap's usage of "confirmation" which has mis-
led philosophers for decades].

(viii) Which is Primary, Logical Probability (Credibility) or Subjec-
tive Probability?

It seems to me that subjective probabilities are primary because they are the
ones you have to use whether you like it or not. But I think it is mentally heal-
thy to think of your subjective probabilities as estimates of credibilities, whether
these really "exist" or not. Harold Jeffreys said that the credibilities should be
laid down by an international body. He would undoubtedly be the chairman. As
Henry Daniels once said (c. 1952) when I was arguing for subjectivism, "all stat-
isticians would like their models to be adopted," meaning that in some sense
everybody is a subjectivist.

(ix) Imaginary Results

This matter has already been discussed but I am mentioning it again because
it distinguishes between some Bayesians in practice, and so forms part of the
categorization under discussion. I shall give an example of it now because this
will help to shed light on the tenth facet.

It is necessary to introduce some notation. Let us suppose that we throw a
sample of N things into t pigeon holes, with statistically independent physical
probabilities p\, p2> • • • , Pt> these being unknown, and that you obtain fre-
quencies /?!, n2, . . . , nt in the t categories or cells. This is a situation that
has much interested philosophers of induction, but for some reason, presumably
lack of familiarity, they do not usually call it multinomial sampling. In common
with many people in the past, I was interested (##398, 547) in estimating the

physical probabilities/?!, p2> • • • , Pt- • • . [See pp. 100-103.]
That then is an example of a philosophical attitude leading to a practical sol-

ution of a statistical problem. As a matter of fact, it wasn't just the estimation



THE BAYESIAN INFLUENCE (#838) 33

of the p's that emerged from that work, but, more important, a significance test
for whether the p's were all equal. The method has the pragmatic advantage that
it can be used for all sample sizes, whereas the ordinary chi-squared test breaks
down when the cell averages are less then 1. Once you have decided on a prior
(the initial relative probabilities of the components of the non-null hypothesis),
you can calculate the weight of evidence against the null hypothesis without
using asymptotic theory. (This would be true for any prior that is a linear com-
bination of Dirichlet distributions, even if they were not symmetric, because in
this case the calculations involve only one-dimensional integrations.) That then
was an example of the device of imaginary results, for the selection of a prior,
worked out in detail.

The successful use of the device of imaginary results for this problem makes it
obvious that it can and will also be used effectively for many other statistical
problems. I believe it will revolutionize multivariate Bayesian statistics.

(x) Hierarchies of Probabilities

When you make a judgment about probabilities you might sit back and say
"Is that judgment probable." This is how the mind works —it is natural to think
that way, and this leads to a hierarchy of types of probabilities (#26) which in
the example just mentioned, I found useful, as well as on other occasions. Now
an objection immediately arises: There is nothing in principle to stop you inte-
grating out the higher types of probability. But it remains a useful suggestion to
help the mind in making judgments. It was used in #547 and has now been
adopted by other Bayesians, using different terminology, such as priors of the
second "order" (instead of "type" or "two-stage Bayesian models." A convenient
term for a parameter in a prior is "hyperparameter." [See also #1230.]

New techniques arose out of the hierarchical suggestion, again apparently
first in connection with the multinomial distribution (in the same paper), name-
ly the concept of Type II maximum likelihood (maximization of the Bayes fac-
tor against the null hypothesis by allowing the hyperparameters to vary), and
that of a Type II likelihood ratio for significance tests. I shall discuss these two
concepts when discussing likelihood in general.

(xi) The Choice of Axioms

One distinction between different kinds of Bayesians is merely a mathematical
one, whether the axioms should be taken as simple as possible, or whether, for
example, they should include Kolmogorov's axiom, the axiom of complete ad-
ditivity. I prefer the former course because I would want people to use the
axioms even if they do not know what "enumerable" means, but I am prepared
to use Kolmogorov's axiom whenever it seems to be sufficiently mathematically
convenient. Its interest is mathematical rather than philosophical, except perhaps
for the philosophy of mathematics. This last facet by the way is related to an ex-
cellent lecture by Jimmie Savage of about 1970, called "What kind of probabil-
ity do you want?".
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So much for the eleven facets. Numbers (i) to (vii) and number (ix) all
involve a compromise with non-Bayesian methods; and number (xiii) a compro-
mise with the "credibilists."

IV. EXAMPLES OF THE BAYESIAN INFLUENCE AND OF SUTC

(a) The Logical and Historical Origins of Likelihood

One aspect of utility is communicating with other people. There are many sit-
uations where you are interested in making a decision without communicating.
But there are also many situations, especially in much statistical and scientific
practice where you do wish to communicate. One suggestion, "obvious," and
often overlooked as usual, is that you should make your assumptions clear and
you should try to separate out the part that is disputable from the part that is
less so. One immediate consequence of this suggestion is an emphasis on likeli-
hood, because, as you all know, in Bayes's theorem you have the initial proba-
bilities, and then you have the likelihoods which are the probabilities of the
event, given the various hypotheses, and then you multiply the likelihoods by
the probabilities and that gives you results proportional to the final probabilities.
That is Bayes's theorem expressed neatly, the way Harold Jeffreys (1939/61) ex-
pressed it. Now the initial probability of the null hypothesis is often highly dis-
putable. One person might judge it to be between 10~3 and 10"1 whereas an-
other might judge it to be between 0.9 and 0.99. There is much less dispute
about likelihoods. There is no dispute about the numerical values of likelihoods
if your basic parametric model is accepted. Of course you usually have to use
subjective judgment in laying down your parametric model. Now the hidebound
objectivist tends to hide that fact; he will not volunteer the information that he
uses judgment at all, but if pressed he will say "I do, in fact, have good judgment."
So there are good and bad subjectivists, the bad subjectivists are the people with
bad or dishonest judgment and also the people who do not make their assump-
tions clear when communicating with other people. But, on the other hand,
there are no good 100% (hidebound) objectivists; they are all bad because they
sweep their judgments UTC.

Aside: In the spoken discussion the following beautiful interchanges
took place. Kempthorne (who also made some complimentary com-
ments): Now, on the likelihood business, the Bayesians discovered
likelihood Goddamit! Fisher knew all this stuff. Now look Jack, you
are an educated guy. Now please don't pull this stuff. This really
drives me up the wall! Lindley: If Fisher understood the likelihood
principle why did he violate it? Kempthorne: I'm not saying he under-
stood it and I'm not saying you do or you—nobody understands it.
But likelihood ideas, so to speak, have some relevance to the data.
That's a completely non-Bayesian argument. Good: It dates back to
the 18th century. Kempthorne: Oh it dates back; but there are a lot
of things being (?) Doogian, you know. They started with this guy
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Doog. Who is this bugger? Doog is the guy who spells everything
backwards.

In reply to this entertaining harangue, which was provoked by a misunder-
standing that was perhaps my fault, although I did refer to Fisherian informa-
tion, I mention the following points. Bayes's theorem (Bayes, 1763/65, 1940/58;
Laplace, 1774) cannot be stated without introducing likelihoods; therefore like-
lihood dates back at least to 1774. Again, maximum likelihood was used by
Daniel Bernoulli (1774/78/1961); see, for example, Todhunter (1865, p. 236) or
Eisenhart (1964, p. 29). Fisher introduced the name likelihood and emphasized
the method of maximum likelihood. Such emphasis is important and of course
merits recognition. The fact that he was anticipated in its use does not deprive
him of the major part of the credit or of the blame especially as the notion of
defining [his kind of] amount of information in terms of likelihood was his
brilliant idea and it led to the Aitken-Silverstone information inequality (the
minimum-variance bound). [ Perhaps not due to Aitken and Silverstone.]

Gauss (1798/1809/57/1963) according to Eisenhart, used inverse probability
combined with a Bayes postulate (uniform initial distribution) and an assump-
tion of normal error, to give one of the interpretations of the method of least
squares. He could have used maximum likelihood in this context but apparently
did not, so perhaps Daniel Bernoulli's use of maximum likelihood had failed to
convince him or to be noticed by him. Further historical research might be re-
quired to settle this last question if it is possible to settle it at all.

So likelihood is important as all statisticians agree now-a-days, and it takes
sharper values than initial probabilities. But some people have gone to extremes
and say that initial probabilities don't mean anything. Now I think one reason
for their saying so is trade unionism of a certain kind. It is very nice for a statis-
tician to be able to give his customer absolutely clear-cut results. It is unfortun-
ate that he can't do it so he is tempted to cover up, to pretend he has not had to
use any judgment. Those Bayesians who insist on sharp initial probabilities are
I think also guilty of "trade unionism," unless they are careful to point out
that these are intended only as crude approximations, for I do not believe that
sharp initial probabilities usually correspond to their honest introspection. If,
on the other hand, they agree that they are using only approximations we might
need more information about the degree of the approximations, and then they
would be forced to use inequality judgments, thus bringing them closer to the
True Religion. (I believe Dr. Kyburg's dislike of the Bayesian position, as expres-
sed by him later in this conference, depended on his interpreting a Bayesian as
one who uses sharp initial probabilities.) The use of "vague" initial probabilities
(inequality judgments) does not prevent Bayes's theorem from establishing the
likelihood principle. For Dr. Kempthorne's benefit, and perhaps for some others,
I mention that to me the likelihood principle means that the likelihood function
exhausts all the information about the parameters that can be obtained from an
experiment or observation, provided of course that there is an undisputed set of
exhaustive simple statistical hypotheses such as is provided, for example, by a
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parametric model. (In practice, such assumptions are often undisputed but are
never indisputable. This is the main reason why significance tests, such as the
chi-squared test, robust to changes in the model, are of value. Even here there is
a Doogian interpretation that can be based on beliefs about the distribution of
the test statistic when it is assumed that the null hypothesis is false. I leave this
point on one side for the moment.) Given the likelihood, the inferences that can
be drawn from the observations would, for example, be unaffected if the statis-
tician arbitrarily and falsely calimed that he had a train to catch, although he
really had decided to stop sampling because his favorite hypothesis was ahead of
the game. (This might cause you to distrust the statistician, but if you believe his
observations, this distrust would be immaterial.) On the other hand, the "Fisher-
ian" tail-area method for significance testing violates the likelihood principle be-
cause the statistician who is prepared to pretend he has a train to catch (optional
stopping of sampling) can reach arbitrarily high significance levels, given enough
time, even when the null hypothesis is true. For example, see Good (1956).

(b) Weight of Evidence

Closely related to the concept of likelihood is that of weight of evidence,
which I mentioned before and promised to define.

Let us suppose that we have only two hypotheses under consideration, which
might be because we have decided to consider hypotheses two at a time. Denote
them by H and H, where the bar over the second H denotes negation. (These
need not be "simple statistical hypotheses," as defined in a moment.) Suppose
further that we have an event, experimental result, or observation denoted by E.
The conditional probability of E is either ^(EIH) orP(E|H), depending on wheth-
er H or H is assumed. If H and H are "simple statistical hypotheses," then these
two probabilities have sharp uncontroversial values given tautologically by the
meanings of H and H. Even if they are composite hypothesis, not "simple" ones,
the Bayesian will still be prepared to talk about these two probabilities. In either
case we can see, by four applications of the product axiom, or by two applica-
tions of Bayes's theorem, that

where O denotes odds. (The odds corresponding to a probability p are defined as
pl(\—p}.} Turing (1941) called the right side of this equation the factor in favor
of the hypothesis H provided by the evidence E, for obvious reasons. Its logarithm
is the weight of evidence in favor of H, as defined independently by Peirce (1878),
#13, and Minsky and Selfridge (1961). [But see #1382.] It was much used by

Harold Jeffreys (1939/61), except that in that book he identified it with the
final log-odds because his initial probabilities were taken as 1/2. He had previous-
ly (1936) used the general form of weight of evidence and had called it "support."
The non-Bayesian uses the left side of the equation, and calls it the probability
ratio, provided that H and H are simple statistical hypotheses. He SUTC the right
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side, because he does not tal k about the probability of a hypothesis. The Bayesian,
the doctor, the judge and the jury can appreciate the importance of the right
side even with only the vaguest estimates of the initial odds of H. For example,
the Bayesian (or at least the Doogian) can logically argue in the following man-
ner (p. 70 of #13): If we assume that it was sensible to start a sampling experi-
ment in the first place, and if it has provided appreciable weight of evidence in
favor of some hypothesis, and it is felt that the hypothesis is not yet convincing
enough, then it is sensible to enlarge the sample since we know that the final
odds of the hypothesis have increased whatever they are. Such conclusions can
be reached even though judgments of the relevant initial probability and of the
utilities have never been announced. Thus, even when the initial probability is
extremely vague, the axioms of subjective probability (and weight of evidence)
can be applied.

When one or both of H and H are composite, the Bayesian has to assume rel-
ative initial probabilities for the simple components of the composite hypothesis.
Although these are subjective, they typically seem to be less subjective than the
initial probability of H itself. To put the matter more quantitatively, although
this is not easy in so general a context, I should say that the judgment of the fac-
tor in favor of a hypothesis might typically differ from one person to another by
up to about 5, while the initial odds of H might differ by a factor of 10 or 100
or 1000. Thus the separation of the estimation of the weight of evidence from
the initial or final probability of H serves a useful purpose, especially for com-
munication with other people, just as it is often advisable to separate the judg-
ments of initial probabilities and likelihoods.

It often happens that the weight of evidence is so great that a hypothesis
seems convincing almost irrespective of the initial probability. For example, in
quantum mechanics, it seems convincing that the Schrodinger equation is ap-
proximately true (subject to some limitations), given the rest of some standard
formulation of quantum mechanics, because of great quantities of evidence from
a variety of experiments,such as the measurements of the frequencies of spec-
tral lines to several places of decimals. The large weight of evidence makes it
seem, to people who do not stop to think, that the initial probability of the equa-
tion, conditional on the rest of the theory, is irrelevant; but really there has to
be an implicit judgment that the initial probability is not too low; for example,
not less than 10~50. (In a fuller discussion I would prefer to talk of the relative
odds of two equations in competition.) How we judge such inequalities, whether
explicitly or implicitly, is not clear: if we knew how we made judgments we
would not call them judgments (#183). It must be something to do with the
length of the equation (just as the total length of [the "meaningful" nonredun-
dant parts of the] chromosomes in a cell could be used as a measure of complex-
ity of an organism) and with its analogy with the classical wave equation and
heat equation. (The latter has even suggested to some people, for example, Weizel
[1953], that there is some underlying random motion that will be found to "ex-
plain" the equation.) At any rate the large weight of evidence permits the initial
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probability to be SUTC and it leads to an apparent objectivism (the reliance on
the likelihoods alone) that is really multisubjectivism. The same happens in
many affairs of ordinary life, in perception (p. 68 of #13), in the law, and in
medical diagnosis (for example, #155).

On a point of terminology, the factor in favor of a hypothesis is equal to the
likelihood ratio, in the sense of Neyman, Pearson, and Wilks, only when both H
and H are simple statistical hypotheses. This is another justification for using
Turing's and Peirce's expressions, apart from their almost self-explanatory nature,
which provides their potential for improving the reasoning powers of all people.
Certainly the expression "weight of evidence" captures one of the meanings
that was intended by ordinary language. It is not surprising that it was an out-
standing philosopher who first noticed this: for one of the functions of philos-
ophy is to make such captures. [It is a pity that Peirce's discussion contained an
error.]

George Barnard, who is one of the Likelihood Brethren, has rightly emphasized
the merits of graphing the likelihood function. A Bayesian should support this
technique because the initial probability density can be combined with the like-
lihood afterwards. If the Bayesian is a subjectivist he will know that the initial
probability density varies from person to person and so he will see the value of
graphing of the likelihood function for communication. A Doogian will consider
that even his own initial probability density is not unique so he should approve
even more. Difficulties arise in general if the parameter space has more than two
dimensions, both in picturing the likelihood hypersurface or the posterior den-
sity hypersurface. The problem is less acute when the hypersurfaces are quad-
ratic in the neighborhood of the maximum. In any case the Bayesian can in ad-
dition reduce the data by using such quantities as expected utilities. Thus he
has all the advantages claimed by the likelihood brotherhood, but has additional
flexibility. [See also #862, p. 711 and #1444.]

(c) Maximum Likelihood, Invariance, Quasiutilities, and Quasilosses

Let us now consider the relationship between Bayesian methods and maximum
likelihood.

In a "full-dress" Bayesian estimation of parameters, allowing for utilities, you
compute their final distribution and use it, combined with a loss function, to
find a single recommended value, if a point estimate is wanted. When the loss
function is quadratic this implies that the point estimate should be the final ex-
pectation of the parameter (even for vector parameters if the quadratic is non-
singular). The final expectation is also appropriate if the parameter is a physical
probability because the subjective expectation of a physical probability of an
event is equal to the current subjective probability of that event.

If you do not wish to appear to assume a loss function, you can adopt the ar-
gument of Jeffreys (1939/61, Section 4.0). He points out that for a sample of
size n (n observations), the final probability density is concentrated in a range of
order n-^, and that the difference between the maximum-likelihood value of



THE BAYESIAN INFLUENCE (#838) 39

the parameter and the mode of the final probability density is of the order 1 //?. (I
call this last method, the choice of this mode, a Bayesian method "in mufti.")
"Hence if the number of observations is large, the error committed by taking the
maximum likelihood solution as the estimate is less than the uncertainty inevita-
ble in any case. . . . The above argument shows that in the great bulk of cases
its results are indistinguishable from those given by the principle of inverse prob-
ability, which supplies a justification for it." It also will not usually make much
difference if the parameter is assumed to have a uniform initial distribution.
(Jeffreys, 1939/61, p. 145; p. 55 of #13. L. J. Savage, 1959/62, p. 23, named
estimation that depends on this last point "stable estimation.")

By a slight extension of Jeffreys's argument, we can see that a point estimate
based on a loss function, whether it is the expectation of the parameter or some
other value (which will be a kind of average) induced by the loss function, will
also be approximated by using the Bayes method in mufti, and by the maximum-
likelihood estimate, when the number of observations is large. Thus the large-
sample properties of the maximum-likelihood method cannot be used for distin-
guishing it from a wide class of Bayesian methods, whether full-dress or in mufti.
This is true whether we are dealing with point estimates or interval estimates. In-
terval estimates and posterior distributions are generally more useful, but point
estimates are easier to talk about and we shall concentrate on them for the sake
of simplicity.

One may also regard the matter from a more geometrical point of view. If
the graph of the likelihood function is sharply peaked, then the final density will
also usually be sharply peaked at nearly the same place. This again makes it clear
that there is often not much difference between Bayesian estimation and maxi-
mum-likelihood estimation, provided that the sample is large. This argument ap-
plies provided that the number of parameters is itself not large.

All this is on the assumption that the Bayesian assumptions are not dogmatic
in the sense of ascribing zero initial probability to some range of values of the
parameter; though "provisional dogmatism" is often justifiable to save time,
where you hold at the back of your mind that it might be necessary to make an
adjustment in the light of the evidence. Thus I do not agree with the often-given
dogmatic advice that significance tests must be chosen before looking at the
results of an experiment, although of course I appreciate the point of the advice.
It is appropriate advice for people of bad judgment.

It is perhaps significant that Daniel Bernoulli introduced the method of maxi-
mum likelihood, in a special case, at almost the same time as the papers by Bayes
and Laplace on inverse probability were published. But, as I said before, it is the
logical rather than the historical connections that I wish to emphasize most. I
merely state my belief that the influence of informal Bayesian thinking on appar-
ently non-Bayesian methods has been considerable at both a conscious and a less
conscious level, ever since 1763, and even from 1925 to 1950 when non-Bayesian
methods were at their zenith relative to Bayesian ones.

Let us consider loss functions in more detail. In practice, many statisticians
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who do not think of themselves as Bayesians make use of "squared-error loss/'
and regard it as Gauss-given, without usually being fully aware that a loss is a
negative utility and smacks of Bayes. The method of least squares is not always
regarded as an example of minimizing squared loss (see Eisenhart, 1964), but it
can be thought of that way. It measures the value of a putative regression line
for fitting given observations. Since statisticians might not always be happy to
concur with this interpretation, perhaps a better term for "loss" when used in
this conventional way would be "quasiloss" or "pseudoloss." We might use it,
faute de mieux, when we are not sure what the utility is, although posterior dis-
tributions for the parameters of the regression line would preserve more of the
information.

If the loss is an analytic function it has to be quadratic in the neighborhood
of the correct answer, but it would be more realistic in most applications to as-
sume the loss to be asymptotic to some value when the estimate is far away from
the correct value. Thus a curve or surface having the shape of an upside-down
normal or multinormal density would be theoretically better than "squared
loss" (a parabola or paraboloid). But when the samples are large enough the
"tails of the loss function" perhaps do not usually affect the estimates much, ex-
cept when there are outliers.

Once the minimization of the sum of squared residuals is regarded as an at-
tempt to maximize a utility, it leads us to ask what other substitutes for utility
might be used, quasiutilities if you like. This question dates back over a quarter
of a millennium in estimation problems. Like quasilosses, which are merely quasi-
utilities with a change of sign, they are introduced because it is often difficult to
decide what the real utilities are. This difficulty especially occurs when the ap-
plications of your work are not all known in advance, as in much pure science
(the "knowledge business" to use Kempthorne's term). A quasiutility might be
somewhat ad hoc, used partly for its mathematical convenience in accordance
with Type II rationality. It is fairly clear that this was an important reason his-
torically for the adoption of the method of least squares on a wide scale.

Fisher once expressed scorn for economic applications of statistics, but he in-
troduced his ingenious concept of amount of information in connection with the
estimation of parameters, and it can be regarded as another quasiutility. It mea-
sures the expected value of an experiment for estimating a parameter. Then
again Turing made use of expected weight of evidence for a particular applica-
tion in 1941. It measures the expected value of an experiment for discriminating
between two hypotheses. The idea of using the closely related Shannon informa-
tion in the design of statistical experiments has been proposed a number of times
(Cronbach, 1953; Lindley, 1956; #11), and is especially pertinent for problems
of search such as in dendroidal medical diagnosis (for example, #592). It mea-
sures the expected value of an experiment for distinguishing between several
hypotheses. In this medical example the doctor should switch to more "real"
utilities for his decisions when he comes close enough to the end of the search
to be able to "backtrack. "A number of other possibile quasiutilities are suggested
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in ##592 & 755, some of which are invariant with respect to transformations
of the parameter space.

In all these cases, it seems to me that the various concepts are introduced es-
sentially because of the difficulty of making use of utility in its more standard
economic sense. I believe the term "quasiutility" might be useful in helping to
crystallize this fact, and thus help to clarify and unify the logic of statistical
inference. The quasiutilities mentioned so far are all defined in terms of the
probability model alone, but I do not regard this feature as part of the defin-
ition of a quasiutility.

Even in the law, the concept of weight of evidence (in its ordinary linguistic
sense, which I think is usually the same as its technical sense though not formal-
ized) helps to put the emphasis on the search for the truth, leaving utilities to
be taken into account later. One might even conjecture that the expressions
"amount of information" and "weight of evidence" entered the English language
because utilities cannot always be sharply and uncontroversially estimated. Both
these expressions can be given useful quantitative meanings defined in terms of
probabilities alone, and so are relevant to the "knowledge business."

These various forms of quasiutility were not all suggested with the conscious
idea of replacing utility by something else, but it is illuminating to think of them
in this light, and, if the word "quasiutility" had been as old as quasiutilities them-
selves, the connection could not have been overlooked. It shows how influential
Bayesian ideas can be in the logic if not always in the history of statistics. The
history is difficult to trace because of the tendency of many writers (i) to cover
up their tracks, (ii) to forget the origins of their ideas, deliberately or otherwise,
and (iii) not to be much concerned with "kudology," the fair attributions of
credit, other than the credit of those they happen to like such as themselves.

The word "quasiutility" provokes one to consider whether there are other
features of utility theory that might be interesting to apply to quasiutilities,
apart from the maximization of their expectations for decision purposes. One
such feature is the use of minimax procedures, that is, cautious decision pro-
cedures that minimize the maximum expected loss (or quasiloss here). Although
minimax procedures are controversial, they have something to be said for them.
They can be used when all priors are regarded as possible, or more generally
when there is a class of possible priors (Hurwicz, 1951; #26, where this general-
ized minimax procedure was independently proposed: "Type II minimax"), so
that there is no unique Bayesian decision: then the minimax procedure corres-
ponds to the selection of the "least favorable" prior, in accordance with a
theorem of Wald (1950). When the quasiutility is invariant with respect to trans-
formations of the parameter space, then so is the corresponding minimax pro-
cedure and it therefore has the merit of decreasing arbitrariness. When the quasi-
utility is Shannon (or Szilard) information, the minimax procedure involves
choosing the prior of maximum entropy (##618, 622), a suggestion made for
other reasons by Jaynes (1957). The maximum-entropy method was reinterpreted
as a method for selecting null hypotheses in #322. I especially would like to
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emphasize this interpretation because the formulation of hypotheses is often
said to lie outside the statistician's domain of formal activity, qua statistician. It
has been pointed out that Jeffreys's invariant prior (Jeffreys, 1946) can be re-
garded as a minimax choice when quasiutility is measured by weight of evidence
(##618, 622). Thus other invariant priors could be obtained from other invari-
ant quasiutilities (of which there is a one-parameter family mentioned later).

Jeffreys's invariant prior is equal to the square root of the determinant of
Fisher's information matrix, although Jeffreys (1946) did not express it this way
explicitly. Thus there can be a logical influence from non-Bayesian to Bayesian
methods, and of course many other examples of influence in this direction could
be listed.

Let us return to the discussion of Maximum Likelihood (ML) estimation. Since
nearly all methods lead to ROME (Roughly Optimal Mantic Estimation) when
samples are large, the real justification for choosing one method rather than an-
other one must be based on samples that are not large.

One interesting feature of ML estimation, a partial justification for it, is its
invariance property. That is, if the ML estimate of a parameter 6 is denoted by
0, then the ML estimate of f(0), for any monotonic function f, even a discontin-
uous one, is simply f(0). Certainly invariant procedures have the attraction of
decreasing arbitrariness to some extent, and it is a desideratum for an ideal pro-
cedure. But there are other invariant procedures of a more Bayesian tone to
which I shall soon return: of course a completely Bayesian method would be in-
variant if the prior probabilities and utilities were indisputable. Invariance, like
patriotism, is not enough. An example of a very bad invariant method is to
choose as the estimate the least upper bound of all possible values of the para-
meter if it is a scalar. This method is invariant under all increasing monotonic
transformations of the parameter!

Let us consider what happens to ML estimation for the physical probabilities
of a multinomial distribution, which has been used as a proving ground for many
philosophical ideas.

In the notation used earlier, let the frequencies in the cells be/?!, n2, . . . ,
nt> with total sample size /V. Then the ML estimates of the physical probabilities
are n,-/N, / = 1, 2, . . . , t. Now I suppose many people would say that a sample
size of n = 1,000 is large, but even with this size it could easily happen that one
of the /?/'s is zero, for example, the letter Z could well be absent in a sample of
1,000 letters of English text. Thus a sample might be large in one sense but effec-
tively small in another (##38, 83, 398). If one of the letters is absent (/?/ = 0),
then the maximum-likelihood estimate of/?/ is zero. This is an appallingly bad
estimate if it is used in a gamble, because if you believed it (which you wouldn't)
it would cause you to give arbitrarily large odds against that letter occurring on
the next trial, or perhaps ever. Surely even the Laplace-Lidstone estimate (/?/ + 1)/
(N + t) would be better, although it is not optimal. The estimate of Jeffreys
(1946), (/?/+ 1/2)/(/V + f/2), which is based onhis"invariantprior," is also better
(in the same sense) than the ML estimate. Still better methods are available which
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are connected with reasonable "Bayesian significance tests" for multinomial dis-
tributions (##398, 547).

Utility and quasiutility functions are often invariant in some sense, although
"squared loss" is invariant only under linear transformations. For example, if the
utility in estimating a vector parameter 6 as 0 is u(6,4>), and if the parameter
space undergoes some one-one transformation 6*= \J/(d) we must have, for con-
sistency, 0* = i//(0) and w*(0*,0) = w(0,0), where u* denotes the utility function
in the transformed parameter space.

The principle of selecting the least favorable prior when it exists, in accordance
with the minimax strategy, may be called the principle of least utility, or, when
appropriate, the principle of least quasiutility. Since the minimax procedure must
be invariant with respect to transformations of the problem into other equivalent
languages, it follows that the principle of least utility leads to an invariant prior.
This point was made in ##618,622. It was also pointed out there (see also ##699,
701, 810 and App. C of #815) that there is a class of invariant quasiutilities for
distributions. Namely, the quasiutility of assuming a distribution of density g(x),
when the true distribution of x if F(x), was taken as

is an invariant prior, though it might be "improper" (have an infinite integral). In
practice improper priors can always be "shaded off" or truncated to give them
propriety (p. 56 of #13).

If 6 is the vector parameter in a distribution function F(x\0) of a random vari-
able x, and 6 is not to be used for any other purpose, then in logic we must iden-
tify £/(0,0) with the utility of taking the distribution to be F(x|0) instead of
F(x\d). One splendid exampleof an invariant utility isexpected weight of evidence
per observation for discriminating between 6 and 0 or "dinegentropy,"

which is invariant under non-singular transformations both of the random
variable and of the parameter space. (Its use in statistical mechanics dates back
to Gibbs.) Moreover it isadditive for entirely independent problems, as a utility
function should be. With this quasituility, A(0) reduces to Fisher's information
matrix, and the square root of the determinant of A(0) reduces to Jeffreys's
invariant prior. The dinegentropy was used by Jeffreys (1946) as a measure

where

From this it follows further that
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of distance between two distributions. The distance of a distribution from a cor-
rect one can be regarded as a kind of loss function. Another additive invariant
quasiutility is (#82; Renyi, 1961; p. 180 of #755) the "generalized dinegentropy,"

the limit of which as c-*0 is the expected weight of evidence, u0(d,<p), somewhat
surprising at first sight. The square root of the determinant of the absolute value
of the Hessian of this utility at 0 = 6 is then an invariant prior indexed by the
non-negative number c. Thus there is a continuum of additive invariant priors of
which Jeffreys's is an extreme case. For example, for the mean of a univariate
normal distribution the invariant prior is uniform, mathematically independent
of c. The invariant prior for the variance 0 is a~lvJ2(1 +c)} , which is propor-
tional to ff—1 and so is again mathematically independent of c.

In more general situations the invariant prior will depend on c and will there-
fore not be unique. In principle it might be worth while to assume a ("type III")
distribution for c, to obtain an average of the various additive invariant priors. It
might be best to give extra weight to the value c = 0 since weight of evidence seems
to be the best general-purpose measure of corroboration (##211, 599).

It is interesting that Jeffreys's invariant prior, and its generalizations, and also
the principles of maximum entropy and of minimum discriminaability (Kullback,
1959) can all be regarded as applications of the principle of least quasiutility.
This principle thus unifies more methods than has commonly been recognized.
The existing criticisms of minimax procedures thus apply to these special cases.

The term "invariance" can be misleading if the class of transformations under
which invariance holds is forgotten. For the invariant priors, although this class
of transformations is large, it does not include transformations to a different
application of the parameters. For example, if 9 has a physical meaning, such as
height of a person, it might occur as a parameter in the distribution of her waist
measurement or her bust measurement, and the invariance will not apply between
these two applications. This in my opinion (and L. J. Savage's, July 1959) is a
logical objection to the use of invariant priors when the parameters have clear
physical meaning. To overcome this objection completely it would perhaps be
necessary to consider the joint distribution of all the random variables of poten-
tial interest. In the example this would mean that the joint distribution of at least
the "vital statistics," given 6, should be used in constructing the invariant
prior.

There is another argument that gives a partial justification for the use of the
invariant priors in spite of Savage's objection just mentioned. It is based on the
notion of "marginalism" in the sense defined by Good (pp. 808-809 of #174;
p. 61 of #6038; p. 1 5 of #732). I quote from the last named. "It is only in mar-
ginal cases that the choice of the prior makes much difference (when it is chosen
to give the non-null hypothesis a reasonable chance of winning on the size of
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sample we have available). Hence the name marginalism. It is a trick that does
not give accurate final probabilities, but it protects you from missing what the
data is trying to say owing to a careless choice of prior distribution." In accor-
dance with this principle one might argue, as do Box and Tiao (1973, p. 44) that
a prior should, at least on some occasions, be uninformative relative to the ex-
periment being performed. From this idea they derive the Jeffreys invariant prior.

It is sometimes said that the aim in estimation is not necessarily to minimize
loss but merely to obtain estimates close to the truth. But there is an implicit
assumption here that it is better to be closer than further away, and this is equiva-
lent to the assumption that the loss function is monotonic and has a minimum
(which can be taken as zero) when the estimate is equal to the true value. This
assumption of monotonicity is not enough to determine a unique estimate nor a
unique interval estimate having an assigned probability of covering the true value
(where the probability might be based on information before or after the obser-
vations are taken). But for large enough samples (effectively large, for the purpose
in hand), as I said, all reasonable methods of estimation lead to Rome, if Rome
is not too small.

(d) A Bayes/Non-Bayes Compromise for Probability Density
Estimation

Up to a few years ago, the only nonparametric methods for estimating
probability densities, from observations x1( x2 , . . . , XN, were non-Bayesian.
These, methods, on which perhaps a hundred papers have been written, are
known as window methods. The basic idea, for estimating the density at a point
x, was to see how many of the /V observations lie in some interval or region
around x, where the number v of such observations tends to infinity while v/N * 0
when N -+ oo. Also less weight is given to observations far from x than to those
close to x, this weighting being determined by the shape of the window.

Although the window methods have some intuituve appeal it is not clear in
what way they relate to the likelihood principle. On the other hand, if the
method of ML is used it leads to an unsatisfactory estimate of the density func-
tion, namely a collection of fractions 1//V of Dirac delta functions, one at each
of the observations. (A discussant: Go all the way to infinity if they are Dirac
functions. Don't be lazy! IJG: Well I drew them a little wide so they are less high
to make up for it.) There is more than one objection to this estimate; partly it
states that the next observation will certainly take a value that it almost certainly
will not, and partly it is not smooth enough to satisfy your subjective judgment
of what a density function should look like. It occurred to me that it should
make sense to apply a "muftian" Bayesian method, which in this application
means finding some formula giving a posterior density in the function space of
all density functionsfor the random variableX, and then maximizing this posterior
density so as to obtain a single density function (single "point in function space")
as the "best" estimate of the whole density function for X. But this means that
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from the log-likelihood 2 log f(x,-} we should subtract a "roughness penalty"
before maximizing. (##133, 699, 701, 810, 1200.) There is some arbitrariness
in the selection of this roughness penalty (which is a functional of the required
density function f), which was reduced to the estimation of a single hyperpa-
rameter, but I omit the details. The point I would like to make here is that the
method can be interpreted in a non-Bayesian manner, although it was suggested
for Bayesian reasons. Moreover, in the present state of the art, only the Bayes-
ian interpretation allows us to make a comparison between two hypothetical
density functions. The weight of evidence by itself is not an adequate guide for
this problem. Then again the non-Bayesian could examine the operational
characteristics of the Bayesian interpretation. The Doogian should do this be-
cause it might lead him to a modification of the roughness penalty. The ball
travels backwards and forwards between the Bayesian and non-Bayesian courts,
the ball-game as a whole forming a plank of the Doogian platform.

It is easy to explain why the method of ML breaks down here. It was not
designed for cases where there are very many parameters, and in this problem
there is an infinite number of them, since the problem is nonparametric. (A
nonparametric problem is one where the class of distribution functions cannot
be specified in terms of a finite number of parameters, but of course any dis-
tribution can be specified in terms of an infinite number of parameters. My
method of doing so is to regard the square root of the density function as a
point in Hilbert space.)

To select a roughness penalty for multidimensional density functions, I find
consistency appealing, in the sense that the estimate of densities that are known
to factorize, such as f(x)g(y) in two dimensions, should be the same whether
f and g are estimated together or separately. This idea enabled me to propose a
multidimensional roughness penalty but numerical examples of it have not yet
been tried. [See also #1341.]

An interesting feature of the subtractive roughness-penalty method of density
estimation, just described, is that it can be made invariant with respect to trans-
formations of the x axes, even though such transformations could make the true
density function arbitrarily rough. The method proposed for achieving invari-
ance was to make use of the tensor calculus, by noticing that the elements of the
matrix A(0) form a covariant tensor, which could be taken as the "fundamental
tensor" g,-j analogous to that occurring in General Relativity. For "quadratic
loss" this tensor becomes a constant, and, as in Special Relativity, it is then not
necessary to use tensors. The same thing happens more generally if w(0,0) is
any function (with continuous second derivatives) of a quadratic.

(e) Type II Maximum Likelihood and the Type II Likelihood Ratio

The notion of a hierarchy of probabilities, mentioned earlier, can be used to
produce a compromise between Bayesian and non-Bayesian methods, by treat-
ing hyperparameters in some respects as if they were ordinary parameters. In
particular, a Bayes factor can be maximized with respect to the hyperparameters,
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and the hyperparameters so chosen (their "Type II ML" values) thereby fix the
ordinary prior, and therefore the posterior distribution of the ordinary param-
eters. This Type II ML method could also be called the Max Factor method. This
technique was well illustrated in #541. It ignores only judgments you might
have about the Type III distributions, but I have complete confidence that this
will do far less damage than ignoring all your judgments about Type II distribu-
tions as in the ordinary method of ML. Certainly in the reference just mentioned
the Type II ML estimates of the physical probabilities were far better than the
Type I ML estimates.

The same reference exemplified the Type II likelihood Ratio. The ordinary
(Neyman-Pearson-Wilks) Likelihood Ratio (LR) is defined as the ratio of two
maximum likelihoods, where the maxima are taken within two spaces corres-
ponding to two hypotheses (one space embedded in the other). The ratio is then
used as a test statistic, its logarithm to base '\l\Je having asymptotically (for
large samples) a chi-squared distribution with a number of degrees of freedom
equal to the difference of the dimensionalities of the two spaces. The Type II
Likelihood Ratio is defined analogously as

max P\E\H (0)}/max P{E\H(B}}
flew QeSl

where 6 is now a hyperparameter in a prior H (Q},£1 is the set of all values of 6
and co is a subset of 12. In the application to multinomial distributions this led
to a new statistic called G having asymptotically a chi-squared distribution with
one degree of freedom (corresponding to a single hyperparameter, namely the
parameter of a symmetric Dirichlet distribution). Later calculations showed that
this asymptotic distribution was accurate down to fantastically small tail-area
probabilities such as 10~16, see #862. In this work it was found that if the Bayes
factor F, based on the prior selected in #547 [see also #1199] were used as a
non-Bayesian statistic, in accordance with the Bayes/non-Bayes compromise, it
was almost equivalent to the use of G in the sense of giving nearly the same
significance levels (tail-area probabilities) to samples. It was also found that the
Bayes factor based on the (less reasonable) Bayes postulate was roughly equiva-
lent in the same sense, thus supporting my claims for the Bayes/non-Bayes
compromise.

(f) The Non-Uniqueness of Utilities

For some decision problems the utility function can be readily measured in
monetary terms; for example, in a gamble. In a moderate gamble the utility can
reasonably be taken as proportional to the relevant quantities of money. Large
insurance companies often take such "linear" gambles. But in many other
decision problems the utility is not readily expressible in monetary terms, and
can also vary greatly from one person to another. In such cases the Doogian,
and many a statistician who is not Doogian or does not know that he is, will
often wish to keep the utilities separate from the rest of the statistical analysis
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if he can. There are exceptions because, for example, many people might assume
a squared loss function, but with different matrices, yet they will all find ex-
pected values to be the optimal estimates of the parameters.

One implication of the recognition that utilities vary from one person to an-
other is that the expected benefit of a client is not necessarily the same, nor
even of the same sign, as that of the statistical consultant. This can produce
ethical problems for the statistician, although it may be possible to reward him
in a manner that alleviates the problems. (See, for example, ##26, 690a.)

One example of this conflict of interests relates to the use of confidence-
interval estimation. This technique enables the statistician to ensure that his in-
terval estimates (asserted without reference to probability) will be correct say
95% of the time in the long run. If he is not careful he might measure his utility
gain by this fact alone (especially if he learns his statistics from cookbooks)
and it can easily happen that it won't bear much relation to his client's utility
on a specific occasion. The client is apt to be more concerned with the final
probability that the interval will contain the true value of the parameter.

Neyman has warned against dogmatism but his followers do not often give
nor heed the warning. Notice further that there are degrees of dogmatism and
that greater degrees can be justified when the principles involved are the more
certain. For example, it seems more reasonable to be dogmatic that 7 times 9
is 63 than that witches exist and should be caused not to exist. Similarly it is
more justifiable to be dogmatic about the axioms of subjective probability than
to insist that the probabilities can be sharply judged or that confidence intervals
should be used in preference to Bayesian posterior intervals. (Please don't call
them "Bayesian confidence intervals," which is a contradiction in terms.)

Utilities are implicit in some circumstances even when many statisticians are
unaware of it. Interval estimation provides an example of this; for it is often
taken as a criterion of choice between two confidence intervals, both having the
same confidence coefficient, that the shorter interval is better. Presumably this
is because the shorter interval is regarded as leading to a more economical search
or as being in general more informative. In either case this is equivalent to the
use of an informal utility or quasiutility criterion. It will often be possible to
improve the interval estimate by taking into account the customer's utility
function more explicitly.

An example of this is when a confidence interval is stated for the position of
a ship, in the light of direction finding. If an admiral is presented with say an
elliptical confidence region, I suspect he would reinterpret it as a posterior prob-
ability density surface, with its mode in the center. (#618; Good, 1951.) The
admiral would rationally give up the search when the expense per hour sank be-
low the expected utility of locating the ship. In other words, the client would
sensibly ignore the official meaning of the statistician's assertion. If the statis-
tician knows this, it might be better, at least for his client, if he went Bayesian
(in some sense) and gave the client what he wanted.
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(g) Tail-Area Probabilities

Null hypotheses are usually known in advance to be false, and the point of
significance tests is usually to find out whether they are nevertheless approxi-
mately true (p. 90 of #13). In other words a null hypothesis Is usually com-
posite even if only just. But for the sake of simplicity I shall here regard the null
hypothesis as a simple statistical hypothesis, as an approximation to the usual
real-life situation.

I have heard it said that the notion of tail-area probabilities, for the signifi-
cance test of a null hypothesis H0 (assumed to be a simple statistical hypothesis),
can be treated as a primitive notion, not requiring further analysis. But this
cannot be true irrespective of the test criterion and of the plausible alternatives
to the null hypothesis, as was perhaps originally pointed out by Neyman and
E. S. Pearson. A value X^ of the test criterion X should be regarded as "more
extreme" than another one X2 only if the observation of Xi gives "more evi-
dence" against the null hypothesis. To give an interpretation of "more evidence"
it is necessary to give up the idea that tail-areas are primitive notions, as will
soon be clear. One good interpretation of "more evidence" is that the weight of
evidence against H0 provided by X\ is greater than that provided by X2> that is

where Hj is the negation of H0 and is a composite statistical hypothesis, and P.O.
stands for "probability density." (When H0 and HI are both simple statistical
hypotheses there is little reason to use "tail-area" significance tests.) This in-
terpretation of "more extreme" in particular provides a solution to the follow-
ing logical difficulty, as also does the Neyman-Pearson technique if all the simple
statistical hypotheses belonging to Hj make the simple likelihood ratio mono-
tonic increasing asx increases.

Suppose that the probability density of a test statistic X, given H0, has a
known shape, such as that in Figure 1a. We can transform the x axis so that the
density function becomes any density function we like, such as that illustrated
in Figure 1b. We then might not know whether the x's "more extreme" than
the observed one should be interpreted as all the shaded part of 1(b), where the
ordinates are smaller than the one observed. Just as the tail-area probability
wallah points out that the Bayes postulate is not invariant with respect to trans-
formations of the x axis, the Bayesian can say tu quoque. (Compare, for example,
p. 53, of #750; Kalbfleisch, 1971, §7, 1-8.) Of course Doogians and many
other modern Bayesians are not at all committed to the Bayes postulate, though
they often use it as an approximation to their honest judgment, or marginal-
istically.

When tail-areas are used for significance testing, we need to specify what is
meant by a "more extreme" value of the criterion. A smaller ordinate might
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Figure 1.

not be appropriate, as we have just seen. I believe it is a question of ordering the
values of the ordinate according to the weight of evidence against the null hy-
pothesis, as just suggested. (Sometimes this ordering is mathematically indepen-
dent of the relative initial probabilities of the simple statistical hypotheses that
make up the composite non-null hypothesis Hj. In this case the interpretation
of "more extreme" is maximally robust modulo the Bayesian assumptions.) This
or similar fact is often swept UTC, although a special case of it is often implicit
when it is pointed out that sometimes a single tail should be used and sometimes
a double tail, depending on the nature of the non-null hypotheses.

For some problems it would not be appropriate to interpret "more extreme"
to mean "further to the right" nor "either further to the right of one point or
further to the left of another" (i.e. for "double tails"). For example, the null
hypothesis might be a bimodal distribution with mean zero, the rivals being un-
modal also with mean zero. Then we might need to regard values of the random
variable close to the origin as significant, in addition to large positive and nega-
tive values. We'd be using a "triple tail" so to speak. All this comes out in the
wash when "more extreme" is interpreted in terms of weight of evidence.

It is stimulating to consider what is "more extreme" in multivariate prob-
lems. It will be adequate to think of bivariate problems which are enough to
bring out all the philosophical [or logical] aspects, which are more important
than the mathematical ones. We might first ask what is the analogue of being
"further to the right." One analogue is being "further to the north and east."
This analogue is often dubious (unless the two independent varaiables are like
chalk and cheese, or like oil and water) even without reference to any Bayesian
or Neymanian-Pearsonian ideas. For under a linear transformation of the in-
dependent variables, such as an orthogonal transformation, there are a contin-
uous infinity of different regions that are further to the north and east. The cor-
responding ambiguity in one dimension refers merely to the question of whether
a single tail is more or less appropriate than a double tail.

The previously mentioned elucidation of "more extreme" in terms of weight
of evidence applies just as much to multivariate problems as to univariate ones,
and provides and answer to this "north-east" difficulty.
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Even when a sensible meaning is ascribed to the expression "more extreme,"
my impression is that small tail-areas, such as 1/10000, are by no means as
strong evidence against the null hypothesis as is often supposed, and this is
one reason why I believe that Bayesian methods are important in applications
where small tail areas occur, such as medical trials, and even more in ESP,
radar, cryptanalysis, and ordinary life. It would be unfortunate if a radar signal
were misinterpreted through overlooking this point, thus leading to the end of
life on earth! The more important a decision the more "Bayesian" it is apt to
be.

The question has frequently been raised of how the use of tail-area significance
tests can be made comformable with a Bayesian philosophy. (See, for example,
Anscombe [1968/69].) An answer had already appeared on p. 94 of #13, and
I say something more about it here. (See also p. 61 of #6038.)

A reasonable informal Bayesian interpretation of tail-area probabilities can be
given in some circumstances by treating the criterion X as if it were the whole
of the evidence (even if it is not a sufficient statistic). Suppose that the proba-
bility density f0 of X given H0 is known, and that you can make a rough sub-
jective estimate of the density fj given H0. (If you cannot do this at all then the
tail area method is I think counterintuitive.) Then we can calculate the Bayes
factor against H0 as a ratio of ordinates fi(X)lf0(X). It turns out that this is
often the order of magnitude of (1/vW)/x fi (x)dx/f^f0(x}dx, where N is
the sample size, and this in its turn will be somewhat less than '\I(P^/N} where
P is the right-hand tail-area probability on the null hypothesis. (See p. 863 of
#127; improved on p. 416 of #547; and still further in #862.) Moreover, this
argument suggests that, for a fixed sample size, there should be a roughly mono-
tonic relationship and a very rough proportionality between the Bayes factor
F against the null hypothesis and the reciprocal of the tail-area probability, P,
provided of course that the non-null hypothesis is not at all specific. (See also
p. 94 of #13; #547.)

Many elementary textbooks recommend that test criteria should be chosen
before observations are made. Unfortunately this could lead to a data analyst's
missing some unexpected and therefore probably important feature of the data.
There is no existing substitute for examining the original observations with care.
This is often more valuable than the application of formal significance tests. If
it is easy and inexpensive to obtain new data then there is little objection to the
usual advice, since the original data can be used to formulate hypotheses to be
tested on later sample. But often a further sample is expensive or virtually im-
possible to obtain.

The point of the usual advice is to protect the statistician against his own
poor judgment.

A person with bad judgment might produce many far-fetched hypotheses on
the basis of the first sample. Thinking that they were worth testing, if he were
non-Bayesian he would decide to apply standard significance tests to these hy-
potheses on the basis of a second sample. Sometimes these would pass the test,
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but some one with good judgment might be able to see that they were still im-
probable. It seems to me that the ordinary method of significance tests makes
some sense because experimenters often have reasonable judgment in the for-
mulation of hypotheses, so that the initial probabilities of these hypotheses
are not usually entirely negligible. A statistician who believes his client is sen-
sible might assume that the hypotheses formulated in advance by the client are
plausible, without trying to produce an independent judgment of their initial
probabilities.

Let us suppose that data are expensive and that a variety of different non-null
hypotheses have been formulated on the basis of a sample. Then the Bayesian
analyst would try, in conjunction with his client, to judge the initial probabil-
ities q\, q-i, . . . of these hypotheses. Each separate non-null hypothesis might
be associated with a significance test if the Bayesian is Doogian. These tests
might give rise to tail-area probabilities PI, PI, P3> . . . . How can these be
combined into a single tail-area probability? (#174.)

Let us suppose that the previous informal argument is applicable and that we
can interpret these tail-area probabilities as approximate Bayes factors C/Pi, C/P2,
C/P3, . . . against the null hypothesis, these being in turn based on the assump-
tion of the various rival non-null hypotheses. ("Significance tests in parallel.")
By a theorem of weighted averages of Bayes factors, it follows that the resulting
factor is a weighted average of these, so that the equivalent tail-area probability
is about equal to a weighted harmonic mean of Plt P2, P3, . . . , with weights
Q\> Qi> <J3> • • • • This result is not much affected if C is a slowly decreasing
function of P instead of being constant, which I believe is often the case. Never-
theless the harmonic-mean rule is only a rule of thumb.

But we could now apply the Bayes/non-Bayes compromise for the invention
of test criteria, and use this weighted harmonic mean as a non-Bayes test cri-
terion (p. 863 of #127; ##547, 862).

The basic idea of the Bayes/non-Bayes compromise for the invention of test
criteria is that you can take a Bayesian model, which need not be an especially
good one, come up with a Bayes factor on the basis of this model, but then
use it as if it were a non-Bayesian test criterion. That is, try to work out or
"Monte Carlo" its distribution based on the null hypothesis, and also its power
relative to various non-null hypotheses.

An example of the Bayes/non-Bayes compromise arises in connection with
discrimination between two approximately multinomial distributions. A crude
Bayesian model would assume that the two distributions were precisely multi-
nomial and this would lead to a linear discriminant function. This could then be
used in a non-Bayesian manner or it might lead to the suggestion of using a linear
discriminant function optimized by some other, possibly non-Bayesian, method.
Similarly an approximate assumption of multinormality for two hypotheses
leads to a quadratic discriminant function with a Bayesian interpretation but
which can then be interpreted non-Bayesianwise. (See pp. 49-50 of #397 where
there are further references.)



THE BAYESIAN INFLUENCE (#838) 53

Let us now consider an example of an experimental design. I take this example
from Finney (1953, p. 90) who adopts an orthodox (non-Bayesian) line. Finney
emphasizes that, in his opinion, you should decide in advance how you are go-
ing to analyze the experimental results of a designed experiment. He considered
an experimental design laid out as shown in Figure 2. The design consists of ten
plots, consisting of five blocks each divided into two plots. We decide to apply
treatment A and treatment B in a random order within each block, and we
happen to get the design shown. Now this design could have arisen by another
process: namely by selecting equiprobably the five plots for the application of
treatment A from the 10!/(5!)2 = 252 possibilities. Finney then says, "The form
of analysis depends not on the particular arrangement of plots and varieties in

Figure 2. An agricultural experiment.

the field [ I have been talking about treatments instead here but it does not affect
theargument] but on the process of randomization from which the particular one
was selected." (Perhaps one should talk of a stochastic or random design pro-
cedure and a realization of the procedure.} For one design procedure we would
perhaps use the comparison within the five pairs, and for the other procedure we
would compare the set of five yields from treatment A with the set of five yields
from treatment B. Leaving aside the analysis of variance, we might find that
every plot A did better than every plot B, thus bringing off a distribution-free
chance of 1/252; but we are "permitted" to say merely that the chance is 1/32
if the design procedure was based on the five blocks. Suppose the statistician
hadn't said which was his design and then he'd dropped dead after the experi-
ment and suppose this is an important experiment organized by the government
to decide whether a certain big expensive and urgent food production method
was to be put into effect. Would it be reasonable to search the statistician's
papers carefully to find out what his intentions had been? Or would it on the
other hand be reasonable to call in agriculturalists to look at the plots in the
field in order to try to decide which design would have been more reasonable?
There are of course reasons for choosing one design rather than another one.
So, if you entirely accept the Fisherian logic (as exemplified by Finney) you are
whole-heartedly trusting the original judgment of choice of design: this is what
the mystique recommends. My own feeling is that you would do better to judge
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the prior probabilities that each of the two designs is to be preferred, and then
use these probabilities as weights in a procedure for combining significance tests
(#174 and p. 83 of #750).

A living agriculturalist might examine the field and say that the design corres-
ponding to the tail-area probability of 1/32 deserved twice as much weight as
the other design. Then the harmonic-mean rule of thumb would suggest that the
equivalent tail-area probability from the observations is

Of course we might do better by using the analysis of variance in a similar man-
ner. I have used a distribution-free approach for the sake of simplicity. This im-
precise result is better than either of the precise ones, 1/32 and 1/252. I predict
that lovers of the "precision fallacy" will ignore all this.

It is often said that non-Bayesian methods have the advantage of conveying
the evidence in an experiment in a self-contained manner. But we see from the
example just discussed that they depend on a previous judgment; which in the
special case of the dead-dropping of the statistician, has to be a posterior judg-
ment. So it's misleading to tell the student he must decide on his significance
test in advance, although it is correct according to the Fisherian technique.

(h) Randomness, and Subjectivism in the Philosophy of Physics

I would have included a detailed discussion on the use of random sampling and
random numbers, but have decided not to do so because my views on the sub-
ject are explained, for example, on p. 255 of #85 A and on pp. 83-90. The
use of random sampling is a device for obtaining apparently precise objectivity
but this precise objectivity is attainable, as always, only at the price of throwing
away some information (by using z Statistician's Stooge who knows the random
numbers but does not disclose them). But the use of sampling without random-
ization involves the pure Bayesian in such difficult judgments that, at least if
he is at all Doogian, he might decide, by Type II rationality, to use random
sampling to save time. As Cornfield (1968/70, p. 108) points out, this can be
covered within the Bayesian framework.

Since this conference is concerned with physics as well as with statistics I
should like to mention a connection between something I have been saying and
a point that is of interest in the philosophy of physics. (This point is also dis-
cussed in #815.)

When discussing the probability that the millionth digit of n is a 7, I could
have pointed out that similar statements can be made about pseudorandom
numbers. These are deterministic sequences that are complicated enough so that
they appear random at least superficially. It would be easy to make them so
complicated that it would be practically impossible to find the law of generation
when you do know it. Pseudorandom numbers are of value in computer appli-
cations of the so-called Monte Carlo method. They are better than random
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numbers for this purpose because it is possible to check a program exactly and
conveniently when pseudorandom numbers are used. One could well say that the
probabilities of the various sequences are the same as for a random sequence
until the law of generation is known. This in an example of the shifting or
evolving [or dynamic] probabilities that I mentioned before. The probabilities
would all become 1 or 0 if the law of generation were discovered.

Now it seems to me that this is precisely the situation in classical statistical
mechanics. Since the exact positions and velocities of the molecules are not
known there is no practical difference between the assumptions of determinism
and indeterminism in classical statistical mechanics.

Let us imagine that the world really is physically deterministic. The subjec-
tive probability (of the physicist) is almost equal to 1 that the entropy of a
closed system will not decrease. He tends to believe that this subjective prob-
ability is also a physical probability but it is difficult to see how it can be on
the assumption of determinism, any more than it can be a physical probability
that the millionth digit of n is a 7. The world is so complicated that pseudo-
indeterminism is indistinguishable in practice from strict physical indetermin-
ism. Thus the physicist is "safe" when he says that certain of his subjective
probabilities are physical, because he cannot be refuted. Yet he is really sweep-
ing his subjective probabilities UTC. I claim that von Mises (1957, pp. 184-186)
made a logical error when he argued that the effectiveness of classical statis-
tical mechanics proves that the world is really indeterministic. (Compare Good,
1958; and p. 72.) Of course quantum mechanics is something else.

V. DISCUSSION

I have allowed for some of the discussion already in this write-up. Here I mention
a point raised in the discussion by Peter Finch. He asked in what way initial
probabilities come into statistical practice. Apart from the fact that Bayesian
methods are gradually coming to the fore, I mentioned the following ex-
ample.

Fisher (1959, p. 47) argued that, at the time he wrote, there was little evi-
dence that smoking was a cause of lung cancer. The research by Doll eta/, had
shown a tail-area probability of about 1/80 suggesting such a relationship, but
had also shown a similar level of significance suggesting that inhalers less often
get lung cancer than non-inhalers. Fisher's ironical punch line then was that
therefore the investigators should have recommended smokers to inhale! I be-
lieve that the investigators (unconsciously?) assumed that the initial probabil-
ity here was too low to justify giving this advice. (#228; but see also pp. 365-
367 of #339.)

Peter Finch also said that the purpose of avoiding far-fetched hypotheses was
to get one's work published. My reply was that I had frequently used initial
probabilities in my own classified statistical work to help decide what hypoth-
eses I should follow up, with no question of publication.
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CHAPTER 5

The title of this note was selected so as to provide an excuse for discussing some
rather general matters. Let us first consider the question of which of probability
and statistics came first historically. This question is l ike the one about eggs and
chickens. The question whether eggs or chickens came first could in principle be
given a meaning by using arbitrari ly precise definit ions of eggs and chickens, and
even then probably nobody would be able to answer the question. . . .

Let us consider some examples of statistical principles. For each of them we
shall run into trouble by regarding them as golden rules leading to precise
probability statements or decisions.

(i) Maximum likelihood. I recently won a one-cent bet by guessing the name
of the last entry in a dictionary of 50,000 American scientists. (It was Zyg-
mund.) The maximum-likel ihood estimate of the number of names of American
scientists known to me, on this evidence, is 50,000—clearly an unreasonable
estimate. Fisher would recommend that the pr inciple of maximum likelihood
should be used with common sense. Another way of saying the same thing
would be that in i t ia l probabilities and ut i l i t ies should be taken into account.
(For an example where maximum l ikel ihood gets into trouble even for large
samples see Lindley, 1947.)

( i i ) Tail-area probabilities. One of the earliest attempts to avoid the use of
more than the m i n i m u m of judgment was the use of tail-area probabilities (the
so-much-or-more method). A typical example is the use of x2 by Karl Pearson in
1900. An earlier use was by Laplace in 1773 in a memoir on the incl inat ion of
the orbits of comets. There was an earlier, but rather trivial, example by Ar-
buthnot in 1712. But presumably gamblers must have used the method in a
rough and ready way, even before 1654, for deciding whether to draw swords on
their opponents for cheating.

To prove that the use of tail-area probabilities as the f inal summary of sta-
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tistical evidence is controversial, it is sufficient to refer to a 1928 paper by
Neyman & E. S. Pearson, in which it was emphasized that likelihoods on non-
null hypotheses are relevant as well as those on the null hypothesis. It is possi-
ble to regard this emphasis as constituting a slight swing back to the Bayes-
Laplace philosophy. (An example to show that the probability distribution of a
statistic on the null hypothesis is not enough for determining the choice of
which statistic to use is that the reciprocal of Student's t has the same distribu-
tion as t itself when the sample is of size 2.)

(iii) Large-sample theory, or asymptotic properties of statistics. A good deal
of modern statistical theory is concerned with the asymptotic properties of
statistics. One controversial question is how large samples have to be in order to
make these asymptotic properties relevant.

(iv) The likelihood-ratio method. In this method a statistic is chosen that is
equal to the ratio of maximum likelihoods among the class of simple statistical
hypotheses being tested and among the class of all simple statistical hypotheses
entertained. Though intuitively appealing and having desirable large-sample
properties, a small-sample example was produced by Stein in which the method
leads to absurd conclusions (see, for example, Neyman, 1952).

(v) Unbiased statistics. Unbiased statistics can take values outside the range of
what is possible. For example, if a multinomial distribution has category chances
Pi, Pi, • • - , PA??, and if in a sample of size A/ the frequencies of the /?? classes
are/71 ( /72 , . . . , nm, then an unbiased estimate of £/?/ is

This estimate would vanish if each n,- were either 0 or 1, but the minimum possi-
ble value of the population parameter is '\jm. It is tempting to replace by 1//7?
those values of the statistic that turn out to be less than I/AT?. Some statisticians
would do this without noticing that they were now using a biased statistic.

It is sometimes argued that unbiased statistics have an advantage if it is
intended to average over a number of experiments. Two questions then arise:
(a) How many experiments? (b) Would a modified Bayes-Laplace philosophy do
just as well if not better? (By the "modified Bayes-Laplace philosophy" we
mean the philosophy described in [omitted parts of] the present note. It differs
from the ordinary Bayes-Laplace philosophy in that it leaves room for individual
judgment instead of assuming uniform initial distributions, i.e. Bayes postulates.)
No modified Bayes-Laplace estimate can lie outside the possible range of values
of the population parameter. Applications of the modified Bayes-Laplace
philosophy do not yet belong to orthodox statistics. They are not intended to
lead to precise results.

(vi) Deciding on significance tests before taking a sample. In elementary text-
books the advice is often given to decide on one's tests of significance before
taking a sample. This may be good advice to those whose judgment you do not
trust. Or a statistician may use the principle for himself as a precaution against
wishful thinking, or as a guarantee against accusations of prejudice rather than
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judgment. But consider the following example. A sample of 100 readings is
taken from some distribution for which the null hypothesis is that the readings
are independently distributed with a normal distribution of zero mean and unit
variance. It is decided in advance of sampling to divide this normal distribution
up into ten equal areas, and to apply the x2 test to the ten-category equiproba-
ble multinomial distribution of frequencies with which the readings fall into the
ten areas. This would appear to be a very reasonable statistic. But what if it leads
to a non-significant result even though one of the 100 readings was 20 standard
deviations above the mean?

(vii) Confidence intervals. (Developed mainly by Neyman & Pearson [1930-
33].) Suggested by E. B.Wilson (1927) [and Laplace (1878/1912), 286-287].
. . . One of the intentions of using confidence intervals and regions is to
protect the reputation of the statistician by being right in a certain proportion of
cases in the long run. Unfortunately, it sometimes leads to such absurd state-
ments, that if one of them were made there would not be a long run. One objec-
tion, similar to the one above concerning unbiased estimates, was given by M. G.
Kendall (1949). For others see the discussion on Daniels, "The theory of posi-
tion-finding" (1951). A further objection is admitted in Neyman (1952), name-
ly, that it can lead to absurdly long confidence intervals. Stein introduced a
sequential sampling procedure to overcome this last objection, but it can lead to
absurdly large samples.

A statistician can arrange to make confidence pronouncements that are cor-
rect in at least 95% of cases in the long run (if there is a long run). But if his
customer decides to separate off the pronouncements that relate to a subclass of
the possible experimental results (such as those in which a random variable is
large), then it is no longer true that 95% of the subclass will be correct in gen-
eral. In fact the judgment that the random variable is large is an indirect state-
ment about the initial probability distribution, and it will imply that for this
subclass the proportion of correct confidence interval statements will probably
fall below 95%. This argument shows what is perhaps the main reason why the
confidence method is a confidence trick, at least if used too dogmatically.

(viii) Fiducial distributions. The use of fiducial distributions in statistical
inference is controversial if only because these distributions need not be unique.
(See Mauldon, 1955. There is similar unpublished work by J. W. Tukey.)

(ix) Errors of the first and second kinds. The notion of the minimization of
sampling costs for a given consumer's risk was used by Dodge & Romig (1929),
and the subject was expanded by Neyman & Pearson in 1933. . . . As pointed
out by Barnard at a recent British Mathematical Colloquium, the notion of
errors of the first and second kinds ignores questions of "robustness" of a
significance test. One wants a test to be sensitive in detecting certain types of
departure from the null hypothesis but insensitive to other types of departure,
a compromise between robustness and sensitivity.

(x) The point of a significance test. What is the point of a significance test
anyway? A large enough sample will usually lead to the rejection of almost
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any null hypothesis (cf. p. 90 of #13). Why bother to carry out a statistical
experiment to test a null hypothesis if it is known in advance that the hypothesis
cannot be exactly true? The only answer is that we wish to test whether the
hypothesis is in some sense approximately true, or whether it is rejectable on the
sort of size of sample that we intend to take. These points are not usually made
clear in text-books on statistics, and in any event they have never been formu-
lated precisely.

(xi) Is every significance test also an estimation problem? This is another
question on which there is controversy, but for our present purposes it is rather
a side issue.

(xii) On the use of random sampling numbers. In avoiding the use of the
Bayes-Laplace philosophy or of the modified Bayes-Laplace philosophy, ortho-
dox statisticians attempt to make use of only two types of probability. These are
(a) the tautological ones that occur in the definition of simple statistical hy-
potheses, and (b) probabilities obtained from random sampling numbers or
roulette wheels or in some other way that does not lead in practice to much
dispute concerning the numerical values of the probabilities. (In effect, nearly
everybody accepts the null hypothesis that the random sampling numbers are at
least approximately equiprobably random. This is an example where the distinc-
tion, made, for example, by Fisher, between non-rejection and acceptance seems
to disappear.) The usefulness of the method of randomization in the design of an
experiment is indisputable; nevertheless, it becomes controversial if it is put
forward as absolutely precise.

We consider the famous tea-testing experiment (see Fisher [1949], p. 11).
. . . [See #815.]

Thus the precision obtained by the method of randomization can be obtained
only by ignoring information; namely, the information of what particular ran-
dom numbers (or Latin square, etc.) occurred.

(xiii) Does decision theory cover ordinary inference? Just as there is fairly
general agreement about the direct probabilities arising from random sampling
numbers, there is also fairly general agreement within firms concerning certain
utilities that occur in industrial processes. This is so when the utilities can be
expressed in monetary terms and when the amounts of money are not large
compared with the total capital of the firm. But in purely scientific matters
there is much less agreement; in fact, the utilities as judged by a single individual
will probably be bounded by upper and lower bounds that are very unequal. In
other words the utilities are vague. For this reason the application of decision
theory to scientific research is controversial (cf. p. 40 of #13). . . .

This note is based on a lecture given to the American Statistical Association
and to the Society of Industrial Applied Mathematics, New York. The copy-
right is held by General Electric Company, who have kindly granted permission
to publish. The present version gives effect to improvements suggested by Mr.
Wilfred Perks.



CHAPTER 6

Kinds of Probability (#182)

The mathematician, the statistician, and the philosopher do different things with
a theory of probability. The mathematician develops its formal consequences,
the statistician applies the work of the mathematician, and the philosopher
describes in general terms what this application consists in. The mathematician
develops symbolic tools without worrying overmuch what the tools are for; the
statistician uses them; the philosopher talks about them. Each does his job better
if he knows something about the work of the other two.

What is it about probability that has interested philosophers? Principally, it
is the question whether probability can be defined in terms of something other
than itself, and, if not, how the idea of probability is used, what is its meaning,
what are the shades of meaning. Can we verify that probability exists, or must
we be satisfied to say how it is used? Is the "use" theory of meaning more ap-
propriate than the "verification" theory? It seems to me that the philosopher's
job is mainly to describe what a man does or thinks at the precise moment that
he uses the idea of probability.

Our main question is this: are there different kinds of probability? The ques-
tion is analogous to the one "Are there different kinds of life?" In a sense there
are two kinds of life: animal and vegetable [this ignores some small organisms];
in another sense there are as many as there are genera or species; in yet another
sense there is only one kind of life, since life is indivisible, and even the distinc-
tion between animals and vegetables is misleading in some contexts. . . . Much
of the controversy about the theory of probability is like this. From some points
of view there are at least five kinds of probability; from another point of view
they can all be defined in terms of a single kind. I shall elaborate this remark and
begin by describing some different kinds of probability. Classification of differ-
ent kinds of probability is half the problem of the philosophy of probability.
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THE CLASSICAL DEFINITION

Some billion years ago, an anonymous speck of protoplasm protruded the first
primitive pseudopodium into the primeval slime, and perhaps the first state of
uncertainty occurred. Thousands of years ago words such as maybe, chance,
luck, and fate were introduced into languages. If a theory is a method of using
language, we could say that theories of probability are thousands of years old.
But often a usage of language is not dignified by the name theory unless a real
effort has been made to describe this usage accurately: a theory, then, is not
just talk, but is also talk about talk. (Philosophers of science talk about talk
about talk.) So when Aristotle (about 300 B.C.) said "the probable is what
usually happens," and when Cicero (about 60 B.C.) described probability as the
"guide of life," they had formulated primitive theories of probability and of
rational behavior. We can hardly tell whether these theories had any practical
results; at any rate, the ancient Romans later practised insurance, and Domitius
Ulpianus drew up a table of life expectancies (about A.D. 200.)

Mathematical ideas, however, date back only a few hundred years. A com-
mentary in 1477 on Dante's Purgatorio gives the probabilities of various totals
when three dice are thrown. Perhaps the application was to cleromancy (divina-
tion by dice). In the 16th century, Cardan, an inveterate gambler, made several
simple probability calculations of use to gamblers. He defined probability as a
"proportion of equally probable cases"; for example, of the 36 possible results
of throwing two dice, three give a total of 11 or more points, so the probability
of this event is defined as 1/12 if the 36 possible results are equally probable.
The definition by equally probable cases is usually called the "classical definition."

The origin of the mathematical theory of probability is not usually ascribed
to Cardan, but rather to Pascal in 1654, who, in correspondence with Fermat,
solved the first mathematically nontrivial problems. The first book on the sub-
ject, of any depth, was published soon afterwards by Huygens.

All of these authors were concerned with games of chance, and although they
defined probability as a proportion of equally probable cases, their purpose must
have been to explain why certain long-run proportional frequencies of success
occurred. Without being explicit about it they were trying to explain one kind of
probability in terms of another kind. James Bernoulli was much more explicit
about it, in his famous work Ars Conjectandi, published in 1713, eight years
after his death. His "law of large numbers" states that in n "trials," each with
probability p of success, the number of successes will very probably be close to
pn if/? is large. For example, if a coin has probability exactly 1/2 of coming down
heads, and if it is tossed a thousand times, then the number of heads . . . will
very probably lie between 470 and 530. . . . These results are based on the
assumption that the probability of heads is 1/2 at each throw, no matter what the
results of previous throws may have been. In other words, the trials must be
"causally independent." Bernoulli did not make it clear that the trials must be
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causally independent and that pn must be large. If your probability, p, of win-
ning a sweepstake is 1/1,000,000, then Bernoulli's theorem would not be appli-
cable until you had entered several million sweepstakes by which time you
would be too old to care.

Bernoulli proved his theorem on the assumption that the probability, p, was
defined as a proportion of equally probable cases. But he tried to apply the
theorem to social affairs in which this definition is hardly appropriate. Worse
yet: the probability is likely to be variable.

SUBJECTIVE PROBABILITY

Even in games of chance the classical definition is not entirely satisfactory, for
the games may not be "fair." A fair game of chance is one in which the appar-
ently equal probabilities "really are" equal. In order to give this definition of a
fair game any substance we must again distinguish between two kinds of proba-
bility. Consider, for example, the probability that cutting an ordinary pack of
playing cards will put a red card at the bottom of the pack, an event that I shall
call a "success." Since half the cards are red and half are black, the probability
would seem to be 1/2 if the pack of cards, and its shuffling, are fair. But if all the
red cards have dirty, sticky faces, then a black card is more likely to be brought
to the bottom. If we knew the red cards had sticky faces we would prefer to bet
on a black card, in a "level bet." But if we did not know it, then the probability
would still be 1/2 for us. Even if we allowed for the possibility of stickiness, the
black cards are as likely to be more sticky as to be less so, unless we have some
further information. For us the first cut has probability 1/2 of being successful.

We may have an opponent who knows that the red cards are stickier. For him
the probability is not the same as it is for us. This example shows that personal,
or subjective, or logical probability depends on the given information as well as
on the event whose probability is to be estimated. This is the reason for notation
of the form

read from left to right (like all good notations) "the probability of E given F."
For the sake of generality, E and F may be interpreted as propositions. This
notation (or equivalent ones) has become standard during the present century.
In this notation the probabilities we have just been discussing are

/'(bottom card is redlthe cards have been well shuffled)

and

/'(bottom card is redlthe cards have been well shuffled by normal standards,
but the red ones have sticky faces).

The use of the vertical stroke, or equivalent notation, is likely to save us from the
errors that may arise through talking simply about the "probability that the bot-
tom card will be red," without reference to the "given" (= assumed) information.

/>(E|F)
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PHYSICAL PROBABILITY

Suppose that our opponent has carried out a very extensive experiment and has
decided that the long-run proportion of successes is 0.47 (instead of 1/2). We
may be tempted to call this the "true probability," or "physical probability,"
or "material probability," or "chance," or "propensity," and to regard it as
having an impersonal, public, or objective significance. Whether or not physical
probability is regarded as distinct from personal, private, intuitive, subjective,
or logical probability, it is often convenient to talk as if it were distinct. I shall,
however, argue later on that its numerical value can be defined in terms of sub-
jective probability.

A physical probability is the probability of a "success" given the "experi-
mental setup." So for physical probabilities, too, it is convenient to have a
notation of the form P(E\F). We can distinguish between true and hypothetical
probabilities, depending on whether the experimental setup is true or hypo-
thetical. For example, we can take an actual pack of cards and we can discuss
the probability that the bottom card will be red "given" (= on the assumption
that) all the clubs have been omitted. This probability makes sense even if the
clubs have not in fact been omitted, and the probability will then be "hypo-
thetical" and not "true." It so happens that it is decidedly useful to talk about
hypothetical probabilities as well as true ones.

We could imagine a physical chemist who could analyze the chemicals on
the faces of the cards and then compute the probability of success by quantum
theory. But this would be a far cry from the simple physical symmetry that led
Cardan and Pascal to judgments of equal probability, or from the logical
symmetry that caused us to consider black and red to be equally likely to be
the stickier. It is perhaps clear by now that the classical definition, however
suggestive, is by no means general enough to cover all the uses of the word
probability.

INVERSE PROBABILITY

Most applications of the theory of probability to the social sciences are more
like unfair games of chance than fair ones. If n smokers are sent questionnaires
and r of them refuse to fill them out, what is the probability, p, that the next
smoker selected will refuse to fill out his questionnaire? And what is the pro-
portion of all smokers who will refuse? Whereas Bernoulli's theorem works
from a knowledge of p to information about the number of "successes" in the
sample, the answer here seems to require the inverse process. A simple estimate
of p is r/n, but if r is small this may be a poor estimate, especially ifr = 0. (To
say that the probability of an event is 0 is to say that the event is infinitely
unlikely. Such an assertion is not justified merely by 100 percent failures in the
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past.) Sometimes rjn is taken as a definition of probability; it may be called
the "naive" definition.

A better attempt at "inverting Bernoulli's theorem" was made by Thomas
Bayes in a paper published posthumously in 1763. The method is known as
"inverse probability," and was given a prominent place in Laplace's Theorie
analytique des probabilities (1812). It may also be described as the Bayes-
Laplace method of statistical inference. In modern terminology the principle of
inverse probability can be expressed in terms of "initial" probabilities, "final"
probabilities, and "likelihoods." The initial probability (also called the "prior"
probability) of a hypothesis is its probability before some experiment is per-
formed. (There may or may not have been previous experiments or evidence,
so the description "a priori" is inappropriate.) The final probability is the
probability after the experiment is performed. These probabilities are different,
in general, because the given information is different. The likelihood of a hy-
pothesis is the probability, given that hypothesis, of the actual result of the
experiment.

For example, suppose we have two hypotheses about a coin, either that the
coin is fair or that it is double-headed, and suppose that the initial probabilities
of these two hypotheses are equal, that is, each is !4 Suppose now that the
coin is tossed ten times and comes down heads every time. The likelihoods of
the two hypotheses are then 2~~10 = 1/1024 and 1.

Bayes's theorem is, in effect, that the final probability of a hypothesis is
proportional to its initial probability times its likelihood. In our example, the
final probabilities are therefore proportional to 1/1024 and 1. Therefore, the
final probability that the coin is double-headed is 1024/1025, or nearly certain.

Although Laplace's exposition was clearer than Bayes's, he blatantly as-
sumed that initial probabilities were always equal, whereas Bayes was more
modest. Laplace assumed, for example, that an unknown physical probability,
p, was initially (that is, before any observations were taken) equally likely to
"take any value" between 0 and 1; he assumed, for example, that each of the
intervals (0, 0.01), (0.01, 0.02), . . . , (0.99, 1.00) initially had probability
0.01. In the applications, p is what we are calling a physical probability existing
"out there," whereas the probability 0.01 is a more subjective kind of proba-
bility. By making this assumption of a "uniform distribution" of probability
between 0 and 1, Laplace proved his so-called "law of succession." This states
that after r "successes" in n "trials," p can be estimated as (r + !)/(/? + 2). For
example, after one success in two trials, p is estimated as Vr, after one success
in one trial, p is estimated as 2/3; after no success in one trial, p is estimated as
1/3; after no success in no trials, p is estimated as 1/2. The formula is open to
dispute and has often been disputed. It leads, for example, to the conclusion
that anything that has been going on for a given length of time has probability
[close to] J/2 of going on for the same length of time again. This does not seem
to me to be too bad a rule of thumb if it is applied with common sense.
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Inverse probability is by no means the only method of statistical inference.
There is, for example, an important method known as "maximum likelihood,"
used at times by Daniel Bernoulli in 1777, Gauss in 1823, and especially by
Fisher in 1912. In this method, that hypothesis is selected whose likelihood is a
maximum, where "likelihood" is defined as it is above. For the simple sampling
experiment mentioned above, the method of maximum likelihood leads to the
naive estimate rfn, which in my opinion is not as good as the result given by
Laplace's law of succession.

A familiar objection to the use of inverse probability is that the initial prob-
abilities cannot usually be determined by clear-cut rules. The method of maxi-
mum likelihood is clear-cut, and does not lend itself so easily to conscious or
unconscious cheating. But for small samples it can lead to absurd conclusions.
The method of inverse probability, although more arbitrary, need never lead to
absurdity unless it is dogmatically combined with an assumption that the initial
probabilities of alternative hypotheses are invariably equal.

DEFINITION BY LONG-RUN FREQUENCY

One of Laplace's tricks was to use the expression "equally possible cases" in-
stead of "equally probable cases," and thereby to pretend that he had defined
probability completely. Not many people today are taken in by this verbal trick.

Leslie Ellis in 1843, A. Cournot in 1843, G. Boole in 1854, and J. Venn (in a
full-length treatise, 1866), were not taken in. They asked, for example, how you
could prove that a die was unloaded except by throwing it a great number of
times. They proposed to solve the problem of inverting Bernoulli's theorem by
simply defining physical probability in terms of long-run frequency ("frequent-
ism").

If a roulette wheel is spun 300 times and there is no occurrence of a 7 should
we regard the probability of a 7 on the next spin as 1/37 (its "official" value), or
as 0, or as some intermediate value? This simple question exposes the weakness
both of Laplace's position and of pure frequentism. The frequentist would per-
haps refuse to make any estimate and would say "spin the wheel another few
hundred times." Owing to lack of space I shall leave this question and consider
an even simpler one.

Suppose that a coin-spinning machine is set to work and produces the se-
quence

HTHTHTHTHTHTHTHTHTHT

The proportion of heads is precisely 1/2 and it seems reasonable to predict that
the "Venn limit," that is, the limiting proportion of heads if the sequence is
indefinitely continued, will also be 1/2. Yet no one would say that the spinning
was fair. This type of difficulty was recognized by Venn but was not adequately
met. R. von Mises in 1919 proposed a new frequentist theory of probability
based on the notion of infinitely long random sequences—what he called "irreg-
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ular collectives." The main property of an irregular collective is that the propor-
tion of "successes" (say heads) is the same for every sub-sequence selected in ad-
vance. This property is closely related to the impossibility of a successful gam-
bling system. An irregular collective is an abstraction like a point in Euclidean
geometry. Von Mises drew a clear distinction between the mathematical or
abstract theory and the problem of application of that theory. He was perhaps
the first person to make this distinction explicit for the theory of probability, in
other words, to advocate Euclid's method, the "axiomatic method." But having
made the distinction, he virtually ignored the philosophical problem of applica-
tion. He stated, like the 19th-century frequentists, that in the applications the
sequences must be long, but he did not say how long; just as the geometer might
say that dots must be small before they are called points, without saying how
small. But the modern statistician often uses small samples; he is like a draftsman
with a blunt pencil. He would like to know how long is a long run. As J. M.
Keynes said, "In the long run we shall all be dead."

If a frequentist is cross-examined about how long is a long run, it is possible
to deduce something about the implicit initial probabilities that he is using. This
can be done algebraically, by assuming that the initial probabilities exist as
"unknowns," applying the theory of probability, including Bayes's theorem,
making use of the frequentist's judgments, and finally solving for the unknown
initial probabilities (or getting upper and lower bounds for them). In this way
the frequentist may be seen, in spite of hot denials, to be behaving0s /The had
judgments concerning initial probabilities of hypotheses. Or he may be caught in
a contradiction.

Like Venn, von Mises deliberately restricted the generality of the theory to
situations where the long-run frequency definition seemed to be reasonable. He
was entitled to do this but he was not justified in being intolerant of theories
that try to achieve more, and especially those that concern themselves more with
the philosophical problem of applicability.

Among other brilliant mathematicians since von Mises who have developed
the mathematical theory, perhaps Kolmogorov deserves special mention. Most of
these mathematicians have been concerned both with the mathematical theory
and with its applications, but much less with the philosophical problem of
applicability. Among those who have been so concerned were the philosopher
W. E. Johnson, his pupil Keynes (1921), Jeffreys (1939/61), Ramsey (1926/64),
B. de Finetti (1937/64), B. O. Koopman (1940a, b), R. Carnap (1950), B. Rus-
sell (1948), ##13, 26, 43, 85A, 174, and L. J. Savage (1954).

NEOCLASSICAL DEFINITION

Some of these writers are dualists and hold that one should talk about two kinds
of probability. Others put most emphasis on the subjectivistic or logical interpre-
tation. Here I shall merely summarize some of my own views, which in one
respect or another are closely related to those of the other authors just men-
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tioned. The theory may reasonably be called "neoclassical" or "neo-Bayesian,"
since its opponents are primarily frequentists, and since Bayes's theorem is re-
stored to a primary position from which it had been deposed by the orthodox
statisticians of the second quarter of the 20th century, especially by R. A. Fisher.

1)The function of the theory of subjective probability is to introduce as
much objectivity (impersonality) as possible into "your" subjective body of
beliefs, not to make it completely impersonal, which may be impossible. With
the help of a mathematical theory, based on a few axioms, a body of beliefs can
be enlarged and inconsistencies in it can be detected. A subjective probability is
a degree of belief that belongs to a body of beliefs from which the worst incon-
sistencies have been removed by means of detached judgments.

2) Subjective probabilities are not usually precise but are circumscribed by
inequalities ("taking inequalities seriously" or "living with vagueness").

3) Probability judgments are plugged into a sort of black box (the abstract or
mathematical theory) and discernments are fed out; the judgments can be of
very varied type, so that nothing of value in frequentism, classicism, or any other
theory is lost.

4) Many orthodox statistical techniques achieve objectivity only by throwing
away information, sometimes too much. One way this can happen is if the obser-
vations supplied by a very expensive experiment support a hypothesis not
thought of in advance of the experiment. In such circumstances, it will often
happen that the experimenter will be thrown back on his personal judgment.

5) The theory can be extended to become a theory of rational behavior, by
introducing "utilities" (value judgments).

6) All this is important for statistical practice and for the making of decisions.
7) A theory of subjective probability is general enough to cover physical

probabilities, but not conversely. Although a physical probability can be re-
garded as something that is not subjective, its numerical value can be equated to
the limiting value of a subjective probability when an experiment is repeated
indefinitely under essentially constant circumstances.

KINDS OF PROBABILITY

Since this article is concerned mainly with subjective and physical probability,
it would be inappropriate to discuss other kinds in great detail. Perhaps a mere
list of various kinds will be of interest:

1) Degree of belief (intensity of conviction), belonging to a highly self-contra-
dictory body of beliefs. (This hardly deserves to be called a probability.)

2) Subjective probability (personal probability, intuitive probability, cre-
dence). Here some degree of consistency is required in the body of beliefs.

3) Multisubjective probability (multicredence). The name here is self-explana-
tory.

4) Credibility (logical probability; impersonal, objective, or legitimate intensi-
ty of conviction).
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5) Physical probability (material probability, chance, propensity; this last
name was suggested by K. R. Popper).

6) Tautological probability. In modern statistics it is customary to talk about
ideal propositions known as "simple statistical hypotheses." If, for each possible
result, E, of an experiment, /'(EIH) is equal to a number that is specified as part
of the definition of H, then the probability P(E|H) may be called a "tautological
probability," and H is a "simple statistical hypothesis."

Much of statistics is concerned with testing whether a simple statistical hy-
pothesis is "true" (or approximately true) by means of sampling experiments. If
we regard this as more than a manner of speaking, then, for consistency, we
must believe in the existence of physical probabilities. For example, the propo-
sition that a coin in unbiased is a simple statistical hypothesis, H, part of whose
definition is that /'(headslH) - 1/2, a tautological probability. But if we say or
believe that this proposition is true, then we are committed to saying or be-
lieving also that his tautological probability is a physical probability. It is at least
a matter of linguistic convenience or consistency, and it may be more.

A full discussion of the relationships between the various kinds of probability
would take us too far afield. I shall merely repeat dogmatically my opinion that
although there are at least five different kinds of probability we can get along
with just one kind, namely, subjective probability. This opinion is analogous to
the one that we can know the world only through our own sensations, an
opinion that does not necessarily make us solipsists, nor does it prevent us from
talking about the outside world. Likewise, the subjectivist can be quite happy
talking about physical probability, although he can measure it only with the
help of subjective probability.

BEARING ON INDETERMINISM

On the face of it, the assumption that physical probabilities exist seems to imply
the metaphysical theory of indeterminism. I shall conclude by trying to analyze
this opinion.

When I say that a theory is "metaphysical," I mean that there is no conceiv-
able experiment that can greatly change the logarithm of its odds. (The odds
corresponding to probability p are defined asp/(1 — p). It lies between Oand plus
infinity, and its logarithm lies between — °° and +°°.) No theory is metaphysical
if it can be virtually either proved or falsified, because its log-odds would then
become very large, positive or negative. According to this definition, it is a ques-
tion of degree whether a theory is metaphysical.

For example, the theory of determinism is less credible than it was a hundred
years ago, but is by no means disproved and never will be. A statistician can
never prove that "random numbers" are not "pseudo-random," and likewise
"pseudo-indeterminism" cannot be disproved (#153).

We can consistently talk about physical probability without committing our-
selves to the metaphysical theory that the universe is indeterministic, but only if
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we accept the existence of subjective probability or credibility. For if we assume
determinism we can get physical probabilities only by having an incompletely
specified physical setup. In this incomplete specification there must be proba-
bilities. If we are determinists we must attribute these latter probabilities to our
own ignorance and not merely to something basic in nature "out there." Wheth-
er or not we assume determinism, every physical probability can be interpreted
as a subjective probability or as a credibility. If we do assume determinism, then
such an interpretation is forced upon us.

Those philosophers who believe that the only kind of probability is physical
must be indeterminists. It was for this reason that von Mises asserted indeter-
minism before it became fashionable. He was lucky.



CHAPTER 7

Subjective Probability
as the Measure of a
Non-measurable Set (#230)

1. INTRODUCTION

I should like to discuss some aspects of axiom systems for subjective and other
kinds of probability. Before doing so, I shall summarize some verbal philosophy
and terminology. Although the history of the subject is interesting and illuminat-
ing, I shall not have time to say much about it.

2. DEFINITION

In order to define the sense in which I am using the expression "subjective
probability" it will help to say what it is not, and this can be done by means of a
brief classification of kinds of probability (Poisson, 1837; Kemble, 1941; #182).

Each application of a theory of probability is made by a communication
system that has apparently purposive behavior. I designate it as "you." It could
also be called an "org," a name recently used to mean an organism or organiza-
tion. "You" may be one person, or an android, or a group of people, machines,
neural circuits, telepathic fields, spirits, Martians and other beings. One point of
the reference to machines is to emphasize that subjective probability need not be
associated with metaphysical problems concerning mind (compare #183).

We may distinguish between various kinds of probability in the following
manner.

(i) Physical (material) probability, which most of us regard as existing irre-
spective of the existence of orgs. For example, the "unknown probability" that
a loaded, but symmetrical-looking, die will come up 6.

(ii) Psychological probability, which is the kind of probability that can be
inferred to some extent from your behavior, including your verbal communi-
cations.

(iii) Subjective probability, which is psychological probability modifed by
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the attempt to achieve consistency, when a theory of probability is used com-
bined with mature judgment.

(iv) Logical probability (called "credibility" by Russell, 1948, for example),
which is hypothetical subjective probability when you are perfectly rational, and
therefore presumably infinitely large. Credibilities are usually assumed to have
unique numerical values, when both the proposition whose credibility is under
consideration and the "given" proposition are well defined. I must interrupt
myself in order to defend the description "infinitely large."

You might be asked to calculate the logical probabilities of the Riemann,
Fermat, and Goldbach conjectures. Each of these probabilities is either 0 or 1. It
would be cheating to wait for someone else to produce the answers. Similarly, as
pointed out by Popper (1957), you cannot predict the future state of society
without first working out the whole of science. The same applies even if you are
satisfied with the logical probabilities of future states of society. Therefore a
rational being must have an infinite capacity for handling information. It must
therefore be infinitely large, or at any rate much larger than is practicable for
any known physical org. In other words, logical probabilities are liable to be
unknown in practice. This difficulty occurs in a less acute form for subjective
probability than for logical probability.

Attempts have been made (Carnap, 1950; Jeffreys, 1939) to define logical
probability numerically, in terms of a language or otherwise. Although such a
program is stimulating and useful, the previous remarks seem to show that it can
never be completed and that there will always remain domains where subjective
probability will have to be used instead.

(In Carnap's contribution to this Congress he has shifted his position, and
now defines logical probability to mean what I call numerically completely con-
sistent subjective probability. He permits more than one consistent system of
probabilities. Thus his present interpretation of logical probability is a consistent
system within a "black box" in the sense of Section 3 below.)

Physical probability automatically obeys axioms, subjective probability
depends on axioms, psychological probability neither obeys axioms nor depends
very much on them. There is a continuous gradation, depending on the "degree
of consistency" of the probability judgments with a system of axioms, from
psychological probability to subjective probability, and beyond, to logical proba-
bility, if it exists. Although I cannot define "degree of consistency," it seems to
me to have very important intuitive significance. The notion is indispensable.

In my opinion, every measure of a probability can be interpreted as a sub-
jective probability. For example, the physical probability of a 6 with a loaded
die can be estimated as equal to the subjective probability of a 6 on the next
throw, after several throws. Further, if you can become aware of the value of a
logical probability, you would adopt it as your subjective probability. There-
fore a single set of axioms should be applicable to all kinds of probability
(except psychological probability), namely the axioms of subjective probability.
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Superficially, at least, there seems to be a distinction between the axiom
systems that are appropriate for physical probability and those appropriate for
subjective probability, in that the latter are more often expressed in terms of
inequalities, i.e., comparisons between probabilities. Theories in which inequal-
ities are taken seriously are more general than those in which each probability is
assumed to be a precise number. I do not know whether physical probabilities
are absolutely precise, but they are usually assumed to be, with a resulting sim-
plification in the axioms.

3. A BLACK-BOX DESCRIPTION OF THE
APPLICATION OF FORMALIZED THEORIES

I refer here to a "description," and not to a "theory," because I wish to avoid a
discussion of the theory of the application of the black-box theory of the
application of theories (##13, 26, 43). The description is in terms of the block
diagram of Figure 1 in which observations and experiments have been omitted.
It consists of a closed loop in which you feed judgments into a black box and
feed "discernments" out of it. These discernments are made in the black box as
deductions from the judgments and axioms, and also, as a matter of expediency,
from theorems deduced from the axioms alone. If no judgments are fed in, no
discernments emerge. The totality of judgments at any time is called a "body of
beliefs." You examine each discernment, and if it seems reasonable, you transfer
it to the body of beliefs. The purpose of the deductions, in each application of
the theory, is to enlarge the body of beliefs, and to detect inconsistencies in it.
When these are found, you attempt to remove them by means of more mature
judgment.

Figure 1. The black-box flow diagram for the application of formalized scientific theories.



where P'(E|F) is the intensity of conviction or degree of belief that you would
have in E if you regarded F as certain. The P''s are not necessarily numerical,
and what is meaningful is not a P' by itself, but a comparison of intensities of
conviction of the above type. These judgments are plugged into the black box by
simply erasing the two dashes. Likewise, discernments can be obtained by taking
an output inequality, P(E\f) >P(G\H), and putting dashes on it. The Ps are
assumed to be numbers, even if you can never discover their values at all precise-
ly. This is the reason for the expression "black box." The black box may be
entirely outside you, and used like a tame mathematician, or it may be partially
or entirely inside you, but in any case you do not know the P's precisely.

Following Keynes and Koopman, I assume that the P''s are only partially
ordered.

Apart from the axioms and rules, there are in practice many informal sug-
gestions that you make use of, such as the need to throw away evidence judged
to be unimportant, in order to simplify the analysis, and yet to avoid special
selection of the evidence. (In spite of all the dangers, objectivistic methods in
statistics invariably ignore evidence in order to achieve objectivity. In each appli-
cation a subjective judgment is required in order to justify this device. Compare
the idea of a "Statistician's Stooge" in ##199, 245.) But in this paper I am more
concerned with axioms and rules of application than with "suggestions."

De luxe black boxes are available, with extra peripheral equipment, so that
additional types of judgment and discernment can be used, such as direct judg-
ments of odds, log-odds, "weights of evidence," numerical probabilities, judg-
ments of approximate normality, and (for a theory of rational behavior) com-
parisons of utilities and of expected utilities (#26 or 43). (There are numerous
aids to such judgments, even including black-box theorems, such as the central
limit theorem, and a knowledge of the judgments of other orgs. All such aids
come in the category of "suggestions.") But, as we shall see shortly, for the
simplest kind of black box, a certain kind of output must not be available.

4. AXIOM SYSTEMS FOR SUBJECTIVE PROBABILITY

See, for example, Ramsey (1931), de Finetti (1937/64), Koopman (1940a, b),
#13, Savage (1954), and, for similar systems for logical probability, Keynes
(1921), Jeffreys (1939). The axioms of subjective probability can be expressed
in terms of either
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The particular scientific theory is determined by the axioms and the rules of
application.

The rules of application refer to the method of formalizing the judgments,
and of "deformalizing" the mathematical deductions. For example, in a theory
of subjective probability the standard type of judgment might be a comparison
of the form
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(i) comparisons between probabilities, or preferences between acts, or
(ii) numerical probabilities.
Koopman's system was concerned with comparisons between probabilities,

without reference to utilities or acts. Although it is complicated it is convincing
when you think hard. From his axioms he deduced numerical ones for what he
called upper and lower probabilities, P* and P*. We may define P*(E\F) and
/)*(E|F) as the least upper bound and greatest lower bound of numbers, x, for
which you can judge or discern that f'(E|F) >x or <x. Here P'(E\f) is not a
number, although x is. The interpretation of the inequality P'(E\F)>x is as
follows. For each integer n, perfect packs of n cards, perfectly well shuffled, are
imagined, so that for each rational number, x - m/n(m </?), there exist propo-
sitions, G and H, for which /^(GIH) would usually be said to be equal tox. The
inequality is then interpreted as/>'(E|F) >/>'(G|H).

Note that P*(E\F) and P*(E|F) depend on the whole body of beliefs. Also
note that P*(E| F) is not the least upper bound of all numbers, x, for which you
can consistently state that P'(E\F)>x: to assume this interpretation for more
than one probability would be liable to lead to an /^consistency.

If P* = P*, then each is called P, and the usual axioms of probability are
included in those for upper and lower probability. The analogy with inner and
outer measure is obvious. But the axioms for upper and lower probability do not
follow from the theory of outer and inner measure. It is a little misleading to say
that probability theory is a branch of measure theory.

In order to avoid the complications of Koopman's approach, I have in the
past adopted another one, less rigorous, but simpler. I was concerned with
describing how subjective probability should be used in as simple terms as
possible more than with exact formal justification. (I gave an informal justifica-
tion which I found convincing myself.) This approach consisted in assuming that
a probability inside the black box was numerical and precise. This assumption
enables one to use a simple set of axioms such as the following set (axioms C).

C1./>(E|F) is a real number. (Here and later, the "given" proposition is
assumed not to be self-contradictory.)

C2. 0</>(E|F)<1.

DEFINITION. If P(EJF) = 0 (or 1), then we say that E is "almost impossible"
(or "almost certain ") given F.

C3. If E. F is almost impossible given H, then

P.(E v F|H)=/>(E|H)+/>(F|H) (addition axiom).

C4. If H logically implies £, then E is almost certain given H (but not con-
versely).

C5. If H • E and H • Fare not self-contradictory and H • E implies F and H • F
implies E, then

P(E\H) = />(F|H) (axiom of equivalence).
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C6. P(E • F|H) = P(E\H) • /'(FIE • H) (product axiom).

C7. (Optional.) If £/ • £y AS almost impossible given H(i </; /, / = 7, 2, 3, . . .
ad inf.), then

P(El v E2 v . . . |H) = ?/>(E/|H) (complete additivity).
/

(The above axioms are not quite the same as axiom sets A and B of #1 3.)

C8. (The Key nes- Russell form of the principle of cogent reason. Optional.)

See p. 19 of Russell (1948), p. 4 of #13. Let 0 and i// be prepositional func-
tions. Then

I describe this axiom as "optional" because I think that in all those circum-
stances in which it is judged to be (approximately) applicable, the judgment will
come to the same thing as that of the equation itself, with dashes on.

It follows from axiom C1, that/3(E|F) <, >, or = P(G|H), but we do not want
to deduce that ^'(EIF) and P'(G|H) are comparable. There is therefore an
artificial restriction on what peripheral equipment is available with de luxe black
boxes. This artificiality is the price to be paid for making the axioms as simple as
possible. It can be removed by formulating the axioms in terms of upper and
lower probabilities. To use axioms C is like saying of a non-measurable set that it
really has an unknowable ("metamathematical") measure lying somewhere
between its inner and outer measures. And as a matter of fact there is something
to be said for this paradoxical-sounding idea. If you will bear with me for a
moment I shall illustrate this in a nonrigorous manner.

Suppose A and B are two non-intersecting and non-measurable sets. Write m
for the unknowable measure of a non-measurable set, and assume that

Then

Therefore (for elucidation, compare the following probability argument)

and these inequalities are true. Similarly,

Therefore

which is also true.
The same metamathematical procedure can be used, more rigorously, in order

to derive without difficulty, from axioms C together with the rules of applica-
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The main rule of application is now that the judgment or discernment P'(E\ F)
> />'(G|H) corresponds to the black-box inequality P*(E|F) >/3*(G|H). Koop-
man derived most, but not all, of axioms D1-D6 from his non-numerical ones,
together with an assumption that can be informally described as saying that
perfect packs of cards can be imagined to exist. His derived axioms for upper
and lower probability do not include axiom D6(iii) and (iv). (D7 and D9 were
excluded since he explicitly avoided complete additivity.) I have not yet been
able to decide whether it is necessary to add something to his non-numerical
axioms in order to be able to derive D6(iii) and (iv). Whether or not it turns out
to be necessary, we may say that the present metamathematical approach has
justified itself, since it leads very easily to a more complete set of axioms for
upper and lower probability than were reached by Koopman with some diffi-
culty.

The axioms D will now be listed. I have not proved that the list is complete,
i.e., that further independent deductions cannot be made from axioms C.

D1. ?*(E\F) and P*(E\F) are real numbers, (Here and later the given proposi-
tion is assumed not to be self-contradictory.)

DEFINITION. If P* = P*, each is called P. The previous definitions of
"almost certain" and "almost impossible" can then be expressed as P* = 1 and
P* = 0.

D3. If E • F is a/most impossible given H, then (addition axiom)

Therefore

Therefore

But />*(E • F|H) > P(E • F|H), since, in this system, P*(E • F|H) is defined as the
greatest lower bound of numbers, x, for which it can be discerned that x > P(E •
F|H). Similarly,

Therefore, if/3

tion, a system of axioms for upper and lower probability. These are the axioms
D listed below. As an example, I shall prove axiom D6(iii). We have
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D8. (Cogent reason. Optional.) Let $and 0 be prepositional functions. Then

The corresponding result in the C system is a theorem. (See Appendix.)
I have not been able to prove that

even though the corresponding property is true of Lebesgue outer measure, and I
suspect that it does not follow by the above methods. It would be possible to
prove it (compare p. 14 of Burkill, 1951) provided that we assumed the ax-
iom:

D10. (Optional.) Given any proposition, E, and a positive number, e, there
exists a proposition, G, which is implied by E, and has a precise probability
?(G) < P*(E) + e. (This axiom may be made conditional on another proposition,
H, in an obvious manner.)

I cannot say that D10 has much intuitive appeal, although the corresponding
assertion is true in the theory of measure.

It seems that the theory of probability is not quite a branch of the theory of
measure, but each can learn something from the other.

Incidentally, random variables can be regarded as isomorphic with arbitrary

D7. (Complete super- and sub-additivity. Optional.)

If E\ • £"j is aI most impossible given H(\ < j; i, j = 7, 2, 3, . . . ad inf.), then

D9. (Complete super- and sub-multiplicativity. Optional.) For any (enumer-
able) sequence ofpropositions, Elf E2, • • •.

D4. If H logically implies E, then E is almost certain given H but not con-
versely.

D5. If H • E implies F, and H • F implies E, then (axiom of equivalence)

D6. (Product axiom.)
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functions, not necessarily measurable. I understand that this thesis is supported
by de Finetti. Also upper and lower expectations can be defined by means of
upper and lower integrals in the sense of Stone (1948).

5. HIGHER TYPES OF PROBABILITY

A familiar objection to precise numerical subjective probability is the sarcastic
request for an estimate correct to twenty decimal places, say for the probability
that the Republicans will win the election. One reason for using upper and lower
probabilities is to meet this objection. The objection is however raised, more
harmlessly, against the precision of the upper and lower probabilities. In #26
and in lectures at Princeton and Chicago in 1955, I attempted to cope with this
difficulty by reference to probabilities of "higher type." When we estimate that
a probability ^'(EIH) lies between 0.2 and 0.8, we may feel that 0.5 \stnore
likely to be rational than 0.2 or 0.8. The probability involved in this expression
"more likely" is of "type 11." I maintain that we can have a subjective probabil-
ity distribution concerning the estimate that a perfectly rational org would make
for P'(E|H) a subjective probability distribution for a credibility, //"this probabil-
ity distribution were sharp, then it could be used in order to calculate the
expected credibility precisely, and this expectation should then be taken as our
subjective probability of E given H. But the type II distribution is not sharp; it is
expressible only in terms of inequalities. These inequalities themselves have
fuzziness, in fact the fuzziness obviously increases as we proceed to higher types
of probability, but it becomes of less practical importance.

It seems to me that type II probability is decidedly useful as an unofficial aid
to the formulation of judgments of upper and lower probabilities of type I. I
would not myself advocate even the unofficial use of type III probability for
most practical purposes [but see ##398, 547, 862, 929, 1199], but the notion
of an infinite sequence of types of probability does have the philosophical use of
providing a rationale for the lack of precision of upper and lower probabilities.

APPENDIX. CONTINUITY

(See the remark following D9.) There is a well-known strong analogy between
the calculus of sets of points and the calculus of propositions. In this analogy "E
is contained in F" becomes "E implies F"; E + F becomes E v F; E — F becomes
E • F; E n F becomes E • F; "E is empty" becomes "E is impossible"; "all sets
are contained in E" becomes "E is certain"; En/ becomes

If these are equal, each is called lim En. The limit of a monotonic increasing (or
decreasing) sequence of propositions is

becomes
Accordingly we can define, for an infinite sequence of propositions,



The other definitions and arguments given, for example, in pp. 84-85 of
Loeve, 1955, can be at once adapted to propositions, and we see that complete
additivity is equivalent to continuity, i.e., lim/3(E/7) = P(\\mEn) if {£„} is a
monotonic sequence of propositions. It can then be proved that, for example,

i.e., we have "complete multiplicativity." The axiom D9 is derived from this
theorem by means of the metamathematical argument of Section 4.

The analogy between propositions and sets of points is imperfect. For the
analogy of a point itself should be a logically possible proposition, E, that is not
implied by any other distinct proposition that is logically possible. It is not easy
to think of any such proposition E, unless the class of propositions has been
suitably restricted. Fortunately the notion of a point is inessential for the above
analysis: the algebra of sets of points makes little use of the notion of a point.
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CHAPTER 8

Random Thoughts
about Randomness (#815)

In this paper I shall bring together some philosophical and logical ideas about
randomness many of which have been said before in scattered places. For less
philosophical aspects see, for example #643.

When philosophers define terms, they try to go beyond the dictionary, but
the dictionary is a good place to start and one dictionary definition of "random"
is "having no pattern or regularity." This definit ion could be analyzed in various
contexts but, at least for the time being, I shall restrict my attention to se-
quences of letters or digits, generically called "digits." These digits are supposed
to belong to a generalized alphabet; perhaps a new word should be used, such as
"alphagam," but I shall use the word "alphabet" in the generalized sense so as to
avoid a neologism. For simplicity I shall assume that the alphabet is finite and
consists of the t digits 0, 1, 2, . . .,t—\. From a philosophical point of view it
would make l i t t le difference if the number of digits in the alphabet were count-
ably infinite. It is important whether the sequence itself is finite or infinite in
length. Finite sequences are more practical, but I shall briefly discuss infini te
sequences first In f in i t e random sequences belong more to mathematics than to
the external world but, apart from their purely mathematical interest, they
might stimulate practical procedures, that is, procedures applicable to finite
sequences. Fortunately, the mathematical history of inf in i te random sequences,
which turn out to be equivalent to irregular collectives, has been extremely well
covered by Dr. Coffa in this conference so I shall take most of it for granted. I
should just l i k e to add what I th ink is the simplest convincing intuitive argument
to show the consistency of the idea of an irregular collective. The argument uses
the idea of generalized decimals. . . . Let me remind you that an irregular
collective, spelt more impressively as Irregular Kollektiv, is an inf in i te sequence
satisfying some postulates of von Mises, Wald, etc., relating to long-run frequen-
cies. (For precise definitions and detailed references see Martin-L6f [1969] and
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Coffa's paper.) The long-run frequencies of digits, digit-pairs, and "polynornes"
(/7-plets), are to apply to a certain countable number of subsequences of digits,
these subsequences being determined by the so-called "place-selection" rules.
(There can be only a countable number of such rules expressible in an unambigu-
ous language.) . . .

[The omitted page gives the argument concerning generalized decimals. Any-
one referring to the original printing should note that the diagram was somewhat
misprinted.] Naturally an irregular collective cannot be constructed, that is, it
cannot correspond to a computable number in the sense of Turing (1937).
Existence proofs in mathematics cannot necessarily be made constructive. For
irregular collectives they necessarily cannot. (For the "mathematical intuition-
ist" in Brouwer's sense, irregular collectives do not exist!)

An infinite random sequence can be directly defined in terms of probability:
the probability is pr that a digit in each specific place is r, conditional on any
information about the other digits. It turns out that infinite random sequences
are the same mathematical entities as irregular collectives. Once this is accepted
there is no need to continue to use the expression "irregular collective."

Sometimes when we say that a finite sequence is random we mean that it has
been obtained from a machine that is supposed to produce an infinite sequence
of digits, this infinite sequence being random. Put otherwise, we sometimes
mean that the finite sequence is a segment of an infinite random sequence, and
moreover the position of this segment is itself in some sense chosen "at random"
from the infinite random sequence. So we should consider also what is meant by
selecting a segment at random. There is no difficulty here if the sequence is
produced by a machine. For we can then produce a random segment of length
N by merely switching the machine on and letting it produce /V digits. If we
select a finite segment from a book of random digits we have to select a random
starting point, and this can be done "equiprobably" by means of devices such as
roulette wheels and icosahedral dice. But it is philosophically unsatisfactory to
use a printed book of random digits because of the possibility that the digits we
select have been used by another experimenter. In a perfect but indeterministic
world, when any one used a piece of his copy of the book the corresponding
digits would vanish from all other copies of the book, and eventually all copies
would become blank and could be used as notebooks. (In terms of magnetic
tapes and computer networks, this point is not quite as ludicrous as it seems.) I
shall return later to the subject of finite random sequences.

Apart from the distinction between finite and infinite sequences, we now
have three interconnected concepts, that of randomness, regularity, and proba-
bility. Philosophers might wish to define or to describe any one of these by it-
self, or in terms of one of the other concepts or in terms of the other two. This
gives rise to twelve distinct possible discussions, but do not worry, for I shall not
try to tackle them all.

There is one minor paradox worth cleaning up concerning regularity. The
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laws of large numbers provide a kind of regularity which is not supposed to run
counter to the randomness of a sequence. This does not give rise to a paradox
within the rigorous interpretation of irregular collectives: it merely shows that
the definition of randomness as "having no regularity" is not rigorous enough.
There is even an idea that has been floating around for some time that all laws of
nature are statistical and analogous to the laws of large numbers: "order out of
chaos."

Limiting frequencies can be used, in the style of von Mises and his elabora-
tors, as a basis for the definition of an infinite random sequence, but not of
course directly for finite sequences. On the other hand both finite and infinite
random sequences can be directly and easily defined in terms of probability: the
definition given before for infinite sequences applies verbatim for finite se-
quences. If in this definition the probabilities are supposed to be physical then
the definition is that of a physically random sequence; if the probabilities are
mathematical or logical or subjective, then the sequence is mathematically or
logically or subjectively a random sequence respectively. (For a discussion of
kinds of probability see, for example, #182.) Since most of us believe that the
ordinary calculus of probability is self-consistent, it follows that we should also
believe that the notion of a finite or infinite random sequence is self-consistent.
(We only need to assume that the Peano axioms of the integers are self-consis-
tent.)

So why the emphasis on von Mises collectives? Presumably collectives are still
of interest outside mathematics to those who regard randomness or limiting
frequencies as primary and probability as secondary.

What can be meant by asking whether randomness or probability is primary?
It could be a matter of which is the logically simpler concept, or the psychologi-
cal question of which concept is formed first by a baby. Let's try some armchair
psychology in which we guess how a baby learns these concepts.

Obviously a baby must have a latent ability to do some categorization of its
sense impressions so as to form concepts of different kinds of objects. It must
look for or notice regularities, otherwise it could not categorize. Presumably the
baby enjoys looking for, and finding, new regularities, when they are not too
new, just as an adult does. This is part of an explanation for the enjoyment of
music. When the baby tries to find a regularity and fails to do so it would begin
to arrive at the concept of randomness. But it could not find regularities without
at the same time having expectations which involve some notion of probability.
When one of its expectations is verified it begins to think it has found a regular-
ity. Although I have not developed this line of thought in detail, it seems fairly
obvious that the baby forms the concepts of regularity, randomness, and proba-
bility in an intertwined manner. The building of these concepts in the baby
seems to be analogous to that of the building of concepts by scientists. As Pop-
per once said, "Science is based on a swamp," which we can now parody by
saying that scientists and babies are both based on swamps. To ask which of the
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concepts of regularity, randomness, and probability is psychologically prior
might be like asking whether "the chicken is the egg's way of making another
egg" [Samuel Butler]. It might be a fruitful field for psychological research.
Such research would not be easy, as it is with older children, since the baby's
lack of language is not fully compensated by its lungpower [or swamp-power].

I do not believe that the concept of randomness is logically either prior or
secondary to that of probability, but randomness can be easily defined in terms
of probability. It is also possible, along the lines of von Mises and Co., to define
probability in terms of a suitable interpretation of randomness, although this is
not so easy. It is less easy one way round than the other because the ordinary
axioms of probability are understood and accepted as sensible by nearly all
mathematicians since they can be interpreted in terms of lengths on a line,
whereas the concept of a random sequence or collective (developed in the von
Mises manner) ties up more with formal logic. For historical reasons, and per-
haps also for economic reasons, measurement of a line has been a more tradi-
tional part of elementary mathematical education than has formal logic. There-
fore, for most of us, the usual axioms of probability seem simpler than an
adequate set of axioms for irregular collectives. But measurement of a line involves
the concept of a real number which only seems simple because of its familiarity.
So, as far as I can see, it is only a matter of taste which of probability and ran-
domness is regarded as primary.

So far, I have been mixing up the real world with mathematics. I have sug-
gested that the real world is what provokes the baby to form some more or less
mathematical concepts, such as randomness and probability, before he has learnt
the appropriate terminology. The implication is that there must be some connec-
tion between physical randomness in the world and the mathematical notion of
randomness. But the existence of physical randomness is not strictly necessary
as part of my argument. All I need is that the baby behaves as if he believed in
physical randomness. His belief in physical randomness, if he has it, may or may
not be correct, and it might be merely a projection of his own ignorance of fully
deterministic laws of nature. It is only later, when he is no longer a baby, that he
might argue whether the external world is deterministic, a question with a high
degree of metaphysicality in my opinion, but which is stimulating to discuss.
(For "degrees of metaphysicality" see ##182, 243.) If there is such a thing as
physical randomness then there is also such a thing as physical probability and
conversely. The question is one that can never be definitely settled, but physics
might one day stabilize to a point where one of the two views, determinism or
indeterminism, becomes the more convenient assumption, and the result might
be to determine the predominant philosophical viewpoint at that time.

Let's now consider the place of randomness in statistics. Random sampling
and random designs of experiments were introduced into statistics to achieve
apparent precision and objectivity. I believe that the precision attained by ob-
jectivistic methods in statistics invariably involves the throwing away of informa-
tion (p. 102 of #13), although the clients are seldom told this. In particular, the
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use of random sampling leads to precise results about the hypotheses of interest
to the client only if the experimenter is unaware of his choice of random num-
bers. The comment dates back at least to 1953 (pp. 264-265 of Good, 1953a),
and to some years earlier in conversations. This difficulty can be clearly seen in
terms of the famous experiment for testing whether a certain lady had some
ability to tell by the taste whether the milk was put into her tea first. R. A.
Fisher begins Chapter 2 of his book on the design of experiments with a discus-
sion of this experiment, and presents the official objectivistic line. Let us sup-
pose that we decide to test the lady's ability by giving her twenty cups of tea to
taste, in ten of which the milk was put in first. We choose one of the 20!/(10!)2

sequences equiprobably. Suppose that she gets all twenty judgments right. Then,
on the assumption that she really has no ability at milk-in-first detection, a coin-
cidence of 1/184756 has occurred and this is an objective (or at least a highly
multisubjective) probability. But suppose that, on looking at the random selec-
tion of sequences, we find that the milk happened to be put in first in accor-
dance with a suspiciously regular-looking pattern. Then we have difficulty in
deciding the probability that the lady might have thought of this pattern inde-
pendently, and the objective precision of the probability vanishes. Matters are
really worse, for even if the sequence of milk first and last is not mathematically
simple we still have to judge the probability that the lady might have thought of
this sequence. (It might turn out to be the 5-unit teleprinter encoding of the
word "milk.") We then have to make a judgment, which in the present state of
knowledge would always be subjective (personal), of the probability that the lady
would have thought of this sequence for reasons unrelated to the tastes of the
various cups of tea. This for us is the relevant probability, not 1/184756 (p.
62). It must be for such a reason that Lindley suggested that, rather than gen-
erate random numbers mechanically, it is better to generate them by personal
judgment. I think it is safer to use a compromise, that is, to generate them
mechanically and then to use both statistical tests and personal pattern recogni-
tion to reject suspicious-looking sequences. But what is suspicious for one
purpose might not be for another. When a statistical experiment involves a
human, then any sequence that is a close approximation to one with a simple
definition is suspicious, where the simplicity might be relative to existing human
knowledge, but if the subject of an experiment is not a person this level of
caution is less required. For example, in an agricultural experiment involving
Latin squares, I would be suspicious of one having marked diagonal properties
because the field might have once been ploughed in that direction, but I would
not necessarily be worried if the Latin square somehow reminded me of a
chess endgame composition by Troitsky.

A statistician who uses subjective probabilities is called a "Bayesian." As
Herman Rubin said at the Waterloo conference on the foundations of statistical
inference in 1970 (Godambe & Sprott, 1971), "A good Bayesian does better
than a non-Bayesian, but a bad Bayesian gets clobbered." This is clear in the
present context. Another name for a non-Bayesian is an objectivist. Fisher
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once mentioned (private communication) that many of his clients were not
exceptionally bright so perhaps his emphasis on objectivism was provoked by a
thought like the second half of Rubin's remark.

The problem of which finite random sequences are satisfactory occurs in a
dramatic form in the science of cryptology. It might be supposed that there is no
better method of enciphering a secret message than a random method. Yet
suppose that, by extraordinarily bad luck, the enciphered message came out
exactly the same as the original one: would you use it? Would you use it if you
knew that your opponent knew you were using a random method?

The objectivist can try to avoid the difficulty that every finite random
sequence can be found to have some apparently "non-random features" by
engaging a Statistician's Stooge who selects the random numbers, carries out the
experiment, and reports the number of successes out of twenty achieved by the
Lady. If he reveals the sequence of random numbers to the experimenter he will
be shot and knows it. The experimenter achieves his objectivity by saying "I
don't wish to know that fact." Thus the experimenter who wishes to appear
objective and precise can take his choice between two crimes: threatening to
murder the Stooge or suppressing some of the evidence. He can strengthen his
position further by crucifying the Bayesians who had not already been clob-
bered. I believe that, at least since 1956, many objectivists have been suppressing
the fact that they suppress evidence.

M. G. Kendall (1941), after considering matters of "place selection" for
infinite random sequences, and perhaps prompted by the infinite case, turns his
attention to the more practical case of finite sequences and says that they can
only be random with respect to the tests of randomness used. These tests are to
some extent analogous to the place selection rules, but do not refer to limiting
frequencies; rather they are ordinary statistical tests of significance used for
rejecting "unsuitable" sequences. He points out that this cuts down on the
number of usable sequences of length N. Since a doctored sequence is no longer
strictly random, this procedure affects the interpretation of the experiment for
which the sequence is used. The first paper known to me that tries to cope with
the practical problem that this creates is a scathing book review by Christo-
pher S. O'D Scott (1958). Since this was published in a journal not readily
available, I shall mention Scott's result here. (See also p. 252 of #162.)

Suppose that we apply some statistical test for randomness to a finite se-
quence and we reject it with probability PI. If it gets rejected, we generate
another sequence and test it also. In this way we eventually find a sequence that
passes the test and we use it in some experimental design. [Then the sequence
that is used is not strictly random. Nevertheless statisticians are wont to regard
such doctored sequences as strictly random, and, when used for some statistical
experiment, the sequence might give rise on this assumption to a tail-area proba-
bility P2. Scott points out that the correct tail area is P'2, where'
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If Pl is small, then the doctoring causes little harm since P^/P-i is then known
to be not much greater than 1. It might be much smaller than 1 unless/5!//^ is
also small.

Note that if we were to apply a collection of tests, perhaps a countable infin-
ity of them, with rejection probabilities Qi, Q2, (?3, . . . , then the entire
collection can be regarded as a single test with a rejection probability P± where

If we are sensible we would make the Q's small, for complicated tests, in such a
manner that the product would have a value close to 1 (compare #1 91 ).

Kolmogorov (1963) sets himself the problem of defining what might be
meant by a finite random sequence, without reference to its being a segment of
an infinite random sequence. (See also Marti n-L6f, 1969.) Basically Kolmogorov
considers a finite sequence to be random if there is no appreciably shorter se-
quence that describes it fully, in some unambigous mathematical notation that
uses the same alphabet as the sequence itself. (Simplicity was defined in terms of
brevity by Valery, 1921. See also ##599, 876.) Although this involves some
philosophical difficulties, and is of mathematical interest, it does not yet solve
the practical problems. Scott's book review comes closer to this goal in terms of
objectivistic statistics.

In terms of strictly subjectivistic or Bayesian statistics it is necessary to make
more explicit use of the degree of simplicity of the rule that could have gener-
ated the observed finite sequence or of approximately generating it (#162) and
of the degree of approximation. Somehow we have to judge the probability that
the Lady, or the agricultural plot, might have attained the observed level of
apparent significance when the design of the experiment is exactly the one used,
including the specific random numbers or Latin square etc., if we are not to sup-
press known evidence. Clearly this is apt to be a very difficult task, even when
only interval judgments of probability are to be made (as I have long advocated).
But in strict logic this difficulty would have to be faced if all the information
were to be taken into account. I think that, from a practical point of view, a
compromise between the subjectivistic and the objectivistic analysis should
often be adopted. This still fits into a Bayesian framework in one of its interpre-
tations, namely when the costs of thinking are taken into account. (For varieties
of Bayesians, see #765.) The aim of a statistical experiment, in the Bayesian
framework, is the maximization of the mathematical expectation of the utility;
but, when allowance for the costs of thinking and calculation are taken into
account, one reaches a very practical compromise which I call rationality of the
second type (for example, #659). It is impossible to reconcile this fully with
ordinary logic. It is, however, in my opinion, the only possible practical decision
rule in applied statistics although the statistics textbooks do not yet mention it
as far as I know, perhaps partly for "political" reasons. It is tied up with the
notion of "evolving" or "shifting" [or "dynamic"] probabilities, which are
subjective probabilities that change in virtue of thought alone, without obtaining
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new empirical information (#938). An example is when you estimate the proba-
bility of a mathematical theorem before trying to prove it, as every good math-
ematician must do at least informally, or you might for betting purposes esti-
mate as 0.1 the probability that the millionth digit of n is a 7 (p. 49 of #13}. In
strict logic the probability must be 0 or 1, whereas, in the TT example, the evolv-
ing subjective probability is 0.1 that the credibility is 1. I doubt if practical
subjective probabilities can ever be other than evolving. Evolving probabilities
are used to resolve an important paradox about simplicity in #599.

The need to throw away information to attain apparent objectivity occurs
even in the familiar technique of random sampling. Suppose that we wish to find
out the proportion of people who would support McGovernment. We take a
random sample, we do the interviewing at the doors of the electorate, and we
can record or notice many facts about the interviewees. Weather forecasts are also
relevant since the weather can affect the result of an election. Only by throwing
away most of this information can we compute an "objective" statement of
apparent probability.

To return, for definiteness, to the lady tea-taster, suppose that we were to use
pseudorandom numbers for the selection of the sequence. Recall that pseudo-
random numbers appear random in accordance with a variety of tests for ran-
domness, but in fact are generated according to a deterministic rule, preferably
one that cannot be readily computed mentally. For example, we might use the
binary expansion of \/2 starting at the 777th digit. It is extremely unlikely that
the lady will know these digits, although they have been published (#526), and
we are subjectively sure that she cannot compute them mentally. The chance
that she will have even partial knowledge of these digits would presumably be
judged by the statistician as much less that 1/184756. Hence pseudorandom
numbers can be just as useful as strictly random ones, in fact they have some
important practical advantages in some contexts.

I think this point about pseudorandomness has repercussions for the philoso-
phy of physics and for the problem of determinism in general. In classical (non-
quantum) statistical mechanics (Bohm, 1952), it might be possible to assume
consistently that the physical processes are strictly deterministic. But they are so
complicated that, as far as we shall ever know, they might appear to be random.
Thus they might be pseudorandom but indistinguishable from being strictly
random by any method now known and possibly by any method that will ever
be discovered (p. 15 of #13; #153). From an operational point of view then, a
deterministic interpretation might be indistinguishable from an indeterministic
one. It cannot make an operational difference whether we consider that the
probabilities involved in our predictions are physical probabilities inherent in the
external world, or are probabilities related to our permanent ignorance of some
underlying determinism. It is in this sense that I disagree with an argument of
Mach and of von Mises that statistical physical laws cannot be deduced from a
deterministic physical theory (pp. 184-186 of von Mises, 1957; Good, 1958). If
the reasoning of Mach and von Mises were correct on this point it would be even
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more unjustified to use pseudorandom numbers in simulation studies. The
universe might be a pseudorandom study in preparation for an improved design.

Dr. Coffa has pointed out that the mathematical concept of randomness, due
to von Mises and his elaborators, is not identical with that of physical random-
ness. I agree with this statement but we must not be misled by it. It is conform-
able with the fact that physical randomness is based on physical probability,
whereas mathematical randomness is based on mathematical probability as men-
tioned before. A mathematically random sequence is one that cannot be effec-
tively constructed by mathematical rules. A physically random sequence arising
in some physical system is one that cannot be predicted with the help of any
separate physical apparatus. Just as one mathematically random sequence can be
independent of another, a physically random process can be physically indepen-
dent of another. Although a mathematically random sequence is not the same as
a physically random one, there is nevertheless a strong analogy between them. A
probabilistic mathematical model might have good predictive value for a physical
situation. It seems to me that this is what statistical mechanics is about. We can
never prove that a physical system is deterministic so we can lose nothing practi-
cal by displacing the indeterminism from our shoulders to those of the physical
system and by saying we are describing some properties of the system that might
be true independently of our own existence. On the other hand, the Copenhagen
interpretation of quantum mechanics has solipsistic tendencies (Bohm, 1952;
Bunge, 1955; Wigner, 1962; p. 42 of #13), but I agree with Bohm and Bunge
and I think with Coffa and Kyburg (in this symposium) that this tendency might
be removed. Whether it is possible to remove the solipsistic element is a part of
the main problem in the philosophy of science, the mind-body problem, even
more important than the problem of determinism versus indeterminism, al-
though the two problems happen to be closely associated especially in the
philosophy of quantum mechanics. Bunge (1955), who argues powerfully for the
existence of the external world, shows convincingly that the solipsism of "com-
plementarity" is based primarily on faith, but physicists who accept it have been
reluctant to take the next step of regarding the wave function of the whole
universe as that of an observer outside the physical universe. This point has been
made with the heading "And Good saw that it was God(d)" (Good, 1971;
##882, 1322A). Physicists, following Laplace, may "have no need of this
hypothesis" but it is at any rate more economical than the branching universe
theory of Everett (1957). (This branching theory had occurred in a primitive
form in science fiction, and at a philosophical conference [Good, 1962b].) The
only form of solipsism that appeals to common sense would be solipsism by God
(if he [she or it] exists) and this would logically imply that the mind of any
conscious entity would have to be a part of God. I shall return to the question of
solipsism in connection with de Finetti's theorem.

In the discussion some one raised the question of whether the physical uni-
verse might be "infinitely random" in the sense that an infinite amount of
information would be required to make an accurate prediction of a closed
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system. The following observation is relevant. Consider a model of classical
statistical mechanics in which the various particles are assumed to be perfectly
elastic spheres. Then, to predict a time /"ahead, to a given tolerance, I think we
would need to know the positions and velocities of the particles to a number of
decimal places proportional to T. There must be some degree of accuracy that is
physically impossible to measure, and in this sense classical statistical mechanics
provides indeterminism arising out of determinism. On the other hand, quantum
mechanics suggests the possibility that the universe is a finite-state machine.
From this point of view quantum mechanics might provide determinism arising
out of indeterminism!

The question of the existence of physical probabilities, and therefore of
physical randomness, is analogous to that of the existence of the "outside
world" (outside your mind) though somewhat less convincing. I find it much
easier to make decisions by assuming that the world exists, and, to a much lesser
extent, by assuming that physical probabilities exist. Regarding logical probabili-
ties, that is, credibilities, I think it is mentally healthy to believe some of the
time that they "exist" since this belief gives you some psychological support
when estimating your own subjective probabilities. (Your judgment is helped by
your imagination just as in the Device of Imaginary Results, pp. 35, 70, 81 of
#13; pp. 19, 20, 45 of #398; and especially #547.) It leads naturally to the
notion of a hierarchy of types of probability, which is useful in Bayesian sta-
tistics (##398, 1230).

Let me turn now to one of the commonest problems both in life and in
statistics, since it has been touched on in this symposium, namely that of esti-
mating the probability that some event will occur on some specific occasion.
This is always a single-case probability; it is always a matter of estimating the
probability of an event that has,never occurred before if enough background is
taken into account (such as the time on the clock). The problem subsumes all
other problems as special cases, so that a completely general solution is out of
the question. In a paper (#83) rejected in 1953 (in its original form), I was
concerned with the estimation of the probability, physical or subjective, cor-
responding to a cell in a contingency table, where the cell might be empty. I
described this as the probability of an event that had never occurred, a descrip-
tion whose deletion was recommended by the referee on the grounds that it was
"provocative" (which perhaps means that is was philosophical), thus suggesting
that the concept was somewhat pioneering at that time. Jimmie Savage once
wittily said, at the expense of the philistines, "philosophy" is a dirty ten-letter
word.

An example of a contingency table is one where people are classified by their
occupations and causes of death, a two-way classification. Some of the cells in
the table might be empty, such as the cell corresponding to the number of
professional chess-players kicked to death by a horse [the Bortkiewicz effect].
To make an estimate we have to look for some source of information that is not
immediately obvious. One way is to try to lump together some of the rows or



RANDOM THOUGHTS ABOUT RANDOMNESS (#815 93

some of the columns. The method that gave an apparently sensible answer for
the two contingency tables examined was based on the observation that the
"amount of mutual information" between a row and a column, \Q%(pjjl(pi.p.j}},
seemed to have a normal distribution over the table as a whole. This was used as
a kind of semi-initial distribution in a Bayesian argument. (Herep/y denotes the
physical probability corresponding to cell (/',/') and p/ andpy- denote row and
column total probabilities.) Another example of an event that has never oc-
curred before crops up in the sampling of species or vocabulary (##38, 86).
Suppose that we sample N words of text at random and that the number of
words (species) each of which is represented r times in the sample is denoted by
nr (the "frequency of the frequency" r}. Then we ask what is the probability
that the next word or animal sampled will belong to a species that has never
occurred before. The answer is approximately nt!N if nl is not too small, a
result that is not obvious. The basic idea behind this, of using the frequencies
of the frequencies as a source of information, is due to Turing (1940) and it
anticipates the logic of the [sophisticated form of the] empirical Bayes method
to a great extent.

Actuaries have been aware of the problem of estimating probabilities of
unique events for more than a hundred years and they usually select some
reference class that favors their insurance company at the expense of the custo-
mer (Vajda, 1959). But this method would not be used if the competition
between insurance companies were perfect, and then actuaries would have to
face the problem in greater generality, which is that of the estimation of a
multidimensional mixed probability density and mass function. A solution is
also needed for probabilistic medical diagnosis. Proposals for an approximate
solution to the problem have been made (Dickey, 1968; p. 267 of #701).

Some of you might have expected me, as a confirmed Bayesian, to restrict the
meaning of the word "probability" to subjective (personal) probability. That I
have not done so is because I tend to believe that physical probability exists and
is in any case a useful concept. I think that physical probability can be measured
only with the help of subjective probability (##182, 617) whereas de Finetti
(1937/64) believes that it can be defined in terms of subjective probability. (See
also the index of #398.) De Finetti showed that if a person has a consistent set
of subjective or logical probabilities, then he will behave as if there were physical
probabilities, where the physical probability has an initial subjective probability
distribution. It seems to me that, if we are going to act as if the physical proba-
bility exists, then we don't lose anything practical if we assume it really does
exist. In fact I am not sure that existence means more than that there are no
conceivable circumstances in which the assumption of existence would be
misleading. But this is perhaps too glib a definition. The philosophical impact of
de Finetti's theorem is that it supports the view that solipsism cannot be logical-
ly disproved. Perhaps it is the mathematical theorem with most potential philo-
sophical impact.

In discussions of probabilistic causality the notion of physical probability is
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useful (#223B), but subjective probabilities are more relevant for explanation
(##599, 1000). (My work on explanation was quantitative, but is I think com-
patible with the qualitative idea of Hempel's that the explanation should be of a
more general nature than what is to be explained.)

I should like to conclude my discussion with a reference to a book by Mc-
Shane, and more especially to the anonymous review of this book in the Times
Literary Supplement, which review I wrote (#697). The main idea of the book is
that emergence of new things in the world and also the emergence of new
sciences and new ideas and hypotheses about the world are all possible only in
virtue of randomness. As an example, consider whether life can in principle be
explained in terms of physics. The argument in favor of this reductionist hy-
pothesis is that quantum mechanics seems to be sufficient to explain the whole
of chemistry "in principle"; and most quantum physicists believe that physical
randomness is responsible for mutations [and other chromosomal changes] and
hence, when combined with natural selection, for the emergence of new species
of life. McShane denies the possibility of reductionism because he says that
randomness precludes prediction with anything approaching certainty. The
study of biology is the study of life as it happens to have emerged in this world.
This seems to me to be equivalent to saying that reductionism is false because
biology is to some extent a study of a historical process and especially of the
present results of that process: the millions of species of living organisms as they
exist today. Let me continue with an exact quotation from the book review.

"But suppose we imagine a different kind of biology, a study of the class of
all possible life that could exist: in fact this could be regarded as the ultimate
aim of the emerging field of theoretical biology. Its completion would be a task
of greater magnitude than the analysis of all possible chess games: utterly
impossible in practice, but 'logically' possible, possible 'in principle.' For that
matter, even the study of all possible machines that could be designed is a study
that could never be completed. Machines, too, are emergent. Why pick on life? It
is [perhaps] only because of the limitations of time, and because of the conven-
tion of studying only life forms that we meet, that reductionism appears to be
false." In other words, the trouble with reductionism might be merely lack of
time.



CHAPTER 9

Some History
of the Hierarchical
Bayesian Methodology (#1230)

SUMMARY

A standard technique in subjective "Bayesian" methodology is for a subject ("you") to
make judgments of the probabilities that a physical probability lies in various intervals. In
the hierarchical Bayesian technique you make probability judgments (of a higher type,
order, level, or stage) concerning the judgments of lower type. The paper will outline some
of the history of this hierarchical technique with emphasis on the contributions by I. J.
Good because I have read every word written by him.

1. PHILOSOPHY

In 1947, when few statisticians supported a Bayesian position, I had a non-
monetary bet with M. S. Bartlett that the predominant philosophy of statistics a
century ahead would be Bayesian. A third of a century has now elapsed and the
trend supports me, but I would now modify my forecast. I think the predomi-
nant philosophy wil be a Bayes/non-Bayes synthesis or compromise, and that the
Bayesian part will be mostly hierarchical. But before discussing hierarchical
methods, let me "prove" that my philosophy of a Bayes/non-Bayes compromise
or synthesis is necessary for human reasoning, leaving aside the arguments for
the specific axioms.

Proof. Aristotelean logic is insufficient for reasoning in most circumstances,
and probabilities must be incorporated. You are therefore forced to make
probability judgments. These subjective probabilities are more directly involved
in your thinking than are physical probabilities. This would be even more ob-
vious if you were an android (and you cannot prove you are not). Thus subjec-
tive probabilities are required for reasoning. The probabilities cannot be sharp, in
general. For it would be only a joke if you were to say that the probability of
rain tomorrow (however sharply defined) is 0.3057876289. Therefore a theory of
partially ordered subjective probabilities is a necessary ingredient of rationality.

95
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Such a theory is "a compromise between Bayesian and non-Bayesian ideas. For
if a probability is judged merely to lie between 0 and 1, this is equivalent to
making no judgment about it at all" (p. 137 of #838). Therefore a Bayes/non-
Bayes compromise or synthesis is an essential ingredient of a theory of ration-
ality. Q.E.D.

The notion of a hierarchy of different types, orders, levels, or stages of
probability is natural (i) in a theory of physical (material) probabilities, (ii) in a
theory of subjective (personal) probabilities, and (iii) in a theory in which
physical and subjective probabilities are mixed together. I shall not digress to
discuss the philosophy of kinds of probability. (See, for example, Kemble, 1941;
#182; Chapter 2 of #398.) It won't affect what I say whether you believe in the
real existence of physical (material) probability or whether you regard it as
defined in terms of de Finetti's theorem concerning permutable (exchangeable)
events.

I shall first explain the three headings, leaving most of the elaborations and
historical comments until later.

(i) Hierarchies of physical probabilities. The meaning of the first heading is
made clear merely by mentioning populations, superpopulations, and super-
duper-populations, etc. Reichenbach (1949, Chapter 8) introduced hierarchies
of physical probabilities in terms of random sequences, random sequences of
random sequences, etc.

(ii) Hierarchies arising in a subjective theory. Most of the justifications of the
axioms of subjective probability assume sharp probabilities or clear-cut deci-
sions, but there is always some vagueness and one way of trying to cope with it
is to allow for the confidence that you feel in your judgments and to represent
this confidence by probabilities of a higher type.

(iii) Mixed hierarchies. The simplest example of a mixed hierarchy is one of
two levels wherein a subjective or perhaps logical distribution is assumed for a
physical probability. But when there are only two levels it is somewhat mislead-
ing to refer to a "hierarchy."

In Case (i), Bayes's theorem is acceptable even to most frequentists; see, for
example, von Mises (1942). He made the point, which now seems obvious, that
if, in virtue of previous experience, something is "known" about the distribution
of a parameter 6, then Bayes's theorem gives information about the final proba-
bility of a random variable* whose distribution depends on 6. Presumably by
"known" he meant "judged uncontroversially." In short he emphasized that a
"non-Bayesian" can use Bayes's theorem in some circumstances, a point that was
also implicit in Reichenbach's Chapter 8. The point was worth making in 1942
because statisticians had mostly acquired the habit of using Fisherian techniques
which nearly always ignore the possibility that there might sometimes be uncon-
troversial approximate prior distributions for parameters. F. N. David (1949,
pp. 71 & 72) even said that Bayes's theorem "is wholly fallacious except under
very restrictive conditions" and ". . .at the present time there are few adher-
ents of Bayes's theorem." von Mises (1942, p. 157) blew it by saying that the
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notion that prior probabilities are non-empirical "cannot be strongly enough
refuted." He certainly failed to refute them strongly enough to stem the expan-
sion of modern forms of subjectivistic Bayesianism.

Some people regard the uncontroversial uses of Bayes's theorem, that is,
those uses acceptable to von Mises, as a case of the empirical Bayes method.
Others, such as R. G. Krutchkoff, use the expression "empirical Bayes" only for
the more subtle cases where the prior is assumed to exist but drops out of the
formula for the posterior expectation of 6. It was in this sense that A. M. Turing
used the empirical Bayes method for a classified application in 1941. I applied
his method with many elaborations in a paper published much later (#38) which
dealt with the population frequencies of species of animals or plants or words.
. . . [seep. 28.]

Perhaps a statistical argument is not fully Bayesian unless it is subjective
enough to be controversial, even if the controversy is between Bayesians them-
selves. Any subjective idea is bound to be controversial in spite of the expression
"de gustibus non disputandum est" (concerning taste there is no dispute).
Perhaps most disputes are about taste. We can agree to differ about subjective
probabilities but controversies arise when communal decisions have to be made.
The controversy cannot be avoided, though it may be decreased, by using priors
that are intended to represent ignorance, as in the theories of Jeffreys and of
Carnap. (Of course "ignorance" does not here mean ignorance about the prior.)
All statistical inference is controversial in any of its applications, though the
controversy can be negligible when samples are large enough. Some anti-Bayes-
ians often do not recognize this fact of life. The controversy causes difficulties
when a statistician is used as a consultant in a legal battle, for few jurymen or
magistrates understand the foundations of statistics, and perhaps only a small
fraction even of statisticians do. I think the fraction will be large by A.D. 2047
[and the effect on legal procedures may well be substantial].

Now consider heading (ii), in which at least two of the levels are logical or
subjective. This situation arises naturally out of a theory of partially ordered
subjective probabilities. In such a theory it is not assumed, given two probabil-
ities /?! and p-2, that either pv >p2 or p2 ^P\. Of course partial ordering
requires that probabilities are not necessarily numerical, but numerical proba-
bilities can be introduced by means of random numbers, shuffled cards etc., and
then the theory comes to the same thing as saying that there are upper and lower
probabilities, that is, that a probability lies in some interval of values. Keynes
(1921) emphasized such a theory except that he dealt with logical rather than
subjective probabilities. Koopman (1940a, b) developed axioms for such a
theory by making assumptions that seemed complex but become rather con-
vincing when you think about them. I think the simplest possible acceptable
theory along these lines was given in #13, and was pretty well justified by
C. A. B. Smith (1961). (See also #230.) Recently the theory of partially-or-
dered probability has often been called the theory of qualitative probability,
though I think the earlier name "partially ordered" is clearer. When we use sharp
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probabilities it is for the sake of simplicity and it provides an example of "ra-
tionality of type 2" (#679).

If you can say confidently that a logical probability lies in an interval (a, b] it
is natural to think it is more likely to be near to the middle of this interval than
to the end of it; or perhaps one should convert to log-odds to express a clear
preference for the middle. (Taking the middle of the log-odds interval is an invar-
iant rule under addition of weight of evidence.) At any rate this drives one to
contemplate the notion of a higher type of probability for describing the first
type, even though the first type is not necessarily physical. This is why I discuss
hierarchies of probabilities in my paper on rational decisions, #26. Savage (1954,
p. 58) briefly discusses the notion of hierarchies of subjective probabilities, but
he denigrates and dismisses them. He raises two apparent objections. The first,
which he heard from Max Woodbury, is that if a primary probability has a
distribution expressed in terms of secondary probabilities, then one can per-
form an integration or summation so as to evaluate a composite primary prob-
ability. Thus you would finish up with a sharp value for the primary prob-
ability after all. (I don't regard this as an objection.) The second objection
that he raises is that there is no reason to stop at secondary probabilities, and
you could in principle be led to an infinite hierarchy that would do you no
good.

On p. 41 of #13 I had said that higher types of probability might lead to
logical difficulties but in #26 I took the point of view that it is mentally healthy
to think of your subjective probabilities as estimates of credibilities, that is, of
logical probabilities (just as it is healthy for some people to believe in the exis-
tence of God). Then the primary probabilities might be logical but the secon-
dary ones might be subjective, and the composite probability obtained by
summation would be subjective also. Or the secondary ones might also be logical
but the tertiary ones would be subjective. This approach does not deny Max
Woodbury's point; in fact it might anticipate it. I regard the use of hierarchical
chains as a technique helping you to sharpen your subjective probabilities. Of
course if the subjective probabilities at the top of the hierarchy are only partial-
ly ordered (as they normally would be if your judgments were made fully
explicit), the same will be true of the composite primary or type I probabilities
after the summations or integrations are performed. A further use of the hier-
archical approach in #26 is in relation to minimax decision functions. Just
as these were introduced to try to meet the difficulty of using ordinary Bayesian
decisions, one can define a minimax decision function of type II, to avoid using
Bayesian decision functions of type II. (The proposal was slightly modified in
#80.) Leonid Hurwicz (1951) made an identical proposal simultaneously and
independently. I still stand by the following two comments in my paper: ". . .
the higher the type the woollier the probabilities . . . the higher the type the
less the woolliness matters provided [that] the calculations do not become too
complicated." (The hierarchical method must often be robust, otherwise, owing
to the woolliness of the higher levels, scientists would not agree with one anoth-
er as often as they do. This is why I claimed that the higher woolliness does not
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matter much.) Isaac Levi (1973, p. 23) says, "Good is prepared to define second
order probability distributions . . . and third order probability distributions
over these, etc. until he gets tired." This was funny, but it would be more
accurate to say that I stop when the guessed expected utility of going further
becomes negative if the cost is taken into account.

Perhaps the commonest hierarchy that deserves the name comes under
heading (iii). The primary probabilities, or probabilities of type I, are physical,
the secondary ones are more or less logical, and the tertiary ones are subjective.
Or the sequence might be: physical, logical, logical [again], subjective. In the
remainder of my paper I shall discuss hierarchies of these kinds.

2. SMALL PROBABILITIES IN LARGE CONTINGENCY TABLES

I used a hierarchical Bayesian argument in #83 for the estimation of small
frequencies in a large pure contingency table with entries (n/;). By a "pure"
table I mean one for which there is no clear natural ordering for the rows or for
the columns. Let the physical probabilities corresponding to the cells of the
table be denoted by p/j, and the marginals by p,\ and pj. Then the amount of
information concerning row / provided by seeing a column of classy can be
defined as \og[pfj/(p,\p,j)] and it seemed worth trying the assumption that this
has approximately a normal distribution over the table as a whole. This turned
out to be a readily acceptable hypothesis for two numerical examples that were
examined. In other words it turned out that one could accept the loglinear model

where e has a normal distribution whose parameters can be estimated from the
data. (This was an early example of a loglinear model. Note that if e is replaced
by e/j and its distribution is not specified, then the equation does not define a
model at all.) If then a frequency n/j is observed it can be regarded as evidence
concerning the value of p/j, where pfj has a lognormal distribution. Then an
application of Bayes's theorem provides a posterior distribution for p/j, even
when n/j = 0. . . . The lognormal distribution was used as a prior for the pa-
rameter p/j and the parameters in this distribution would now often be called
hyperparameters. Perhaps this whole technique could be regarded as a non-
controversial use of Bayes's theorem. Incidentally, if it is assumed that p,jl
(p/'.p.j) has a Pearson Type III distribution the estimates turn out to be not
greatly affected, so the method appears to be robust. (The calculation had to
be iterative and was an early example of the EM method as pointed out by
Dempster eta/., 1977, p. 19.)

3. MAXIMUM LIKELIHOOD/ENTROPY FOR
ESTIMATION IN CONTINGENCY TABLES

For ordinary and multidimensional population contingency tables, with some
marginal probabilities known, the method of maximum entropy for estimating
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the probabilities in the individual cells leads to interesting results (#322). (The
principle of maximum entropy was interpreted by Jaynes [1957] as a method
for selecting prior distributions. #322 interprets it as a method for formulating
hypotheses; in the application it led to hypotheses of vanishing interactions of
various orders. Barnard mentions that an early proposer [but not developer] of a
principle of maximum entropy was Jean Ville in the Paris conference on the
history and philosophy of science in 1949 but I have not yet been able to obtain
this reference.) When there is a sample it is suggested on p. 931 of #322 that one
might find the estimates by maximizing a linear combination of the log-likeli-
hood and the entropy, that is, in the two-dimensional case, by maximizing an
expression of the form 2(/?/y — Xp/y)logp/y, subject to constraints if the marginal
probabilities are assumed. (Here (n/j) is the sample and (p/j) the population
contingency table.) This technique could be adopted by a non-Bayesian who
would think of X as a "procedure parameter." A Bayesian might call it a hyper-
parameter because the ML/E method, as we may call it, is equivalent to the
maximization of the posterior density when the prior density is proportional to
npij~W'J. This method has been investigated by my ex-student Pelz (1977). I
believe that the best way to estimate the hyperparameter X is by means of the
method of cross-validation or predictive sample reuse, a method that could also
be used for comparing the ML/E method with other methods (#1245). We
intend to try this approach.

4. MULTINOMIAL DISTRIBUTIONS

Some hierarchical models that have interested me over a long period are con-
cerned with multinomials and contingency tables, and these models received a
lot of attention in my monograph on the estimation of probabilities from a
Bayesian point of view (#398). (See also Good, 1964.) To avoid controversy
about purely mathematical methods I there used the terminology of distribu-
tions of types I, 11, and 111 without committing myself about whether the proba-
bilities were physical, logical, or subjective. But, in a Bayesian context, it might
be easiest to think of these three kinds of probability as being respectively of the
types I, II, and III. My next few hundred words are based on #398 where more
details can be found although the present discussion also contains some new
points.

The estimation of a binomial parameter dates back to Bayes and Laplace,
Laplace's estimate being known as "Laplace's law of succession." This is the
estimate (r + 1)/(/V + 2), where r is the number of successes and /V the sample
size. This was the first example of a shrinkage estimate. It was based on the
uniform prior for the binomial parameter p. The more general conjugate prior of
beta form was proposed by the actuary G. F. Hardy (1889). De Morgan (1837/
1853) (cited by Lidstone, 1920) generalized Laplace's law of succession to the
multinomial case where the frequencies are (/?/) (i = 1, 2, . . ., t). (I have pre-
viously attributed this to Lidstone.) De Morgan's estimate of the ith probability
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Pi was (/?/ + 1 )/(/V + f) which he obtained from a uniform distribution of (plt p2,
. . . , Pt) in the simplex 2/?/ = 1 by using Dirichlet's multiple integral. The
estimate is the logical or subjective expectation of/?/ and is also the probability
that the next object sampled will belong to the ith category. The general Dirich-
let prior, proportional to Ilpfi^1, leads to the estimate (n/ + k/)/(N + SAy) for
Pf. But if the information concerning the t categories is symmetrical it is ade-
quate, at the first Bayesian level, to use the prior proportional to Up/ which
leads to the estimates (n/ + k)/(N + tk). In fact we can formulate the Duns-
Ockham hyper-razor as "What can be done with fewer (hyper)parameters is done
in vain with more." ("Ockham's razor" had been emphasized about twenty years
before Ockham by the famous medieval philosopher John Duns Scotus.) We can
regard k [either] as a flattening constant or as the hyperparameter in the sym-
metric Dirichlet prior. The proposal of using a continuous linear combination of
Dirichlet priors, symmetric or otherwise, occurs on p. 25 of #398. Various
authors had previously proposed explicitly or implicitly that a single value of k
should be used but I am convinced that we need to go up one level. (Barnard
tells me he used a combination of two beta priors in an unpublished paper
presented at a conference in Bristol in about 1953 because he wanted a bimodal
prior.)

The philosopher W. E. Johnson (1932) considered the problem of what he
called "multiple sampling," that is, sampling from a ^-letter alphabet. He as-
sumed permutability of the N letters of the sample (later called "exchange-
ability" though "permutability" is a slightly better term). Thus he was really
considering multinomial sampling. He further assumed what I call his "sufficient-
ness postulate," namely that the credibility (logical probability) that the next
letter sampled will be of category / depends only on n/, t, and N, and does not
depend on the ratios of the other t — 1 frequencies. Under these assumptions he
proved that the probability that the next letter sampled will be of category/ is
(n/ + k}l(N + tk), but he gave no rules for determining k. His proof was correct
when t > 3. He was presumably unaware of the relationship of this estimate to
the symmetric Dirichlet prior. The estimate does not merely follow from the
symmetric Dirichlet prior; it also implies it, in virtue of a generalization of de
Finetti's theorem. (This particular generalization follows neatly from a purely
mathematical theorem due to Hildebrandt & Schoenberg; see p. 22 of #398.) De
Morgan's estimate is the case k = 1. Maximum Likelihood estimation is equiva-
lent to taking k = 0. The estimates arising out of the invariant priors of Jeffreys
(1946) and Perks (1947) correspond to the flattening constants k = 1/2 and
k = \lt. [S. Zabell tells me that Laplace anticipated De Morgan.]

Johnson's sufficientness assumption is unconvincing because if the frequen-
cies A?2 , A? 3 , . . . , tif are far from equal it would be natural to believe that/?!
is more likely to be far from 1/f than i f /72 , A?3 , . . . , ti{ are nearly equal. [This
is an application of the Device of Imaginary Results because you don't need an
actual experience to make this judgment] Hence it seemed to me that the
"roughness" of the frequency count (/?/) should be taken into account. Since
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roughness can be measured by a scalar I felt that 6 could be estimated from the
sample (and approximately from its roughness), or alternatively that a hyper-
prior could be assumed for k, say with a density function 0(6). This would be
equivalent to assuming a prior for thep/'s, with density

Those who do not want to assume a hyperprior could instead estimate/? say by
Type II Maximum Likelihood or by other methods in which the estimate of k
is related to X2 = (f//V)2(/7/ - N/t)2. These methods were developed in ##398,
522, 547. #547 was mainly concerned with the Bayes factor, provided by a
sample (/?/), against the null hypothesis p/ = 1/f(/ =1 ,2 , . . . ,t). The estima-
tion of the cell probabilities p/ was also covered. (It seems to me to be usually
wrong in principle to assume distinct priors, given the non-null hypothesis,
according as you are doing estimation or significance testing, except that I
believe that more accurate priors are required for the latter purpose.) The null
hypothesis corresponds to the complete flattening k = °° and we may denote it
by H .̂ Let H& denote the non-null hypothesis that the prior is the symmetric
Dirichlet with hyperparameter k. Let F(k] denote the Bayes factor in favor of
H/> as against H ,̂ provided by a sample (/?/). (See p. 862 of #127; or p. 406 of
#547.) If k has a hyperprior density 0(6), then the Bayes factor F against H^ is

0(6) must be a proper density, otherwise F would reduce to 1, in other words
the evidence would be killed. This is an interesting example where impropriety
is a felony. One might try to be noncommittal about the value of 6 and the usual
way of being noncommittal about a positive parameter 6 is to use the Jeffreys-
Haldane density 1/6 which is improper. This can be approximated by the log-
Cauchy density which has the further advantage that its quantiles are related in a
simple manner to its hyperhyperparameters (pp. 45-46 of #6038). One can
determine the hyperhyperparameters by guessing the upper and lower quartiles
of the repeat rate 2p/, given the non-null hypothesis, and thereby avoid even a
misdemeanor. The Bayes factor F is insensitive to moderate changes in the
quartiles of the log-Cauchy hyperprior, and the estimates of the p/'s are even
more robust. If you prefer not to assume a hyperprior then a type II or second
order or second level Maximum Likelihood method is available because F(6) has
a unique maximum Fmax if X

1 > t - 1 . This was conjectured on p. 37 of #398,
largely proved in #860 and completely proved by Levin & Reeds (1977). Other
methods of estimating 6 are proposed on pp. 27, 33, and 34 of #398 and by
Bishop, Fienberg, and Holland (1975, Chapter 12). When a hyperparameter is
estimated the latter authors call the method "pseudo-Bayesian." It is an example
of a Bayes/non-Bayes compromise.

^max is an example of a Type II (or second order or second level) Likelihood
Ratio defined in terms of the hyperparametric space which is one-dimensional.
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Hence the asymptotic distribution of Fmax is proportional to a chi-squared with
one degree of freedom. In 1967 the accuracy of this approximation was not
known but it was found to be fairly accurate in numerous examples in #862,
even down to tail-area probabilities as small as 10~16. We do not know why it
should be an adequate approximation in such extreme tails.

5. INDEPENDENCE IN CONTINGENCY TABLES

#398 began the extension of the multinomial methods to the problem of testing
independence of the rows and columns of contingency tables, and this work was
continued in #929 where extensions to three and more dimensions were also
considered. But I shall here consider only ordinary (two-dimensional) tables with
r rows and s columns. The case r = s - 2 is of especial interest because 2 X 2
tables occur so frequently in practice.

As is well known outside Bayesian statistics, there are three [main] ways of
sampling a contingency table, known as sampling Models 1, 2, and 3. In Model 1,
sampling is random from the whole population; in Model 2, the row totals (or
the column totals) are fixed in advance by the statistician; and in Model 3 both
the row and column totals are fixed. Model 3 might seem unreasonable at first
but it can easily arise. Denote the corresponding Bayes factors against the null
hypothesis H of independence by F1} F2, and F3. But in our latest model it
turns out that Ft = F2 because in this model the fixing of the row totals alone
provides no evidence for or against H. The model also neglects any evidence that
there might be in the order of rows or of columns; in other words we restrict
our attention in effect to "pure" contingency tables. This is of course also done
when X1 or the likelihood-ratio statistic is used.

The basic assumption in the analysis is that, given the non-null hypothesis H,
the prior for the physical probabilities p/j in the table is a mixture of symmetric
Dirichlets. (Previous literature on contingency tables had discussed symmetric
Dirichlet distributions but not mixtures.) From this assumption Fl and F3 can
be calculated. We can deduce FRACT (the factor against H provided by the row
and column totals alone, in Model 1) because FRACT = F1/F3. A large number
of numerical calculations have been done and were reported in #1199. We found
that FRACT usually lies between !/2 and 2/2 when neither of the two sets of
marginal totals is very rough and the two sets are not both very flat, and we gave
intuitive reasons for these exceptions. We did not report the results for 2 X 2
tables in that paper but we have done the calculations for this case with the
sample size N - 20. We find, for example, with our assumptions, that FRACT =
1.48 for the table with margins [5,15;7,13]; FRACT = 2.5 for [10,10;!0,10];
FRACT = 2.56 for [1,19;2,18]; and FRACT = 8.65 for the extreme case [1,19;
1,19].

If the mixture of Dirichlets is replaced by a single symmetrical Dirichlet with
hyperparameter k, then F3 is replaced by F3(/?), and max£F3(/?) is a Type II
Likelihood Ratio. Its asymptotic distribution again turns out to be fairly accurate
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in the extreme tail of the distribution, even down to the tail-area probabilities
such as 10~40. The unimodality of F3(k] . . . has yet to be proved, but is well
supported by our numerical results.

I noticed only as recently as May 1978 that the consideration of contingency
tables sheds light on the hyperprior 0 for multinomials. This was first reported in
#'\ 160. We write 0(f, k) instead of 0(6) to indicate that it might depend on t as
well as k. The prior for a f-category multinomal is then /)*(?) where

and where D(t, k) denotes the symmetric Dirichlet density. Our assumption of
D*(rs), given H and Model 1, implies the prior f0°°D(r, s£)0(rs, k}dk for the row
totals. But, if the row totals alone contain no evidence concerning H, this must
be mathematically independent of s and it can be deduced that 0(f, k} must be
of the form \jj(tk)/k. Strictly therefore some of the calculations in #862 should
be repeated, but of course the distribution of the Type II Likelihood Ratio is
unaffected, and we have reason to believe the remaining results are robust. This
example shows how logical arguments can help to make subjective probabilities
more logical. Logical probabilities are an ideal towards which we strive but
seldom attain.

A spin-off from the work on contingency tables has been the light it sheds on
the classical purely combinatorial problem of the enumeration of rectangular
arrays of integers (##914, 1173). This problem had not previously been treated
by statistical methods as far as I know.

T. Leonard has used hierarchical Bayesian methods for analyzing contingency
tables and multinomial distributions, but since he has attended this conference I
shall leave it to him to reference his work in the discussion of the present paper.

6. PROBABILITY DENSITY ESTIMATION AND BUMP-HUNTING

Probability density estimation has been a popular activity since at least the
nineteenth century, but bump-hunting, which is closely related to it, is I think
comparatively recent. There is a short discussion of the matter on pp. 86-87 of
#13 where the "bumpiness" of a curve is defined as the number of points of
inflection, though half this number is a slightly better definition. The number
of bumps was proposed as one measure of complexity, and the greater the
number the smaller the initial probability of the density curve ceteris par/bus.
[See also p. 45.]

In the 1970 Waterloo conference, Orear and Cassel (1971) said that bump-
hunting is "one of the major current activities of experimental physicists." In
the discussion I suggested the idea of choosing a density function f by maxi-
mizing Slogf(x/) — @R, that is, log-likelihood minus a roughness penalty pro-
portional to a measure R of roughness of the density curve. (Without the penalty
term one gets 1//V of a Dirac function at each observation.) It was pointed out
that the problem combines density estimation with significance testing. In #699
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the argument is taken further and it is mentioned that exp(—|3/?) can be regarded
as the prior density of f in function space. In this Bayesian interpretation j3 is a
hyperparameter. (There were 21 misprints in this short article, owing to a British
dock strike.) The method was developed in considerable detail in ##701 and
810 and applied to two real examples, one relating to high-energy physics and
the other to the analysis of chondrites (a common kind of meteorite containing
round pellets) in #1200. In the latter work, the estimation of the hyperparam-
eter was made by means of non-Bayesian tests of goodness of fit so as to avoid
controversies arising out of the use of hyperpriors.

Leonard (1978, p. 129) mentions that he hopes to report a hierarchical form
of his approach to density estimation. Also he applies his method to the chon-
drite data, and he brought this data to my attention so that our methods could
be compared.

7. INFERENCE ABOUT NORMAL DISTRIBUTIONS
AND LINEAR MODELS

In 1969 I suggested to my student John M. Rogers that he might consider analo-
gies of the multinomial work for the estimation of the parameters of multivari-
ate normal distributions. It turned out that even the univariate problems were
complicated and he completed his thesis without considering the multivariate
problems. He considered the estimation of a (univariate) normal mean when the
prior contains hyperparameters. The priors were of both normal and Cauchy
form (Rogers, 1974) and the hyperparameters were estimated by type II maxi-
mum likelihood.

Meanwhile hierarchical Bayesian models with three or four levels or stages
had been introduced for inferences about normal distributions and linear models
by Lindley (1971) and by Lindley and Smith (1972). A survey of these matters
could be better prepared by Lindley so I shall say no more about them.

[This lecture was followed by discussion and a response, omitted here.]



CHAPTER 10

Dynamic Probability,
Computer Chess,
and the Measurement of
Knowledge (#938)

Philosophers and "pseudognosticians" (the artificial intelligentsia1) are coming
more and more to recognize that they share common ground and that each can
learn from the other. This has been generally recognized for many years as far as
symbolic logic is concerned, but less so in relation to the foundations of proba-
bility. In this essay I hope to convince the pseudognostician that the philosophy
of probability is relevant to his work. One aspect that I could have discussed
would have been probabilistic causality (Good, #223B) in view of Hans Ber-
liner's forthcoming paper "Inferring causality in tactical analysis," but my topic
here will be mainly dymanic probability.

The close relationship between philosophy and pseudognostics is easily under-
stood, for philosophers often try to express as clearly as they can how people
make judgments. To parody Wittgenstein, what can be said at all can be said
clearly and it can be programmed.

A paradox might seem to arise. Formal systems, such as those used in mathe-
matics, logic, and computer programming, can lead to deductions outside the
system only when there is an input of assumptions. For example, no probability
can be numerically inferred from the axioms of probability unless some proba-
bilities are assumed without using the axioms: ex nihilo nihil fit.2 This leads to
the main controversies in the foundations of statistics: the controversies of
whether intuitive probability3 should be used in statistics and, if so, whether it
should be logical probability (credibility) or subjective (personal). We who talk
about probabilities of hypotheses, or at least the relative probabilities of pairs
of hypotheses (##13, 846), are obliged to use intuitive probabilities. It is diffi-
cult or impossible to lay down precise rules for specifying the numerical values
of these probabilities, so some of us emphasize the need for subjectivity, bridled
by axioms. At least one of us is convinced, and has repeatedly emphasized for
the last thirty years, that a subjective probability can usually be judged only to

106
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lie in some interval of values, rather than having a sharp numerical value (#13).
This approach arose as a combination of those of Keynes (Keynes, 1921) and of
Ramsey (Ramsey, 1931); and Smith's (Smith, 1961) proof of its validity based
on certain desiderata was analogous to the work of Savage (Savage, 1954) who
used sharp probabilities. [See also #230.]

It is unfortunately necessary once again to express this theory of "compara-
tive subjective probability" in a little more detail before describing the notion of
dynamic probability. The theory can be described as a "black box" theory, and
the person using the black box is called "you." The black box is a formal system
that incorporates the axioms of the subject. Its input consists of your collection
of judgments, many of which are of the form that one probability is not less
than another one, and the output consists of similar inequalities better called
"discernments." The collection of input judgments is your initial body of
beliefs, B, but the output can be led back into the input, so that the body of
beliefs [usually] grows larger as time elapses. The purpose of the theory is to
enlarge the body of beliefs and to detect inconsistencies in it. It then becomes
your responsibility to resolve the inconsistencies by means of more mature judg-
ment. The same black box theory can be used when utilities are introduced and
it is then a theory of rationality (##1 3, 26).

This theory is not restricted to rationality but is put forward as a model of
all completed scientific theories.

It will already be understood that the black box theory involves a time
element; but, for the sake of simplicity in many applications, the fiction is
adopted (implicitly or explicitly) that an entirely consistent body of beliefs has
already been attained. In fact one of the most popular derivations of the axioms
of probability is based on the assumption that the body of beliefs, including
judgments of "utilities" as well as probabilities, is consistent.4

One advantage of assuming your body of beliefs to be consistent, in astatic
sense, is that it enables you to use conventional mathematical logic, but the
assumption is not entirely realistic. This can be seen very clearly when the sub-
ject matter is mathematics itself. To take a trivial, but very clear example, it
would make sense for betting purposes to regard the probability as 0.1 that the
millionth digit of n is a 7, yet we know that the "true probability" is either 0 or
1. If the usual axioms of intuitive probability are assumed, together with conven-
tional static logic, it is definitely inconsistent to call the probability 0.1. If we
wish to avoid inconsistency we must change the axioms of probability or of
logic. Instead of assuming the axiom that P(E|H) = 1 when H logically implies E,
we must assume that/3(E|H) = 1 when we have seen that H logically implies E. In
other words probabilities can change in the light of calculations or of pure
thought without any change in the empirical data (cf. p. 49 of #13, where the
example of chess was briefly mentioned). In the past I have called such probabil-
ities "sliding," or "evolving," but I now prefer the expression dynamic proba-
bility. 5 It is difficult to see how a subjective probability, whether of a man or of
a machine, can be anything other than a dynamic one. We use dynamic probability
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whenever we make judgments about the truth or falsity of mathematical theor-
ems, and competent mathematicians do this frequently, though usually only
informally. There is a naive view that mathematics is concerned only with
rigorous logic, a view that arises because finished mathematical proofs are more
or less rigorous. But in the process of finding and conjecturing theorems every
real mathematician is guided by his judgments of what is probably true.6 This
must have been known for centuries, and has been much emphasized and exem-
plified by Polya (Polya, 1941, 1954). A good "heuristic" in problem solving is
one that has a reasonable chance of working.7

Once the axioms of probability are changed, there is no genuine inconsisten-
cy. We don't have to say that />(E|H) has more than one value, for we can denote
its value at time t by /^(E|H), or we can incorporate a notation for the body of
beliefs Bt if preferred. There is an analogy with the FORTRAN notation, as in
x - x + 3, where the symbol x changes its meaning during the course of the cal-
culation without any real inconsistency.8

Believing, as I did (and still do), that a machine will ultimately be able to
simulate all the intellectual activities of any man, if the machine is allowed to
have the same mechanical help as the man,9 it used to puzzle me how a machine
could make probability judgments. I realized later that this is no more and no
less puzzling than the same question posed for a man instead of a machine. We
ought to be puzzled by how judgments are made, for when we know how they
are made we don't call them judgments (#183).10 If judgments ever cease then
there will be nothing left for philosophers to do. For philosophical applications
of dynamic probability see Appendix A.

Although dynamic probability is implicitly used in most mathematical re-
search it is even more clearly required in the game of chess.11 For in most chess
positions we cannot come as close to certainty as in mathematics. It could even
be reasonably argued that the sole purpose of analyzing a chess position, in a
game, is for improving your estimate of the dynamic probabilities of winning,
drawing, or losing. If analysis were free, it would pay you in expectation to go
on analyzing until you were blue in the face, for it is known that free evidence
is always of non-negative expected utility (for example, #508, but see also
#855). But of course analysis is not free, for it costs effort, time on your chess
clock, and possibly facial blueness. In deciding formally how much analysis to
do, these costs will need to be quantified.

In the theory of games, as pioneered mainly by von Neumann (von Neumann,
1944/47), chess is described as a "game of perfect information," meaning that
the rules involve no reference to dice and the like. But in practice most chess
positions cannot be exhaustively analyzed by any human or any machine,
present or future.12 Therefore play must depend on probability even if the
dependence is only implicit. Caissa is a cousin of the Moirai after all.

Against this it can be argued that the early proposals for helping humans and
computers to play chess made use of evaluation functions (for quiescent posi-
tions) and did not rely on probability, dynamic or otherwise. For example, the
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beginner is told the value of the pieces, P = 1, B = 3.25, etc. and that central
squares are usually more valuable than the others.13 But an evaluation function
can be fruitfully interpreted in probabilistic terms and we now recall a con-
jectured approximate relationship that has been proposed (##183, 521) by
analogy with the technical definition of weight of evidence.

The weight of evidence, provided by observations E, in favor of one hypothe-
sis H1} as compared with another one H2, is defined as

where P denotes probability and O denotes odds. In words, the weight of evi-
dence, when added to the initial log-odds, gives the final log-odds. . . . The
conjecture is that ceteris paribus the weight of evidence in favor of White's
winning as compared with losing, in a given position, is roughly proportional to
her advantage in material, or more generally to the value of her evaluation
function, where the constant of proportionality will be larger for strong players
than for weak ones. The initial log-odds should be defined in terms of the play-
ing strengths of the antagonists, and on whether the position is far into the
opening, middle-game, or end-game, etc. Of course this conjecture is susceptible
to experimental verification or refutation or improvement by statistical means,
though not easily; and at the same time the conjecture gives additional meaning
to an evaluation function.14 As an example, if an advantage of a pawn triples
your odds of winning as compared with losing, then an advantage of a bishop
should multiply your odds by about 33'25 = 35.5. This quantitative use of proba-
bility is not in the spirit of Polya's writings, even if interval estimates of the
probabilities are used.

If dynamic probability is to be used with complete seriousness, then it must
be combined with the principle of rationality (see Appendix A). First you
should decide what your utilities are for winning, drawing, and losing, say uyj,
UD, and u\_. More precisely, you do not need all three parameters, but only the
ratio («vv — UD)/(UD — UL)- Then you should aim to make the move, or one of
the moves, that maximize the mathematical expectation of your utility, in other
words you should aim to maximize

0)

where pw> prj. and p\_ are your dynamic probabilities of winning, drawing, or
losing. When estimating (1 ) you have to allow for the state of the chess clock so
that the "costs of calculation," mentioned in Appendix A, are very much in the
mind of the match chess player.15 This is not quite the whole picture because
you might wish to preserve your energy for another game: this accounts for
many "grandmaster draws."

Current chess programs all depend on tree analysis, with backtracking, and
the truncation of the tree at certain positions. As emphasized in #521 it will
[perhaps] eventually be necessary for programs to handle descriptions of posi-
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tions16 if Grandmaster status is to be achieved, and the lessons derived from this
work will of course change the world, but we do not treat this difficult matter in
this paper. [But the latest indications are that computers may soon beat Grand-
masters by tactical brute force.]

For the moment let us suppose that the problem has been solved of choosing
the nodes where the tree is to be truncated. At each such node the probabilities
P\N> PD> and PL are a special kind of dynamic probability, namely superficial or
surface probabilities, in the sense that they do not depend on an analysis in
depth. The evaluation function used at the end-nodes, which is used for comput-
ing these three probabilities, might depend on much deep cogitation and statisti-
cal analysis, but this is not what is meant here by an "analysis in depth." The
the minimax backtracking procedure can be used; or expectimaxing if you wish
to allow for the deficiencies of your opponent,17 and for your own deficiencies.
In this way you can arrive at values of the dynamic probabilitiesP\N° , PD°, and
Pl° corresponding to the positions that would arise after each of your plausible
moves in the current position, TTO. Of course these probabilities depend on the
truncation rules (pruning or pollarding).

Some programs truncate the analysis tree at a fixed depth but this is very
unsatisfactory because such programs can never carry out a deep combination.
Recognizing this, the earliest writers on chess programming, as well as those who
discussed chess programming intelligently at least ten years earlier,18 recognized
that an important criterion for a chess position TT to be regarded as an endpoint
of an analysis tree was quiescence. A quiescent position can be defined as one
where the player with the move is neither threatened with immediate loss, nor
can threaten his opponent with immediate loss. The primary definition of "loss"
here is in material terms, but other criteria should be introduced. For example,
the advance of a passed pawn will often affect the evaluation non-negligibly. We
can try to "materialize" this effect, for example, by regarding the value of a
passed pawn, not easily stopped, as variable. My own proposals are 1% on the
fourth rank, 1 !/2 on the fifth rank, 3 on the sixth, 5 on the seventh, and 9 on the
eighth!, but this is somewhat crude.19

An informal definition of a turbulent position is a combinative one. For
example, the position: White K at e3, R at c8; Black K at a1, R at a4; is turbu-
lent. But if Black also has a Q at f6, then White's game is hopeless, so the turbu-
lence of the position does not then make it much worth analyzing.

Hence in #521 I introduced a term agitation to cover both turbulence and
whether one of pw, PD, ar|d PL is close to 1. Apart from considering whether
to threaten to take a piece, in some potential future position TT, we should con-
sider whether the win of this piece would matter much. Also, instead of con-
sidering one-move threats, it seems better to consider an analysis of unit cost,
which might involve several moves, as, for example, when checking whether a
pawn can be tackled before it touches down in an end-game. The definition of
the agitation A(TT) was the expected value of |t/(7r|$) — U(n)\ where U(n] is the
superficial utility of TT and U(TT\$) is the utility of TT were a unit of amount of
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analysis to be done. (£/(TT|$) is a subjective random variable before the analysis
is done.)

But the depth from the present position TTO to TT is also relevant in the deci-
sion whether to truncate at TT. More exactly, the dynamic probability P(n\rr0)
that position TT will be reached from TTO is more relevant than the depth. We
could even reasonably define the probabilistic depth as proportional to —log
P(TT\TTO) and the effective depth of the whole analysis as — 1,P(n\n0) log/3(7r|7T0),
summed over all endpoints TT, as suggested in #521. But the most natural cri-
terion for whether to treat TT as an endpoint in the analysis of TTO is obtained by
setting a threshold on P(n Tr0)A(n). The discussion of agitation and allied matters
is taken somewhat further on pp. 114-115 of #521 .

As a little exercise on dynamic probability let us consider the law of multipli-
cation of advantage which states that "with best play on both sides we would
expect the rate of increase of advantage to be some increasing function of the
advantage." This might appear to contradict the conjecture that the values of the
pieces are approximately proportional to weights of evidence in favor of winning
rather than losing. For we must have the "Martingale property" E(pt\p0) = pQ,
where p0 and pt are the probabilities of winning at times 0 and t. This only
sounds paradoxical if we forget the elementary fact that the expectation of a
function is not usually equal to that same function of the expectation. For
example, we could have, for some e > 0,

without contradicting the Martingale property, and (2) expresses a possible form
of the law of multiplication of advantage, though it cannot be very accurate.

An idea closely associated with the way that dynamic probabilities can vary is
the following method for trying to improve any given chess program. Let the
program starting in a position TTO play against itself, say for the next n moves,
and then to quiescence, at say TI^. Then the odds of winning from position nlf
or the expected utility, could be used for deciding whether the plan and the
move adopted in position TTO turned out well or badly. This information could
be used sometimes to change the decision, for example, to eliminate the move
chosen before revising the analysis of TTO, This is not the same as a tree analysis
alone, starting from TTO, because the tree analysis will often not reach the posi-
tion TTI . Rather, it is a kind of learning by experience. In this procedure n should
not be at all large because non-optimal moves would introduce more noise the
larger n was taken. The better the standard of play the larger/? could be taken. If
the program contained random choices, the decision at TTO could be made to
depend on a collection of sub-games instead of just one. This idea is essentially
what humans use when they claim that some opening line "appears good in
master practice."

To conclude this paper I should like to indicate the relevance of dynamic
probability to the quantification of knowledge, for which Michie proposed a



112 DYNAMIC PROBABILITY (#938)

non-probabilistic measure.20 As he points out, to know that 123 = 1728 can be
better than having to calculate it, better in the sense that it saves time. His
discussion was non-probabilistic so it could be said to depend, at least implicitly,
on dynamic logic rather than on dynamic probability. In terms of dynamic
probability, we could describe the knowledge that 123 = 1728 as the ascribing of
dynamic probability p = 1 to this mundane fact. If instead p were less than 1,
then the remaining dynamic information available by calculation would be
—logp (p. 75 of #13; p. 126 of #599). This may be compared with Michie's
definition of amount of knowledge, which is [or was] based on Hartley's non-
probabilistic measure of information (Hartley, 1928).

Amount of knowledge can be regarded as another quasiutility of which
weight of evidence and explicativity are examples. A measure of knowledge
should be usable for putting programs in order of merit.

In a tree search, such as in chess, in theorem-proving, and in medical diagno-
sis, one can use entropy, or amount of information, as a quasi-utility, for cutting
down on the search (##592, 755, 798) and the test for whether this quasi-
utility is sensible is whether its use agrees reasonably well with that of the
principle of rationality, the maximization of expected utility. Similarly, to judge
whether a measure of knowledge is a useful quasi-utility it should ultimately be
compared with the type 2 principle of rationality (Appendix A). So the question
arises what form this principle would take when applied to computer programs.

Suppose we have a program for evaluating a function f(x) and let's imagine
for the moment that we are going to make one use of the program for calculat-
ing f(x) for some unknown value of x. Suppose that the probability thatx will
be the value for which we wish to evaluate the function isp(x) and let's suppose
that when we wish to do this evaluation the utility of the calculation is u(x,\)
where X is the proportional accuracy of the result. Suppose further that the cost
of obtaining this proportional accuracy for evaluating f(x), given the program, is
c(x,\). Then the total expected utility of the program, as far as its next use is
concerned, is given by the expression

or (3)

The notion of dynamic probability (or of rationality of type 2) is implicit in
the utilities mentioned here, because, if the usual axioms of probability are
assumed, the utilities would be zero because the costs of calculation are ignored.
Anything calculable is "certain" in ordinary logic and so conveys no logical
information, only dynamic information.

If the program is to be applied more than once, then formula (3) will apply to
each of its applications unless the program is an adaptive one. By an adaptive
program we could mean simply that the costs of calculation tend to decrease
when the program is used repeatedly. This will be true for example, in the
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adaptive rote learning programs that Donald Michie described in lectures in
Blacksburg in 1974. To allow for adaptability would lead to severe complica-
tions and I suspect that similar complications would arise if Donald M.ichie's
definition of amount of knowledge were to be applied to the same problem.

I expect his definition will usually be considerably easier to use than the
expression (3), but I do not know which is the better definition on balance.

Example 1. Suppose that (i) all accurate answers have a constant utility a, and
all others have zero utility. Then

(ii) c(x,0) = b, a constant, when x belong to a set X, where a > b > 0, and that
c(x,0) > a if x does not belong to X; (iii) all values of x are equally likely a
priori, that is, p(x) is mathematically independent of x. Then (3) is proportional
to the number of elements in X, that is, to the number of values of x that can be
"profitably" computed.

Example 2.

The analysis is much the same as for Example 1 and is left to the reader.
Example 3. u(x,\] = — logX(X < 1); then the utility is approximately propor-

tional to the number of correct significant figures.
Example 4. In the theory of numbers we would often need to modify the

theory and perhaps use a utility u(x,fj), where fi is the number of decimal digits
in the answer.

Example 5: knowledge measurement in chess. Let x now denote a chess
position instead of a number. Let u(x) denote the expected utility of the pro-
gram when applied in position x, allowing this time for the costs. Then v -
Hxp(x}u(x} measures the expected utility of the program per move, wherep(x)
is the probability of the occurrence of position x. The dependence between
consecutive positions does not affect this formula because the expectation of a
sum is always the sum of the expectations regardless of dependence. A measure
of the knowledge added to the program by throwing the book on opening
variations at it, can be obtained by simply subtracting the previous value of v
from the new value.

It should now be clear that dynamic probability is fundamental for a theory
of practical chess, and has wider applicability. Any search procedure, such as is
definitely required in non-routine mathematical research, whether by humans or
by machines, must make use of subgoals to fight the combinatorial explosion.
Dynamic utilities are required in such work because, when you set up subgoals,
you should estimate their expected utility as an aid to the main goal before you
bother your pretty head in trying to attain the subgoals.

The combinatorial explosion is often mentioned as a reason for believing in
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the impracticability of machine intelligence, but if this argument held water it
would also show that human intelligence is impossible. Perhaps it is impossible
for a human to be intelligent, but the real question is whether machines are
necessarily equally unintelligent. Both human problem-solvers and pseudo-
gnostical machines must use dynamic probability.

APPENDIX A. PHILOSOPHICAL APPLICATIONS OF
DYNAMIC PROBABILITY

An interesting application of dynamic probability is to a fundamental philo-
sophical problem concerning simplicity. Many of us believe that of two scientific
laws that explain the same facts, the simpler is usually the more probable.
Agassi, in support of a thesis of Popper, challenged this belief by pointing out
that, for example, Maxwell's equations imply Fresnel's optical laws and must
therefore be not more probable, yet Maxwell's equations appear simpler. This
difficulty can be succinctly resolved in terms of dynamic probability, and I
believe this is the only possible way of resolving it. For the clarification of
these cryptic remarks see ##599, 846. . . .

A further philosophical application of dynamic probability arises in con-
nection with the principle of rationality, the recommendation to maximize
expected utility. It frequently happens that the amount of thinking or calcula-
tion required to obey this principle completely is very great or impracticably
large. Whatever its size, it is rational to allow for the costs of this effort (for
example, #679), whatever the difficulties of laying down rules for doing so.
When such allowance is made we can still try to maximize expected utility,
but the probabilities, and sometimes the utilities also, are then dynamic. When
a conscious attempt is made to allow for the costs we may say we are obeying
the principle of rationality of type 2. This modified principle can justify us in
using the often convenient but apparently ad hoc and somewhat irrational
methods of "non-Bayesian" statistics, that is, methods that officially disregard
the use of subjective probability judgments. But such judgments are always at
least implicit: all statisticians are implicit Bayesians whether they know it or
not, except sometimes when they are making mistakes. (Of course Bayesians
also sometimes make mistakes.)

Thus dynamic probability and dynamic utility help us to achieve a Bayes/
non-Bayes synthesis. Inequality judgments rather than sharp probability judg-
ments also contribute to this synthesis: a strict non-Bayesian should choose the
interval (0,1) for all his subjective probabilities! For interesting examples of
Bayes/non-Bayes syntheses see ##547, 862, 929, 1199.

NOTES

1. Lighthill's joke, cracked in a BBC TV debate. Jokes don't wear well for long, however
risible they were originally, so I have invented a neologism that just might replace the
clumsy and ambiguous "workers in A. I." The "g" of "pseudognostics" belongs to the
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third syllable! Michie's expression "knowledge engineering" might be preferred in some
contexts, but it will tend to prevent A. I. work in any university department outside engi-
neering. Engineering departments already tend to take the universities over.

2. Each axiom merely relates probability values. Suggestions, such as the "principle of
sufficient reason," are not axioms and they require judgments about the real world.

3. By "intuitive probability" I mean either logical or subjective probability (Koopman,
1940) as contrasted with the physical probabilities that arise, for example, in quantum
mechanics, or the tautological probabilities of mathematical statistics (#182).

4. More precisely, it must be "coherent" in the sense that a "Dutch book" cannot be
made against it in a gambling situation. A Dutch book is a proposed set of bets such that
you will lose whatever happens (Savage, 1954).

5. Donald Michie expressed a preference for this term in conversation in 1974, since he
thought that "evolving probability," which I have used in the past, was more likely to be
misunderstood.

6. (i) A real mathematician, by definition, cannot do all his work by low-level routine
methods; but one man's routine is another man's creativity, (ii) Two famous examples of
the use of scientific induction in mathematics were Gauss's discoveries of the prime number
theorem and of the law of quadratic reciprocity. He never succeeded in proving the first of
these results.

7. Polya's writings demonstrate the truth of the aphorism in Note 6. Polya's use of
probability in mathematical research is more qualitative than mine. A typical theorem in his
writings is "The more confidence we placed in an incompatible rival of our conjecture, the
greater will be the gain of faith in our conjecture when that rival is refuted" (Polya, 1954,
vol 2, p. 124). His purely qualitative approach would prevent the application of the princi-
ple of rationality in many circumstances.

8. Presumably the ALGOL notation x: - x + 3 was introduced to avoid the apparent
inconsistency.

9. It is pointless to make such judgments without some attached dynamic probabilities,
so I add that I think there is a probability exceeding 1/2 that the machine will come in the
present century. But a probability of only 1/1000 would of course justify the present
expenditures.

1 0. Judgments are never formalized
You can sign that with your blood gents

For when they are formalized
No one dare call them judgments.

Drol Doog (With apologies to Sir John Harrington.)
11. In case this seems too obvious the reader is reminded that it was not explicit in the

earlier papers on chess programming, and there is no heading "Probability" in (Sunnucks,
1970).

1 2. Even if every atom in the moon examined 1 O24 games per second (light takes about
10~24 sec. to traverse the diameter of an electron), it would take ten million times the age
of the universe to examine 1 O100 games, which is a drop in the mare.

1 3. The values of the pieces also vary with the position, in anyone's book. There is much
scope for conjectures and statistical work on evaluation functions. For example, it was
suggested in #521 that the "advantage of two bishops" could be explained by assuming
that it is "in general" better to control two different squares than to control one square
twice, although "overprotection of the center" might be an exception. For example, the
contribution to the total "score" from the control n times of one square might be roughly
proportional to (n + 1 )a - (n + 1 )~0 (0 < a < 1, 0 > 0).

14. Perhaps the odds of a draw are roughly the geometric mean of those of winning
and losing.

15. The International Chessmaster and senior Civil Servant, Hugh Alexander, once
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remarked that it is more important for a Civil Service administrator to make his mind up
promptly than to reach the best decision. He might have had in mind that otherwise the
administrator would "lose on the clock."

16. To be precise I said that natural language should be used, and John McCarthy said
from the floor that descriptions in symbolic logic might be better.

17. This is known as psychological chess when Emanual Laskerdoes it, and trappy chess
when I do it.

18. By definition of "intelligently."
19. The difficulty of evaluating unblocked passed pawns is one for the human as well as

for the machine, because it is often in the balance whether such pawns can be blocked. This
might be the main reason for the difficulty of formalizing end-game play. It is said that
mathematicians have an advantage in the end-game but I do not know the evidence for this
nor clearly why it should be true.

20. This part of the paper is based on my invited discussion of Michie's public lecture on
the measurement of knowledge on October 30, 1974 in Blacksburg: see Michie (1977).
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The White Shoe
Is a Red Herring (#518)

Hempel's paradox of confirmation can be worded thus, "A case of a hypothesis
supports the hypothesis. Now the hypothesis that all crows are black is logically
equivalent to the contrapositive that all non-black things are non-crows, and this
is supported by the observation of a white shoe."

The literature of the paradox is large and I have myself contributed to it
twice (##199, 245). The first contribution contained an error, but I think the
second one gave a complete resolution. The main conclusion was that it is simply
not true that a "case of a hypothesis" necessarily supports the hypothesis; and
an explanation was also given for why it seems to be true.

In the present note we show in six sentences, and even without reference to
the contrapositive, that a case of a hypothesis does not necessarily support it.

Suppose that we know we are in one or other of two worlds, and the hy-
pothesis, H, under consideration is that all the crows in our world are black. We
know in advance that in one world there are a hundred black crows, no crows
that are not black, and a million other birds; and that in the other world there
are a thousand black crows, one white one, and a million other birds. A bird is
selected equiprobably at random from all the birds in our world. It turns out to
be a black crow. This is strong evidence (a Bayes-Jeffreys-Turing factor of about
10) that we are in the second world, wherein not all crows are black. Thus the
observation of a black crow, in the circumstances described, undermines the
hypothesis that all the crows in our world are black. Thus the initial premise of
the paradox of confirmation is false, and no reference to the contrapositive is
required.

In order to understand why it is that a case of a hypothesis seems to support
it, note that

W(H:Black|Crow)>0,
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where IV(H:E|G), the weight of evidence, support, or log-factor, for H provided
by E given G, is the logarithm of the Bayes-Jeffreys-Turing factor, P(E\G and H)/
f(E|G and not H). The above inequality is clear from the fact that /J(Black|H and
Crow) = 1, and a similar inequality will follow for all other explicata of corrobo-
ration (#211; App. ix of Popper, 1959). On the other hand M/(H:Crow|Black)
can be negative.

It is formally interesting to recall that

W(H:Black Crow) = W(H:Crow) + W(H:Black|Crow),

and that only the last of these three terms needs to be positive. The first two
terms can both be negative.



CHAPTER 12

The White Shoe
qua Herring Is Pink (#600)

Hempel (1967) points out that I (#518) had misunderstood him and that in his
context [of no background knowledge] a white shoe is not a red herring. But in
my context (#245) it was a red herring; so in its capacity as a herring it seems to
be pink. I shall now argue its redness even within Hempel's context.

Let H be a hypothesis of the form that class A is contained in class B, for
example, "all crows are black." Let E be what I call a "case" of H, that is, a
proposition of the form "this object is in both class A and B." I showed by
means of a clear-cut succinct example that when there is background or given
knowledge G it is possible for E to undermine H. In fact, in a technical sense, the
weight of evidence concerning H provided by E given G, denoted by H^HrEIG),
can be numerically measurable and negative. Hempel's thesis however is unaf-
fected unless we can show that M^hhE) can be negative, where H^HiE) is in no
sense an abbreviation for W^HiEIG) at any rate if G has any empirical content.

Since the propositions H and E would be meaningless in the absense of
empirical knowledge, it is difficult to decide whether H^hhE) is necessarily
positive. The closest I can get to giving W(H:E) a practical significance is to
imagine an infinitely intelligent newborn baby having built-in neural circuits
enabling him to deal with formal logic, English syntax, and subjective probabil-
ity. He might now argue, after defining a crow in detail, that it is initially ex-
tremely likely that all crows are black, that is, that H is true. "On the other
hand," he goes on to argue, "if there are crows, then there is a reasonable chance
that they are of a variety of colors. Therefore, if I were to discover that even a
black crow exists I would consider H to be less probable than it was initially."

I conclude from this that the herring is a fairly deep shade of pink.
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CHAPTER 13

A Subjective Evaluation
of Bode's Law and an
"Objective" Test for Approximate
Numerical Rationality (#6038)

[The original version of this publication was preceded by a summary.]

1. INTRODUCTION

This paper is intended in part to be a contribution to the Bayesian evaluation of
physical theories, although the main law discussed, Bode's law or the Bode-
Titius law, is not quite a theory in the usual sense of the term.

At the suggestion of the Editor [of JASA], a brief discussion of the founda-
tions of probability, statistics, and induction, as understood by the author, is
given in Part 2 [of the paper], in order to make the paper more self-contained.
In Part 3 Bode's law is given a detailed subjective evaluation. At one point the
argument makes use of a new philosophical analysis of "explanation." In the
course of Part 3 the question whether some real numbers are "close to being
rational " arises. A non-Bayesian test for this is given in Part 4, and it is applied
to the periods of the solar bodies. Blagg's law, which is a complicated modifica-
tion of Bode's law, is discussed in Part 5, and a law concerning the saturnine
satellites, due to a "dabbler in astronomy," is shown in Part 6 to have had
predictive value, a fact that seems to have been previously overlooked. This law
resembles Bode's law in form and presumably strongly supports Bode's law
indirectly although we do not try to evaluate the magnitude of this support in
this paper. Properties of the log-Cauchy distribution, which is used in Part 3, are
listed in the appendix. [In this volume, Parts 4, 5, and 6 of the paper have been
omitted.]

2. PROBABILITY, STATISTICS, AND INDUCTION

2.1 Seven kinds of probability. It is important to recognize that the word
"probability" can be used in an least seven senses. A dendroidal categorization
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was given in #522. The main kinds, all of interest even if they do not all exist,
are tautological (mathematical), physical, and intuitive, and the latter splits up
into logical, subjective, mult/subjective, evolving [or dynamic], and psychologi-
cal. Some further relevant references are Poisson (1837), Jeffreys (1939),
Kemble (1942), Carnap (1950), ##13, 182, 398, 617.

Subjective probability is psychological probability to which some canons of
consistency have been applied. Logical probability is the subjective probability
in the mind of a hypothetical perfectly rational man, and is often called credibil-
ity (Edgeworth, 1961; Russell, 1948; #398). "Your" (sing, or pi.) subjective
probabilities can be regarded as estimates of credibilities if these exist, and they
can be regarded as estimates of physical probabilities when these in their turn
exist. An evolving [dynamic] probability is one that changes in the light of
reasoning alone without the intervention of strictly new evidence, as in the game
of chess or when estimating the probability of a mathematical theorem (p. 49 of
#13, ##521, 592, 599,938).

Evolving probabilities are in my opinion the most important kind in practical
affairs and in scientific induction even though they are not completely consis-
tent. It is convenient to distinguish between two types of rationality: rationality
of Type 1 (the classical kind) in which complete consistency is demanded with
the usual antique axioms of utility and conditional probability (such as the
axioms in ##13, 26); and of Type 2, when no contradiction has been found as
far as the reasoning to date is concerned. (See #290.) For both types of ration-
ality, the "principle of rationality" is the recommendation to maximize ex-
pected utility. (We shall also discuss the rationality of real numbers in this
paper!)

My view is that physical probabilities exist in much the same sense that the
physical world exists (that is, it is not misleading to say they exist), but that
they can be measured only with the help of a theory of subjective (personal)
probability. (See, for example, #617.)

Further I believe that subjective probabilities are only partially ordered. In
this respect I follow the views of Keynes (1921) and Koopman (1940a, b),
except that Koopman was concerned with intuitive probability, and Keynes with
credibility, although he admitted later (p. 243 of Keynes, 1921) that subjective
probabilities were primary. The assumption of partial ordering leads in a natural
way to the ideas of lower and upper probabilities, these being the ends of an
interval in which any given probability is judged to lie. Nevertheless it is conven-
ient to make use of the usual axioms for well-ordered probabilities as if the
mathematical theory were a black box into which judgments of inequalities can
be plugged and discernments fed out (##13, 26, 230). A justification of this
extremely simple black-box approach, along the lines of a previous justification
of the axioms of rationality when preferences are well ordered (Savage, 1954),
has been given by Smith (1961, 1965).

2.2. Terminology. I have tried for decades to use terminology that is as close
as possible to the ordinary English uses of the terms, as an aid to intuition,
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instruction and the unity of knowledge, and for aesthetic reasons. I prefer
"initial" to "prior" and use it as an adjective only, "final" to "posterior," and
"intermediate" to "preposterior." Improper priors are excluded from my temple
but improper initial distributions are entertained. [More recently I have followed
the masses in the use of "prior."] The odds corresponding to a probability p are
defined asp/(1 —p), so that, for example, odds of 3 mean that betting odds of
"3 to 1 on" could just be given. Let H denote a hypothesis and E an event,
experimental result, or evidence. I adopt Turing's suggestion (1940) that/^EIH)/
/^(EIH), where H is Hilbert's notation for the negation of H, should be called the
"factor in favor of H provided by E" (or the "Bayes factor" or the "Bayes-
Jeffreys-Turing factor"), since it is equal to 0(H|E)/O(H), where O denotes
odds. It is denoted by F(H:E) or by F(H:E|G) if G is given throughout. Also
F(H:E|(H v H').G), where v denotes "or," is sometimes denoted by F(H/H':
E|G), pronounced "the factor in favor of H as against H' provided by E given
G." A factor is equal to the "likelihood ratio" only when H and H are both
simple statistical hypotheses. The expression "likelihood ratio" should be
reserved exclusively for the ratio of maximum likelihoods, since otherwise the
expression "likelihood ratio test" is made obscure, a pity in view of its great
importance in statistics. The term "confirmation" which is used by Carnap
(1950) for logical probability should be abandoned [in this sense] even by
philosophers: the older term "credibility" does the job perfectly.

The expression "weight of evidence," abbreviated to W, is used for the
logarithm of a Bayes factor: the term is highly appropriate owing to the proper-
ties log-odds(H|E) = log-odds(H) + W(H:E) and W(H:E.F|G) - W(H:E|G) +
W(H:F|E.G), where logical conjunction is denoted by a period. W(H:E|G) is
pronounced "the weight of evidence in favor of H provided by E given G." It is
related to the historically later concept of the amount of information concerning
H provided by E (given G), /(H:E|G), which is defined as the logarithm of the
"association factor" (Keynes's term) P(E.H|G)/(/3(E|G)/'(H|G)). The relationship
is W(H:E|G) = /(H:E|G) - /(H:E|G). The unit in terms of which weights of
evidence and amounts of information are measured depends on the base of the
logarithms. Turing (1940) suggested the term "ban" when the base is 10. This
term was derived from "Banbury," a town where half a million square feet of
forms were printed for the application of the concept. One tenth of a ban was
called a "deciban" by analogy with the acoustic decibel. The term "centiban" is
then self-explanatory. A deciban is about the smallest weight of evidence per-
ceptible to the intuition, so the analogy holds up. When the base is e Turing
suggested the expression "natural ban." When the base is 2 the unit is the "bit"
(see Shannon and Weaver, 1949 [1948]; this term was suggested by j. W.
Tukey). It is usually sufficient to estimate a weight of evidence to within 5
decibans, corresponding to a factor of about 3, but the smaller units are useful
for cumulation.

Weight of evidence appears to be the best explication for "corroboration"
(##211, 599). The expected weight of evidence in favor of a correct hypothesis
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is always non-negative. I have discussed the properties and applications of Bayes
factors or weights of evidence on numerous occasions (for example, ##13, 174,
211, 221, 223B, 245, 398, 508, 518, 521, 522, 547, 570, 574, 592, 599, 617,
618, 622). The expression "weight of evidence" was independently suggested by
Minsky and Selfridge (1961) and by Peirce (1878) in a similar sense. (See #1382.)
(Peirce also drew the analogy with the Weber-Fechner law.) I hope that statisti-
cians and philosophers of science will try to decide for good scientific and
philosophical reasons whether they should adopt this and other scientific and
philosophical terminology. [Logically, terminology should not matter; but, in
practice, it does.]

2.3. Hypothesis testing. A Bayesian test of a hypothesis or theory H requires
that both H and its negation be formulated with some accuracy. Suppose, for
example, that H is a simple statistical hypothesis. Then "in principle," its nega-
tion H should be expressed as a logical disjunction of all possible simple statisti-
cal hypotheses that contradict H and each of these must be attributed an initial
probability. Since this is impracticable it is necessary to make use of judgment in
deciding which of these simple statistical hypotheses should be entertained at all.
When making this judgment it is essential to allow informally both for the com-
plexities of the hypotheses and for whether they could be rejected out of hand
by the evidence. For this reason it is often necessary for a Bayesian to look at
the observations before deciding on the full specification of H. This has its
dangers if detached judgment is not used, but the non-Bayesian is in the same
boat (p. 60). It is necessary also to make some further simplifying assumptions
in order that the calculations should not get out of hand. But the Bayesian is in
no worse a position than his opponents in this respect: in both a Bayesian and a
non-Bayesian analysis we have to guess that some mathematical model of reality
is adequate. The main difference is that in a non-Bayesian analysis more is swept
under the carpet. This makes non-Bayesian methods politically expedient. The
Bayesian is forced to put his cards on the table instead of up his sleeve. He thus
helps others to improve his analysis, and this is always possible in a problem con-
cerning the real world.

2.4. Degrees of sensitivity of Bayesian methods to the assumed initial distri-
butions. It has often been remarked (see, for example, p. 146 of Jeffreys, 1961)
that, when testing a hypothesis by Bayesian methods, the results are not sensi-
tive to "ordinary" changes in the assumed initial distribution of the parameters.
This is true enough when there are only a few parameters. It is by no means true
when there are many parameters: see #547. In any given application it is always
possible to test the effect of such changes, but sometimes we are too busy to do
this, just as the non-Bayesian is often too busy to test his procedures for robust-
ness (or to read the literature!) and to measure the power of his significance tests
against many alternatives. Deep down inside we are all subjectivists and, when
dealing with a complicated problem, we are especially prone to indulge in
incomplete arguments. As S. S. Wilks (1963) said, "statistics is infinite." Judg-
ment is necessary when deciding whether a set of judgments is sufficient.
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We shall not consider the philosophy of Bayesian estimation procedures here.
These procedures can be regarded as a special case of Bayesian hypothesis testing
since every statement of the form that a vectorial parameter belongs to a region
is itself a hypothesis [but estimates are less often formulated before making
observations].

2.5. Scientific induction. By "scientific induction" I understand the activity
of trying to judge the subjective probabilities of theories and future events. It
has come under attack in recent years under the lead of Popper (1959) who
believes that the logical probability of any general scientific theory is zero, a
view that if adopted would kill induction stone dead and is intended to do so. I
think that one reason he came to this view is that he overlooked that the sum of
an infinite number of positive numbers can be finite (see #191). If his view is
adopted, then P(E) = P(E\H0)P(H0) + P(E|H1)P(H1) + P(E\H2)P(H2) + . . .
= P(E|H0), where Hj, H2, . . . is an enumerable sequence of possible probabi-
listically verifiable mutually exclusive and exhaustive theories, E is a future event
whose probability is of interest, and H0 is the disjunction of all unspecifiable
simple statistical hypotheses (that is, ones that cannot be specified in a finite
number of words). Since H0 is unspecifiable, there is no basis for a theoretical
calculation of the physical probability of E. Hence Popper's view kills science,
not just scientific induction [but see #956]. Other arguments against Popper's
pilosophy of induction are given in ##599, 838.

My own view on induction is close to that of Jeffreys (1939) in that I think
that the initial probability is positive for every self-consistent scientific theory
with consequences verifiable in a probabilistic sense. No contradiction can be
inferred from this assumption since the number of statable theories is at most
countably infinite (enumerable). It is very difficult to decide on numerical values
for the probabilities, but is not quite as difficult to judge the ratio of the subjec-
tive initial probabilities of two theories by comparing their complexities. This is
one reason why the history of science is scientifically important. Little progress
has been made towards objectivity in this matter, although in practice there is
often a reasonable measure of agreement concerning which of two theories is
preferable. This is often because there is a very large weight of evidence for one
of the theories as against the other. In some cases it should be possible to make
some progress in the estimation of relative initial probabilities by assuming that
the current judgments are correct and by using Bayes's theorem backwards. This
idea is closely related to the "device of imaginary results" in which judgments
are made concerning the values that the final probabilities would have after some
imaginary results are obtained; then Bayes's theorem is used backwards to
estimate what the consistent initial probabilities must be assumed to be; and
lastly Bayes's theorem is used (forwards) to obtain estimates of the final proba-
bilities in the light of the actual observations. (See ##13, 398, and especially
#547.) This device takes seriously the view that a theory of probability or of
rationality is no more than a theory of consistency.

2.6. Bayesian statistics. It is ambiguous to describe oneself, or a statistical
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technique as "Bayesian" tout court. I am a Bayesian in the sense that I believe it
is useful to talk about the probabilities of hypotheses and that statisticians
should make a reasonable attempt to avoid holding self-contradictory judgments.
I am an eclectic in the sense that I see little objection to using any of the tricks
of the statistical trade as an aid to judgment, so long as these tricks do not
violate the axioms of probability. Perhaps the most fundamental forms of judg-
ment are of the form of inequalities between subjective probabilities or between
expected utilities of two different actions, but there is no need to restrict
judgments to these forms. In particular it is possible with practice to make
direct inequality judgments concerning "weights of evidence." Magistrates and
medical diagnosticians do it all the time without quite knowing it. Statisticians
should be more like magistrates and magistrates more like Bayesian statisticians.

3. A SUBJECTIVE ANALYSIS OF BODE'S LAW

3.1. The evaluation of scientific theories is a thorny problem in the philoso-
phy of science. For each theory or set of conflicting theories the evaluation is
often made by each scientist as an overall judgment in which, partly for eco-
nomic reasons and partly out of reasonable respect, the authority of other more
powerful scientists is taken into account. This is the sociological element of
truth in the contention (Popper, 1959) that induction is irrelevant to the prog-
ress of science. It is a challenge to find some way of breaking these overall judg-
ments down in order to increase their objectivity. All judgments are subjective,
but some are more subjective than others. To increase the objectivity of judg-
ments is the only function of theories of subjective probability (p. 4 of #13).
The Bayesian considers that one important breakdown is obtained by separating
the initial probability from the Bayes factor, since the initial probability is often
more subjective than the factor. In this paper this approach will be used for the
evaluation of Bode's law concerning the "mean distances" of the planets from
the sun. Of novel philosophical interest is the use made of the "sharpened razor"
in Section 3.7, although this is not the main issue.

Bode's law is an example of physical "numerology." A physical theory is
"numerological" if it provides a formula for the calculation of physical quanti-
ties with little or no attempt to explain the formula. The word "numerology"
was perhaps first suggested in this sense in conversation in 1947 by Blackett in
connection with his paper of that year in which he discussed the magnetic
moment and the angular momentum of large bodies. For some further examples
of physical numerology see Good (1962c). The evaluation of numerological
theories is more clearly a problem for the statistician than is the evaluation of
non-numerological ones. But there is no clear-cut division between the two kinds
of theory; all science is numerological to some extent, and we shall see that the
evaluation of Bode's law requires both statistical and ordinary scientific reasoning.
Ordinary scientific reasoning is more subjective than is sometimes appreciated.

If we were convinced that Bode's law could not be ascribed to chance, its
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importance for theories of the origin of the solar system would be increased. The
need for a statistical evaluation is clear because different astronomers hold
opposing views about it. In fact the distinguished astronomer Cecelia Payne-
Gaposchkin (1961, pp. 177 & 253) even apparently contradicts herself . . .
when she says it is "probably an empirical accident" and that "the fact that the
asteroids move in a zone near to which Bode's law predicts a planet suggests that
they represent such a planet." Davidson (1943) says "it cannot be considered a
mere coincidence." Path (1955) says " . . . it seems likely that it is merely a
chance arrangement of numbers which breaks down completely for Neptune and
Pluto." Edgeworth (1961) says " . . . it is reasonable to say that there is a
certain measure of regularity in the spacing of the planetary orbits, and this
regularity cannot be entirely without significance." Young (1902) manages to
contradict himself in a single sentence: "For the present, at least, it must there-
fore be regarded as a mere coincidence rather than a real 'law,' but it is not
unlikely that its explanation may ultimately be found . . . ." He wins, or loses,
both ways.

3.2. The "mean distance" of a planet from the sun is the conventional mis-
nomer for the semimajor axis of its orbit. In 1766 Johann Daniel Titius of
Wittenberg announced, and in 1772 Johann Elert Bode published an approxi-
mate empirical "law" for the relative mean distances from the sun of the planets
then known. (See Newcomb, 1910, where earlier references are given.) The law
was later found to fit the mean distance of Uranus, and the average mean dis-
tances of the asteroids, but it failed for Neptune and for Pluto. When expressed
in its most natural manner it fails also for Mercury. The usual expression is that
the distances are approximately proportional to 4 + 2"3, where A? = —°°, 0, 1, 2,
etc., but the first of these values is artificial, and the fair value to associate with
Mercury is n = —1, since this increases the simplicity of the law and makes it less
ad hoc, although it then does not give good agreement with Mercury's actual
mean distance from the sun. . . .

[ Much of the article and all the controversial discussion and reply are omitted. ]



CHAPTER 14

Some Logic and History
of Hypothesis Testing (#1234)

ABSTRACT

It is familiar that the probability of the outcome of an experiment is usually exceedingly
small, especially when described in detail, and cannot be used by itself for hypothesis testing
because it has no intuitive appeal. Three methods for producing a criterion of more sensible
size are the uses of (i) tail-area probabilities, (ii) Bayes factors, or their logarithms the
weights of evidence, and (iii) surprise indexes. The Jeffreys-Good[-Robbins]-Lindley para-
dox constitutes a serious logical objection to the first method for large samples, if the Like-
lihood Principle is accepted, and there are some difficulties in applying the second and third
methods. The author believes that it is best to use the "Doogian" philosophy of statistics,
which is a Bayes/non-Bayes compromise or synthesis, and examples of this synthesis are
described.

1. INTRODUCTION

The foundations of statistics are controversial, as foundations usually are. The
main controversy is between so-called Bayesian methods, or rather neo-Bayesian,
on the one hand and the non-Bayesian, or "orthodox," or sampling-theory
methods on the other.1 The most essential distinction between these two
methods is that the use of Bayesian methods is based on the assumption that
you should try to make your subjective or personal probabilities more objective,
whereas anti-Bayesians act as if they wished to sweep their subjective probabili-
ties under the carpet. (See, for example, #838.) Most anti-Bayesians will agree,
if asked, that they use judgment when they apply statistical methods, and that
these judgments must make use of intensities of conviction,2 but that they
would prefer not to introduce numerical intensities of conviction into their
formal and documented reports. They regard it as politically desirable to give
their reports an air of objectivity and they therefore usually suppress some of
the background judgments in each of their applications of statistical methods,
where these judgments would be regarded as of potential importance by the
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Bayesian. Nevertheless, the anti-Bayesian wil l often be saved by his own com-
mon sense, if he has any. To clarify what I have just asserted, I shall give some
examples in the present article.

My own philosophy of probability and statistics is a Bayes/non-Bayes com-
promise. I prefer to call it the Doogian philosophy rather than the Good philoso-
phy because the latter expression might appear self-righteous. Although I have
expounded this philosophy on several previous occasions (for example, pp. 31-
32 of #13; pp. 6-11 of #398; ##26, 230, 679) it can be roughly expressed
succinctly enough to just i fy describing it yet again. In fact, the theory can be
expressed so succinctly that it is l iable to be ignored. . . . [The details are
omitted to avoid repetition.]

A similar theory incorporating partially ordered utilities can then be con-
structed in a natural, almost an obvious, way (#26). Yet the obvious is often
overlooked.

A theory of partially ordered probabilities is in a sense a compromise between
a "strict" or "sharp" Bayesian philosophy in which all probabilities are precise,
and non-Bayesian philosophies in which they are assumed merely to lie between
0 and 1 (p. 30).

Any suff icient ly complete theory can be expressed in terms of axioms, rules
and suggestions. I stated a set of axioms careful ly on pp. 19 and 49 of #13 and
w i l l not repeat them here except to mention the product axiom. This is

P ( E & F\H) = P(E\H) • P(F\E & H)

and its meaning is that if it is assumed that any two of the probabilities belong
to certain intervals, then the third probability can be inferred to belong to some
interval by using the equation. In my opinion this single assumption discrimi-
nates between Bayesians and non-Bayesians as effectively as any other equally
simple assumption.

For a codification of the rules and suggestions see #679. Unl ike a system of
axioms, such a codification cannot be complete, and it does not readily lead to
mathematical theorems, but I believe it is very useful.

As a psychological aid to introspection, for elici t ing your own probabilities, I
advocate the use of probabil i ty distributions of probabilities. This gives rise to a
hierarchical theory the history of which is reviewed in some detail in #1230. It
shows how a good philosophical point of view leads to practical statistical pro-
cedures, a possibility that might surprise many philosophers and statisticians.
Like mathematics, philosophy can be either pure, applied, or applicable.

This survey of "Doogianism" has of course been highly succinct and the
reader with an open mind who would l ike to see more details, if such a reader
exists, wil l presumably examine some of the references.

2. EVIDENCE

Does your degree of belief (= intensity of conviction = subjective probability =
personal probabil i ty) in some hypothesis or theory or proposition H depend
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only on the evidence E? It depends what you mean by the evidence. Your belief
that 43917 = 43917 depends on logic and conventions rather than on the result
of an experiment. Similarly, your judgment of the probability of a hypothesis
depends on its prior probability as well as on the results of some experimental
trial. If someone guesses a single decimal digit correctly you wouldn't seriously
believe that he could always do so, for you would judge the prior probability of
this hypothesis as being too small.

The usual way to change initial or prior probabilities into final or posterior
probabilities is by means of Bayes's theorem. For a convenient formulation of
this theorem it is customary to introduce the term "likelihood" in a sense
first used by R. A. Fisher in a special case. The probability of E given H, denoted
by /^(EIH), is also called the likelihood of H given E. The special case considered
by Fisher is when the value of P(E|H) is uncontroversial, in fact "tautological";
that is, where the numerical value of P(E|H) is determined by the definition of H
(in which case H is called a simple statistical hypothesis}. For example, H might
state that the probability of r successes in some experiment is e~rar/r\; then of
course the observation of r successes has this probability, given H, by definition.
A Bayesian is prepared to use the notation /3(E)H) for probabilities that are not
tautological, even for subjective (personal) probabilities, so, for a Bayesian, the
concept of likelihood is more widely applicable than for a non-Bayesian such as
Fisher. (At least he thought he was a non-Bayesian.) It might be advisable to call
^(EIH) the "Bayesian likelihood" of H given E when this probability is not
tautological. (One reason for this caution is that the expression "likelihood
ratio" is usually used by statisticians in a technical sense as a ratio of maximum
likelihoods.)

The concept of likelihood or Bayesian likelihood is used only when there are
at least two hypotheses, so let's suppose we have n mutually exclusive hypoth-
eses HI, H2, . . . , FV Then we have n likelihoods P ( E \ H i ) , . . . , P(E\Hn).
In some usages any set of probabilities /^(EIHj), . . . , kP(E\tfn} is called a set
of likelihoods, where k is any positive constant. With either of these definitions
we can express Bayes's theorem, in the form suggested by Jeffreys as "final
probability is proportional to initial probability X (Bayesian) likelihood" or, in
symbols

Note the immediate deduction

In particular, if H denotes the negation of H, we have

where 0(H|E) means P(U\E)IP(H\E) and is called the odds of H given E. The ratio
P(E|H)//3(E|H) is called the (Bayes) factor in favor of \i provided by E and may
be denoted by F(H:E). Jeffreys, 1939, denoted it by K but did not give it a
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name. The logarithm of the Bayes factor was independently called the weight of
evidence in favor of H provided by E by C. S. Peirce (1878), by Good in #13
(and in about forty other publications by him) and by Minsky and Selfridge
(1961). [For a correction, see #1382.] The weight of evidence can be added to
the initial log-odds of the hypothesis to obtain the final log-odds. If the base of
the logarithms is 10, the unit of weight of evidence was called a ban by Turing
(1941) who also called one tenth of a ban a deciban (abbreviated to db). . . .
I hope that one day judges, detectives, doctors and other earth-ones will routine-
ly weigh evidence in terms of decibans because I believe the deciban is an intelli-
gence-amplifier.

If someone guesses one digit correctly the hypothesis that he can always do
so gains a Bayes factor of ten and, as I said before, you still don't believe the
hypothesis. But if a new typewriter prints the digit corresponding to a key you
press, you would tend to believe it will always do so until it breaks down. There-
fore there is simply no question of the likelihoods alone determining your states
of belief in the various possible hypotheses. They can only modify the beliefs
you had before you made the relevant observation.

Nevertheless, there is something called the "likelihood principle," and, if it is
correctly stated, it is a trivial consequence of Bayes's theorem. It can be stated in
the following manner: Let E and E' be two distinct experimental results or
observations. Suppose that they do not affect the utilities (if true) of hypotheses
HJ, f-/2, . . . , Hn under consideration. Suppose further that E and E'provide
the same likelihoods to all the hypotheses, that is, that ?(E\H\) = P(E'\H,j (i = 1,
2, . . . , n). Then E and E1 should affect your beliefs, recommendations, and
actions concerning Hj, f-/2, . . . , Hn in the same way. Clearly this principle is
built into Bayes's theorem. When n = 2 the principle is built into the terminol-
ogy "weight of evidence."

The likelihood principle has been supported by some non-Bayesians who
want to avoid the use of probabilities that are neither apparently physical
(material) nor tautological (mathematical) but are subjective (personal) or are
credibilities (logical probabilities). Unfortunately members of the likelihood
brotherhood have sometimes given the impression that the likelihoods by them-
selves always enable you to choose between hypotheses.3 We have already seen,
by the example of the guessed digit, that the likelihoods by themselves are
clearly not enough for this purpose (although they are "sufficient statistics" in
Fisher's technical sense). They tell you all you need to know about the experi-
mental results, if your model of the situation is not to be questioned, but the
result of an experiment is not by itself enough for choosing between hypotheses.
If it were, there would be no need for the Duns-Ockham razor. As de Finetti
(1975, p. 248) said,

they ignore one of the factors (the prior probability) altogether, and
treat the other (the likelihood) as though it ... meant something
other than it actually does. This is the same mistake as is made by
someone who has scruples about measuring the arms of a balance
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(having only a tape-measure at his disposal . . . ), but is willing to
assert that the heavier load will always tilt the balance (thereby impli-
citly assuming, although without admitting it, that the arms are of
equal length!).

We never reject a hypothesis H merely because an event E of very small
probability (given H) has occurred although we often carelessly talk as if that
were our reason for rejection. If the result E of an experimenter observation is
described in sufficient detail its probability given H is nearly always less than say
one in a million. As Jeffreys (1939, p. 315) said,

If mere probability of the observations, given the hypothesis, was the
criterion, any hypothesis whatever would be rejected. Everybody
rejects the conclusion [of rejecting hypotheses because of improbability
of the evidence] but this can only mean that the improbability of the
observations, given the hypothesis, is not the criterion, and some other
must be provided.

If we want to be able to say that H should be rejected "because the observa-
tion is too improbable" given H we have to do more than compute/'(ElH) even
when this probability can be computed. Let us consider various approaches to
this problem.

3. THE TESTING OF HYPOTHESES

The Bayesian Approach

A Bayesian believes it is meaningful to talk about the (Bayes) factor against
(or in favor of) H, or about its logarithm the weight of evidence. In statistical
applications H is often (at least as an approximation) a simple statistical hy-
pothesis in the sense that /'(EIH) is a tautological probability while H is often
composite, that is, it is a logical disjunction of a set of simple statistical hypothe-
ses. For the sake of simplicity of exposition I shall suppose that H is the logical
disjunction "H1 or H2 or H3 or ... " (although the number of such hypothe-
ses is often non-countable in statistical models), where H!, H2) H3, . . . are
mutually exclusive. (In other words H is true if and only if one of HI, H2, H3,
. . . is true.) The probabilities ^(H/IH) and ^(EIH/) are assumed to exist and
^(EIH) can then "in principle" be calculated by the formula

Then the Bayes factor /J(E|H)//3(E|H), against the null hypothesis, can in princi-
ple be calculated, and its logarithm is the weight of evidence against the "null
hypothesis" H provided by E, say W(H:E). Note that this is mathematically
independent of the initial or prior probability /•'(H). The main objection to this
Bayesian approach is of course that it is usually difficult to specify the proba-
bilities f(H/|H) with much precision. The Doogian reply is that we cannot
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dispense with judgments of probabilities and of probability inequalities; also that
non-Bayesian methods also need Bayesian judgments and merely sweep them
under the carpet.

The Tail-Area-Probability Approach

In order to judge H in terms of a probability that is not necessarily micro-
scopic, "tail-area probabilities" (sometimes called P-values) are often used. A
tail-area probability is, by definition, the probability that the outcome of an
experiment or observation would have been "at least as extreme" as the actual
outcome E.

Different statisticians have interpreted a tail-area probability P in different
ways. Some statisticians say that i f /3 is small enough, then the null hypothesis
H should be rejected. Braithwaite (1951) argued that rejection of a hypothesis
is always provisional and that there are "degrees of provisionally" of rejection.
Many statisticians decide in advance of an experiment what threshold P0 should
be used such that if P<PQ then H should be "rejected," and they don't mention
whether the rejection is only provisional. Typical values of P0 are 0.05, 0.02,
0.01, 0.005, 0.002, and 0.001 because Fisher had issued tables (for some ran-
dom variables) corresponding to these thresholds. I understand that he issued the
tables in this form partly to avoid having to use Karl Pearson's tables. The
threshold would be chosen depending partly on the initial probability that H is
true, or is an adequate approximation, and partly on the seriousness of rejecting
H when it is true or accepting it when false. Some statisticians choose a thresh-
old without being fully conscious of why they chose it. Others will put one
asterisk against outcomes that have 0.05 > P > 0.01, two asterisks when 0.01 >
P > 0.001, and three asterisks when P < 0.001. There is no special justification
for doing this except that it is conventional and saves work if tables like Fisher's
are being used. If P can be calculated at little cost, which is increasingly possible,
it seems better to state its actual value.

Let us consider a null hypothesis that is a (sharp) simple statistical hypothesis
H. This is often done in statistical practice although it would usually be more
realistic to lump in with H a small "neighborhood" of close hypotheses as on
p. 97 of #13. The non-null hypothesis H is usually a logical disjunction of a
continuous infinity of simple statistical hypotheses which I shall call the com-
ponents of H. These components will be at various "distances" from H and some
of them will be very close to it. Hence it is often sensible to talk of testing H
within H although statisticians often use the word "against." An experiment or
observation usually consists of a sample and when we refer to the size of an
experiment we mean the size of the sample. (Neyman calls the a-level of a test
the size of the test but I prefer to call it the a-level. We define a-levels later.) To
distinguish H from the close components of H requires a large experiment. If no
prior distribution is assigned to the components of H (given H), then one could
never obtain evidence in favor of H even if it is true, because there will be
components of H close enough to H to be indistinguishable from it given any
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sample of a specified size. If, however, H is false, then a large enough sample
should demonstrate its falsity to a Fisherian. On the other hand if a prior over
the components of H is assumed, then a Bayesian or Doogian can obtain evi-
dence in favor of H, though typically this evidence is not very great. Of course if
H is redefined to be a composite hypothesis by including within H a small
"neighborhood" of the "sharp" null hypothesis, then it becomes possible to
obtain much more evidence in favor of H even without assuming a prior over the
components of H. Similarly if by the truth of Newtonian mechanics we mean
that it is approximately true in some appropriate well defined sense we could
obtain strong evidence that it is true; but if we mean by its truth that it is exact-
ly true then it has already been refuted.

Very often a statistician doesn't bother to make it quite clear whether his null
hypothesis is intended to be sharp or only approximately sharp. He also often
has in mind an experiment of moderate size but does not state this explicitly. It
is hardly surprising then that many Fisherians (and Popperians) say that "you
can't get [much] evidence in favor of a null hypothesis but can only refute it."
Regarding this statement itself as a kind of null hypothesis (!) the Fisherian's
experience tends to support it, as an approximation, Doogianwise, so the Fisher-
ian (and Popperian) comes to believe it, because he is to some extent a Doogian
without knowing it.

Perhaps the simplest example of a significance test is a test for whether a
binomial physical probability p is equal to 1/2. I am assuming the sample to be
definitely binomial and that only the value of p is uncertain. Suppose there are
r "successes" in n "trials" so that the "sigmage" is x = (r — Y^KV^n). The
larger is \x\, the more the sample differs from the most probable result (given
the null hypothesis H).

In conversation I have emphasized to other statisticians, starting in 1950,
that, in virtue of the "law of the iterated logarithm," by optional stopping an
arbitrarily high sigmage, and therefore an arbitrarily small tail-area probability,
can be attained even when the null hypothesis is true. In other words if a Fisher-
ian is prepared to use optional stopping (which usually he is not) he can be sure
of rejecting a true null hypothesis provided that he is prepared to go on sampling
for a long time. The way I usually express this "paradox" is that a Fisherian [but
not a Bayesian] can cheat by pretending he has a train to catch like a gambler
who leaves the table when he is ahead. Feller (1950, p. 140) discusses optional
stopping in a "fair" gambling game and points out that, in virtue of the law of
the iterated logarithm, an infinitely rich gambler can be sure of winning if he has
the right to stop playing when he chooses (much good it would do him). Sur-
prisingly, Feller [1950] does not mention the effect that optional stopping
would have on Fisherian tail-areas [but Feller (1940) does, as does Greenwood
(1938), also]. The point is implicit in Jeffreys (1939, Appendix I) and explicit
in [Robbins (1952), Anscombe (1954),] Good (1956) and in Lindley (1957).
[Jeffreys does not mention optional stopping, and Greenwood and Feller do not
mention that optional stopping is acceptable to Bayesians.]
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It is intuitively obvious in the binomial sampling experiment that the evi-
dence is summarized by the values of r and n and that there is no point in
investigating whether there really was a train to catch except as a criterion
regarding the honesty of the statistician.4 The use of tail-area probabilities is
therefore logically shaky but I believe it is useful all the same, and can often be
given a rough Doogian justification, at least when samples are not very large.
[The point is discussed later.]

It also follows from the likelihood principle alone, without the Bayesian
theory, that optional stopping is irrelevant when judging whetherp = 1 /2.5

What Is "More Extreme"?

The idea that one outcome is more extreme than another one depends on
whether it seems to be "further away" from the null hypothesis. What is meant
by "further away" depends on some ordering, precise or vague, of the compo-
nents of H. (For a discussion of such orderings see, for example, Kempthorne
and Folks [1971, pp. 226-230)].) The statistic chosen for testing the null
hypothesis is chosen to reflect this distance. Thus the statistic is a "discrepancy
measure" to use the terminology of, for example, Kalbfleisch & Sprott (1976,
p. 264). Sometimes more than one statistic is used for the same data because
the statistician or his client has more than one non-null hypothesis in mind,
each non-null hypothesis being composite. For example a distribution might be
tested as a fully specified normal distribution within the class of all normal
distributions or within the class of all possible distributions, and different test
criteria would be used in these two cases.

The representation of the idea that one outcome is more extreme than
another depends on the statistic (= function of the observations) that is used.
For example, suppose that the frequencies in the cells of a multinomial distri-
bution having t categories are n\, n2, . - • , nt (where £/?/ = N, the sample
size) and that the null hypothesis H specifies that the cell "physical probabilities"
(= propensities) are plt p2, . . . , pt, where Zp/ = 1. (A mnemonic for the
symbol t, as used here, is that it is often the initial letter of the number of cate-
gories such as two, three, ten, twenty, twenty-six, thirty or a thousand.) A
statistic that is often used for testing H is X2 or x2 defined by

(X2 is often called x2 [chi-squared] but x2 is also used for the asymptotic
distribution of X2 when N -+ °° and when H is true, so the more modern nota-
tion for the statistic is X2.) There are other statistics used for testing H: see,
for example, ##541, 862. One special appeal of X2 to the non-Bayesian is that
it resembles Euclidean distance, so it has geometrical simplicity, and the resem-
blance is especially marked when the p's are all equal to 1/f (the "equiprobable
case"). Moreover the asymptotic distribution of X2 (given H), when N is large,



HYPOTHESIS TESTING (#1234) 137

is known and tabulated. It is the chi-squared distribution, as we mentioned
before, with t — 1 "degrees of freedom."

It is intuitively to be expected, and also provable, that if the true probabili-
ties differ from ply p2, . . . , Pt, then X2 is likely to be larger than if H is true,
and roughly speaking the more they differ the larger X2 is likely to be. There-
fore it makes at least some sense to say that one sample is "more extreme"
than another one if the former has a larger value of X2. If some other statistic
is used then "more extreme" will have a (somewhat) different meaning. In other
words the choice of a "criterion" (= statistic) for testing a hypothesis H always
involves some concept of what alternatives to H are under consideration, how
ever vague or precise those alternatives might be, and the deviation of the
statistic from its null value should correspond roughly to greater distances from
H of the components of H, the distances being defined in "parameter space" (or
more generally in hypothesis space). Of course "distance" is here to be in-
terpreted in a generalized sense, and it need not be a quadratic function of the
parameters. One appealing distance function for multinomials is the "expected
weight of evidence per observation," Dp,log(/?//<?/), for discriminating the null
hypothesis from some other hypothesis. (The continuous analogue is obvious.)
This suggests the use of the statistic 2pylog(f/?y/A7y) or of 2A7ylog[/?//(#>/)]. The
latter statistic comes to essentially the same thing as the familiar Neyman-
Pearson-Wilks likelihood-ratio statistic. The likelihood-ratio statistic for testing a
hypothesis H "within" a hypothesis H' (where H' at least is composite) is de-
fined as max/:>(E|H/)/max/3(E|H';), where (i) E is the observed event, (ii) H is the

/ j
disjunction of all H/, (iii) H' is the disjunction of all Hy, and (iv) H/ and Hy are
simple statistical hypotheses for all / and/. By saying that H is "within" H' we
mean that each H/ is a component of H' (besides being a component of H),
though the converse is of course not true. Clearly the likelihood ratio tends to be
small if H is false but H' is true, and tends to be smaller the farther away is the
true Hy from any of the H/'s. In this way Neyman and Pearson produced a tech-
nique of some generality for generating reasonable test criteria, framed in terms
of the non-null hypothesis of interest ot the statistician. Moreover Wilks found,
in terms of y2, the asymptotic distribution of the likelihood ratio for large
sample sizes, under somewhat general conditions, and this made the likelihood
ratio convenient to use in the Fisherian manner.

Notice how the likelihood ratio is analogous to a Bayes factor which would
be defined as a ratio of weighted averages of f(E|H/) and of P(E\H'j). The
weights would be /'(H/IH) and P(Hy|H') but these probabilities are verboten by
the non-Bayesian. Just as the value of an integral is often very roughly mono-
tonically related to the maximum value of the integral so one hopes that the
Bayesian averages are roughly related to the maximum likelihoods. It would not
be entirely misleading to say that the use of the Neyman-Pearson-Wilks likeli-
hood ratio is the non-Bayesian's way of paying homage to a Bayesian procedure.
(I have expressed this argument incompletely to save space.)
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Although the use of tail-area probabilities may reasonably be called "Fisher-
ian tests of significance" because Fisher made so much use of them, and de-
veloped their theory to such an extent, they had a long previous history. One
early use was by Daniel Bernoulli (1734). (This example is described by Tod-
hunter (1865, p. 222) and was used by Barnard (1979), in a Bayesian con-
ference in Spain, as a challenge to Bayesians to explain why it was reasonable in
Bayesian terms. I was able to reply only briefly at that conference, mainly by
giving references to my own work, as usual, where this kind of question had
been discussed.)

In Bernoulli's example the null hypothesis is that the normals to the planes
of rotation of the various planets are uniformly distributed in direction. One of
the statistics he used was the maximum angle between the planes of two plane-
tary orbits. (Todhunter points out some improvements to Bernoulli's approach,
but these improvements are barely relevant to the present philosophical dis-
cussion.) Clearly this statistic will tend to be small if all the planets rotate
approximately in a single plane. Thus the appropriate meaning for "more ex-
treme" in this case is "smaller." Note that the statistic selected by Bernoulli was
presumably chosen by him because he had both a null hypothesis and a vague
non-null hypothesis in mind. The null hypothesis was that the normals were
uniformly distributed in direction, whereas the vague non-null hypothesis was
that the normals had a tendency to be close together. He wouldn't have tested
the null hypothesis by looking at the maximum angle between planes of orbits
unless he had in mind the (vague) non-null hypothesis just described. The
smaller the maximum angle, the further away is the specific form of non-null
hypothesis likely to be (away, that is, from the null hypothesis) and, at the same
time, the less probable is the null hypothesis. I believe it is a feature of all
sensible significance-test criteria that they are chosen with either a precise or,
more often, a vague non-null hypothesis, in mind. In this respect "non-Baye-
sians" act somewhat like Bayesians. If a tail-area probability is small enough then
it is worth while to try to make the non-null hypothesis less vague or even to
make it precise, and the smaller the tail-area probability, the more worth while it
is to make this attempt.

The "tail-area probability" that Bernoulli obtained would have been some-
what less impressive if he had been able to allow for Pluto because its orbit
makes a large angle with the other orbits. To allow for the possibility of such an
"outlier" a different statistic could be used, such as the average angle between all
pairs of orbits instead of the maximum angle. Or, a little more artificially, one
might use the maximum angle, allowing the deletion of one planet, but then
some "payment" would be required to allow for the artificiality. It is intuitively
obvious that if enough of the normals to the orbits are close enough together,
then there must be a physical reason for it even if some of the normals have a
large deviation. The method of deleting one of the planets provides an example
of selecting a significance test after looking at the data. Many textbooks forbid
this. Personally I think that Rule 1 in the analysis of data is "look at the data."
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The question of whether the Bode-Titius Law is "causal," a subject that was
treated in #603B and by Efron (1971), is similar to Bernoulli's problem. It is
noteworthy that one of the discussants of the former of these papers used the
exceptional planets, combined with a t-test, to argue that "we are in the classic
situation which Herbert Spencer once called a 'scientific tragedy'—a theory
killed by a fact." Having failed to understand that Spencer's remark does not
apply to the question of whether the Bode-Titius Law needs an explanation, he
repeated the same fallacy in the discussion of Efron's paper and was again
refuted. That a reputable statistician could make such an error, and then to
persist in it, shows the dangers of being misled by standard cookbook recipes
when the conditions for their application are not present. In other words it is an
example of the "tyranny of words." A misconception that sometimes arises
from the same tyranny is the belief that a P-value less than 5% means that the
null hypothesis has probability less than 5%! An example of this blunder is
mentioned in a book review in Applied Statistics 28 (1979, p. 179).

Another example where a standard technique is inadequate was mentioned on
p. 60. . . . This example again shows that it is sometimes sensible to decide
on a significance test after looking at a sample. As I've said elsewhere this prac-
tice is dangerous, useful, and often done. It is especially useful in cryptanalysis,
but one needs good detached judgment to estimate the initial probability of a
hypothesis that is suggested by the data. Cryptanalysts even invented a special
name for a very far-fetched hypothesis formulated after looking at the data,
namely a "kinkus" (plural: "kinkera"). It is not easy to judge the prior prob-
ability of a kinkus after it has been observed. I agree with Herman Rubin's
remark, at the Waterloo conference on scientific inference in 1970, that a
"good Bayesian does better than a non-Bayesian but a bad Bayesian gets clob-
bered." Fisher once said privately that many of his clients were not especially
intelligent, and this might have been part of his reason for avoiding Bayesian
methods.

A very common example, to support the view that Fisherians allow for the
non-null hypothesis, is that they often have to choose whether a tail-area proba-
bility should be single-tailed or double-tailed. If we are considering two treat-
ments, and the null hypothesis is that there is no, or a negligible, difference in
their effects (the null hypothesis) then it will usually be appropriate to use a
double-tail; but, if the question (= the non-null hypothesis) is only whether the
second treatment is better than the first, then a single-tail is usually appropriate.
Clearly a sensible criterion should embody what we want to mean by "more
extreme" in terms of the components of the non-null hypothesis. We shall have
more to say later regarding the choice of a significance-test criterion, in relation
to the "Bayes/non-Bayes synthesis" and to "surprise indexes." It is curious that
Fisher introduced general features of statistics for estimation purposes, but not
for significance tests. He seemed to select his significance-test criteria by com-
mon sense unaided by explicit general principles. Some such general principles
were later introduced by Neyman and Pearson who made use of the "power
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function" of a significance test and of the likelihood-ratio test with its attractive
amount of generality.

It is sometimes stated by Fisherians that the only hypothesis under considera-
tion is the null hypothesis, but ! am convinced that this is only a way of saying
that the non-null hypothesis is vague, not that it does not exist at all. As so
often, in other contexts, the controversy (of whether there is always a non-null
hypothesis) is resolved by saying "It depends what you mean." It is a common
fallacy that if a concept is not precise then it does not exist at all. I call this the
"precision fallacy." If it were true then it is doubtful whether any concepts
would have any validity because langauge is not entirely precise though it is
often clear enough. It is largely because of the precision fallacy that many
statisticians are not Doogians, or do not know that they are. They think that
Bayesians all use precise probabilities and do not recognize that the Doogian, who
is in many respects a Bayesian, in principle uses "upper and lower probabilities."

To show that tail-area probabilities do not contain all that is needed we ask
what if there had been a billion planets and the tail-area of Bernoulli's statistic
had been 0.001? Would we then have rejected the null hypothesis? Surely we
would have been surprised that the tail-area probability was not much smaller
than 0.001, given the non-null hypothesis. Similarly, in the multinomial exam-
ple, if /V were exceedingly large, you would expect to get a very small value for
P(X2> X2) if the null hypothesis were false (where the tilde convertsX1 into a
random variable). In otherwords, there are valuesof X2 thataresurprisingwhether
the null hypothesis or the non-null hypothesis is true. Jeffreys (1939, p. 324)
says that in such circumstances both he and Fisher should be very doubtful.
The following Bayesian approach makes the matter clearer.

Bayes Factors and Tail-Area Probabilities

If a criterion S (a statistic) is sensibly chosen it might exhaust most of the
weight of evidence against (or for) a null hypothesis H in the sense that W(H:S)
« M^HiE). For reasons to be discussed later, X2 is such a statistic when testing
the multinomial null hypothesis mentioned before. Now the asymptotic distribu-
tion of X2 (given H) when /V -» °°, is known. As I said before, it happens to be
the x2 distribution with t — 1 degrees of freedom, though it is not essential that
the reader should know what this means. This asymptotic distribution is fairly
accurate, up to tail-areas as small as 1/100 at any rate, even if/V is as small as t.
(Some textbooks say that N needs to be as large as 5t but it has been known for
some time that this is unnecessary.) Suppose we can make some guess at the
distribution of X2 given the (vague) non-null hypothesis, for a given value of N.
It seems reasonable to me to assume that it will often resemble a Pearson Type 3
distribution, but with an extra thick tail on the right, and one way of guessing it
is to specify its median, quartiles and other quantiles, depending on the applica-
tion and on "your" judgment. (The quantiles can be judged by imagining bets at
various appropriate odds.) The density curves given the null and (vague) non-null
[composite] hypothesis might have the general appearance shown in Figure 1.
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Figure 1. Probability densities of X2 given H (curve a) and given H (curve b).

When N increases, curve (a), which represents the density of X1 given H,
hardly changes, but the mode of the curve for H (curve [b]) moves to the right.
Now the Bayes factor against H, provided by X2, is the ratio of the ordinate of
curve (b) to that of curve (a) at the value of X1 that occurs. Thus, as N in-
creases, a given value of X2 provides less and less evidence against H, indeed it
ultimately provides an increasing weight of evidence in favor of H; and the same
is true of a given tail-area probability P(X2 >X2).

The above argument, showing that a fixed tail-area probability has diminish-
ing evidential value against H as the sample size N increases, can also be ex-
pressed in terms of "errors of the first and second kinds" (as defined below
when we discuss the Neyman-Pearson approach). For we can concentrate our
attention on any one, say H'y, of the simple statistical hypotheses of which the
non-null hypothesis is a logical disjunction. We can then replace the curve (b) by
the probability density curve of Hy. For any fixed a, the value of 0correspond-
ing to Hy increases as N increases and tends to 1 as /V-> °°. Moreover the simple
likelihood ratio, for comparing H with H'y, which is a ratio of ordinates (instead
of being a ratio of areas), tends to infinity as N -» °° if a is fixed. Thus, for any
fixed a, however small, the evidence in favor of the null hypothesis tends to
infinity as N -+ °°. Since this is true for each H'y it must also be true when H is
contrasted with H. This result hardly requires a Bayesian argument to support it,
but only the concept that the simple likelihood ratio is monotonically related to
the strength of the evidence.

Another way of looking at the above argument is that, for a fixed a, as N
increases, more and more of the components of H become effectively refuted,
and we are left with a contracting set of components in a smaller and smaller
neighborhood of H. Thus H becomes more and more probable and this result
does not even depend on our regarding H as itself only an approximation. Of
course the argument is stronger still if we do regard H in this light.
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We see then that a given tail-area probability P for X2 (or for any other
statistic) has a fixed meaning neither for a Bayesian nor for a Neyman-Pear-
sonian, and that the interpretation of P depends on the sample size. In this
respect the Bayesian and the Neyman-Pearsonian agree to differ from a Fisher-
ian. The difference is, however, not as large as it might seem because, when the
sample size is very large, the tail-area probability will usually either be moderate
(e.g. in the range 0.05 to 1) or exceedingly small (e.g. less than 1/10,000),
depending on whether the null hypothesis is true or false. [But the difference
is large if optional stopping is permitted.]

These comments make one uneasy about certain experiments in parapsychol-
ogy where the experiments are large and the "proportional bulges" are small.
For example, the best subject in Helmut Schmidt's experiments, in a binomial
experiment, had a success rate of 52.5% in 6400 trials. (See Frazier, 1979.) As
good a result would occur about 1 /30,000 of the time in a sample of this size, if
p - 1/2. But, if we assume that, under the non-null hypothesis, p is uniformly
distributed from 0.5 to 0.55 then the Bayes factor against the null hypothesis
from this sample is only about (SOTr)1/2^8 -^ 320 ^ 150. The factor could be
larger if the prior density, given H, tended to infinity near/? = 1/2, a possibility
suggested on pp. 74 and 78 of Good (1962a) where the matter is discussed in
somewhat more detail.6

In spite of my logical criticisms of the use of tail-area probabilities, I have
found that, for sample sizes that are not extremely large, there is usually an
approximate relationship between a Bayes factor Fand a tail-area probability P.
I shall now discuss this relationship.

Pp. 93-95 of #1 3 made use of the idea of basing a Bayes factor on the values
of a statistic (not necessarily a sufficient statistic), such as X2 . This requires a
judgment of the distribution of the statistic given H. Given H, the distribution of
X1 is often uncontroversially known approximately. I said that

it would often happen that the factor in favour of H [the null
hypothesis] obtained in some such way [by assuming a distribution for
a statistic both given H and given H] would be in the region of three or
four times P(xo2) [the tail-area probability of the observed value of the
statistic given H]. ... [In a footnote I remarked that] There are two
independent reasons why the factor in favour of H exceeds P(xo2}- The
first is that to pretend that the result is x ̂  Xo when it is really x = Xo
is unfair to H. The second is that P(x > XolH) < 1, so that the factor
from the evidence "x ̂  Xo " is

#127, based on lectures of 1955 in Princeton and Chicago, took the matter
somewhat further in the following words:

The Bayes/non-Bayes synthesis is the following technique for syn-
thesizing subjective and objective methods in statistics, (i) We use the
neo/Bayes- Laplace philosophy in order to arrive at a factor, F, in favour
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of the non-null hypothesis. For the particular case of discrimination
between two simple statistical hypotheses, the factor in favour of a
hypothesis is equal to the likelihood ratio, but not in general. The neo/
Bayes-Laplace philosophy usually works with inequalities between
probabilities, but for definiteness we here assume that the initial distri-
butions are taken as precise, though not necessarily uniform, (ii) We
then use F as a statistic and try to obtain its distribution on the null
hypothesis, and work with its tail-area probability, P. (iii) Finally we
look to see if F lies in the range

If it does not lie in this range we think again.

(Note that F is here the factor against H.)
#547 examined numerical evidence relating a Bayes factor F against H to an

orthodox tail-area probability. The application was to significance tests for
equiprobability in a multinomial distribution and the Bayes factor was based on
all the evidence. It turned out that, in 1 8 samples,

where N is the sample size, and in 14 of the samples the 6 could be replaced by
3. The reason for introducing /V1/2 into the formula was its occurrence in Jeffreys
(1939, Appendix I). Jeffreys showed in effect that, in a number of examples, the
Bayes factor against the null hypothesis is roughly inversely proportional to/V1/2

for a given tail-area probability.
For the same multinomial problem, but with a much larger collection of

samples, #862 found that P(F)t the tail-area probability of F itself, was propor-
tional to (F/V1/2)"1 within a factor of 5. For most pairs (f,/V), where t is the
number of multinomial categories, we found that P(F) is almost equal to a
mathematical function of t, N> and F and does not otherwise depend much on
the frequency count (n\, n2, . . . , n->). This confirmed a basic idea of the
Bayes-Fisher compromise, that a Bayes factor is roughly some function of its
own tail-area probability.

Some similar numerical results were obtained for contingency tables in

##929,1199.
In virtue of these results, and in spite of my propaganda for the Jeffreys-

Good[-Robbins]-Lindley paradox, I personally am in favor of a Bayes/non-
Bayes compromise or synthesis. Partly for the sake of communication with other
statisticians who are in the habit of using tail-area probabilities, I believe it is
often convenient to use them especially when it is difficult to estimate a Bayes
factor. But caution should be expressed when the samples are very large if the
tail-area probability is not extremely small.
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The Neyman-Pearson Approach

The basic idea in the Neyman-Pearson approach to significance tests (Neyman
and Pearson, 1933) is to consider the probabilities of errors of the first and
second kinds. An error of the first kind is defined as the rejection of the "null
hypothesis" H when it is true, and an error of the second kind is the acceptance
of H when it is false. The probabilities of these two kinds of error depend of
course on the signficance test that is to be used, and the two probabilities are
usually denoted by a and 0. Here j3 is regarded as a function of the components
of H and 1 — j3 is called the power function. Also a might be a function of the
components of H if H is composite, but we shall suppose for simplicity that H is
simple. If the significance test is defined in terms of a statistic with a threshold,
then a depends on the threshold. Sometimes the threshold is chosen so that a
takes some conventional value such as 0.05; otherwise the power function
depends on the value of a.

The concept of a power function is in my opinion most useful when H is a
disjunction of a single-parameter set of components. When there is more than
one parameter the power function is liable to be difficult to apprehend.

It is not by any means always sensible either to accept or to reject a hypothe-
sis in any sharp sense. If a lvalue is very small this gives more reason to look for
sharp alternatives to it, in a Fisherian context, and this important fact is not
captured by the Neyman-Pearson technique.

Neyman and Pearson recognized that a hypothesis cannot be tested unless
there is some notion of alternatives so they formalized the matter by assuming
the alternatives could be specified accurately. In this respect they were going in
the direction of the "sharp" Bayesian, but they stopped short of assuming a
conditional prior for the components of H (conditional on H).

That the notion of errors of the second kind is useful for orthodox statistics,
in one-parameter problems, whatever its weaknesses may be, can be seen from
Frieman et al. (1978). They found that the emphasis on a (or lvalue) and the
neglect of j3 had led to many ineffective clinical trials. In 71 "negative" ran-
domized control trials, chosen in a sensible manner from published papers, 50
of the trials had a 10% risk of missing a 50% therapeutic improvement (in a well
defined sense). This poor performance might have been avoided if the experi-
menters had allowed for errors of the second kind when planning their experi-
ments. They would have realized that their samples were too small. But the
smallness of the samples in these trials was presumably caused also by the
ethical consideration, that as soon as one treatment seems better than another
it seems unethical to use the apparently less good treatment. (See also #1146,
which gives a brief recent discussion of ethical problems in clinical trials. It
seems that the ethical difficulty can only be overcome either by social contract
or if patients voluntarily accept compensation for entering the trial.7 [Or
perhaps we can take advantage of the fact that the legality of treatments differs
from one country to another.]
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It is of historical interest that Neyman (1977) says that he and Pearson were
inspired to formulate their theories by Borel (1920) who "insisted that: (a) the
criterion to test a hypothesis (a 'statistical hypothesis') using some observations
must be selected not after the examination of the results of observation, but
before, and (b) this criterion should be a function of the observations 'en quel-
que sorte remarquable.' "

When using the Neyman-Pearson theory, at least in its standard form, the
precise significance test and the value of a are supposed to be determined in
advance of the experiment or observation. I have already argued that one cannot
always sensibly determine a significance test in advance, because, heretical
though it may be in some quarters, sometimes the data overwhelmingly suggests
a sensible theory after the data are examined. On some other occasions the
suggestion is not overwhelming and then it is desirable to collect more data if
this is not too expensive. In Daniel Bernoulli's example, and in the example of
the Titius-Bode Law, and in many cryptanalytic problems, it is difficult or
impossible to collect more data, and in some other situations it is very expensive
to do so.8

On some occasions the non-null hypothesis is of high dimensionality, or is
otherwise a very complicated disjunction of simple statistical hypotheses, with
the result that the statistician is unable to apprehend the power function intui-
tively. In such cases it may be possible to average the power function with
weights that are proportional to the prior probabilities so as to obtain a con-
venient summary of the power function (p. 711 of #862). [I call it the strength
of the test.] To do this can be regarded as an example of a Bayes/Neyman-
Pearson compromise. Some numerical examples of this procedure are given by
Crook &Good (1981).

Surprise

The evolutionary value of surprise is that it causes us to check our assump-
tions (p. 1131 of #82). Hence if an experiment gives rise to a surprising result,
given some null hypothesis H, it might cause us to wonder whether H is true
even in the absence of a vague alternative to H. It is therefore natural to consider
whether a statistical test of H might be made to depend upon some "index of
surprise."

There is one such index due to Warren Weaver (1948), and a generalization in
##43, 82. Weaver proposed the index (Sp/2)/p where p/ runs through the
probabilities of mutually exclusive possible outcomes of an experiment (or
observation) and p denotes the probability of the event that actually occurred.
This index can be written in the form

where p denotes the random variable whose possible values are the probabilities
of outcomes and £ denotes mathematical expectation. (When there is a continu-
ous infinity of possible outcomes one can of course use probability densities in
place of probabilities, but the index is not invariant under transformations of the
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independent variable. It is invariant under linear transformations.) This form for
X t shows that it can replace the microscopic probability of the outcome by a
number of more reasonable magnitude. For example, if part of the outcome of
spinning a coin is that it lands on a certain point on the floor (which we regard
as irrelevant to whether the coin is biased) the microscopic probability of this
irrelevance will cancel out when the ratio \i is computed. The surprise index
depends on how the outcomes are grouped, especially when there is a continu-
ous infinity of possible outcomes.

As a generalization of X }, ##43, 82 proposed

and the limiting form (u -> 0)

X0 =exp £(log/?)- log/?

which is the ratio of the "geometrical expectation" of p to p. If we write A.u -
log \w, then Au is additive if the results of several statistically independent
experiments are regarded as a single experiment whereas the indexes \u are
multiplicative.9 An additive property seems more natural. In particular

and this can be interpreted as the amount of information in the event that
occurs minus the expected amount (p. 75 of #13). The most natural of the
surprise indexes10 are X t, A1} X0, and A0. Moreover A0 has the desirable
property that its expectation is zero, that is, the expected amount of surprise
vanishes if the null hypothesis is true. (Compare Bartlett, 1952.)

If we prefer not to assume anything about the non-null hypothesis, then a
surprise index can sometimes reasonably be used for deciding whether the null
hypothesis is suspect, or whether it is supported (as when A0 is negative).
Surprise indexes are not yet in common use in statistical practice, but perhaps
they should be. One could also make a surprise/Fisher compromise by using the
tail-area probability of a surprise index as a criterion for testing a null hypothe-
sis. But sometimes a surprising event is regarded as "merely a coincidence"
because we cannot think of any reasonable alternative to the null hypothesis.

I have here ignored some problems of definition of surprise that are related
to the meaning of "simplicity." The matters are discussed to some extent in
#82.

The Bayesian Influence on Significance Testing

The coherence of the Bayesian philosophy, especially in its Doogian form,
can shed light upon and can influence non-Bayesian procedures.

For example, Bochner (1955) once asked me "Why use X2 [for testing a
multinomial null hypothesis H]?" My reply was that, under a wide variety of
Bayesian models, the weight of evidence against H is approximately a linear
function of A"2 when the weight of evidence is not large. This provides a rough
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justification for combining independent X2 's by taking a linear combination of

them (because independent weights of evidence are additive).

Another example is a proposed procedure for combining several tail-area

probabilities PI, P2, P3> . . . that are obtained by distinct significance tests

based upon the same data. An informal Doogian argument leads to the rule of

thumb of regarding the harmonic mean of PI, P2, PI, . . . as a resultant tail-
area probability provided that nothing better comes to mind (#174).

4. EXPLICATIVITY

So far in this article the emphasis has been on whether a hypothesis is probable,

but the selection of a hypothesis depends also on its utility or on a quasiutility

such as its power to predict or to explain. If this were not so we would always

prefer a tautology such as 2 = 2 to any more informative hypothesis. An analysis

that allows especially for explanatory power is given in ##599 and 1000. The

analysis introduces a concept called "explicativity" which leads to a sharpened

form of the Ockham-Duns razor and which is found to shed light both on

significance tests and on problems of estimation.

NOTES

1.1 am in the habit of calling non-Bayesian methods "orthodox" because for some years
after World War II I was almost the only person at meetings of the Royal Statistical Society
to defend the use of Bayesian ideas. Since such ideas are now much more popular it might
be better to call non-Bayesian methods "sampling theory" methods and this is often done in
current statistical publications. This name covers the use of tail-area probabilities ("Fisher-
ian") and probabilities of errors of the first and second kinds (Neyman-Pearsonian).

2. Intensities of conviction are often called "degrees of belief" but in 1946 or 1947
Gilbert Ryle rejected an article of mine, for Mind (containing an outline of #1 3), partly on
the grounds that you either believe something or you do not (and also because the article
was somewhat mathematical). He also described the interpretation of P(AIB) in terms of
degrees of belief, when B does not obtain, as "make belief." If I had used the expression
"intensity of conviction" this joke would have been unavailable to him.

3. By the time a pure likelihood man recognizes that initial probabilities must be allowed
for, he calls them initial likelihoods or initial supports instead so as to avoid admitting that
he has become a Bayesian!

4. It is intuitively obvious to a layman of not to a Lehmann. Lehmann (1959) made a
notable contribution to the sampling-theory approach to significance tests. My wisecrack is
not really fair to Lehmann because he recognizes the value of Bayesian decision theory, but
there is no reference to optional stopping nor to the law of the iterated logarithm in the
index of his book, so presumably his book does not mention the danger of optional stop-
ping in a Fisherian context.

5. It might be thought that binomial sampling, with fixed sample size n, leading to r
"successes," would lead to a different tail-area probability, for testing the hypothesis of a
specified value for p, than if "inverse binomial sampling" were used (in which r is fixed and
sampling is done until r successes are achieved). It turns out, curiously enough, that, if r and
n are unchanged, then the tail-area probabilities are equal for the two methods of sampling.
This can be inferred from Patil (1960, p. 502). But the unbiased estimates for/? are unequal,
being r\n for binomial sampling and (r — 1 )/(n — 1) for inverse binomial sampling. (See, for
example, Kendall and Stuart, 1960, p. 593.)
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6. Perhaps an acceptable prior, given H, would be a mixture of beta distributions scaled
to lie in the interval (1/$, 1). This prior would be similar to the one used in the hierarchical
Bayes technique (#862). The implications for Schmidt's data could be worked out when the
data are available.

7. Gordon Tullock (1979) suggests that the volunteer might receive a conditional
reward in a "double-blind" experiment; that is, the reward would depend on whether the
treatment was later revealed to be the more favorable or the less favorable one. It would also
sometimes be possible to determine the compensation depending on the effectiveness of the
treatment for the particular patient.

8. In both the astronomical examples there is collateral information from the satellites
of the planets. But in Bernoulli's problem the evidence was already overwhelmingly strong.

9. The expression A.u + log p is sometimes called Renyi's generalized entropy (Renyi,
1961) but he was anticipated in 1954, as explained in the text.

10. The indexes A j and A0 are closely related to the quadratic and logarithmic fees that
encourage honesty and "objectivity of judgments." These were defined respectively and
independently by Brier (1950) and in #26 and there is now a large literature on the topic.
See, for example, #690A, Savage (1971), and Hendrickson & Buehler (1972).



CHAPTER 15

Explicativity, Corroboration,
and the Relative Odds
of Hypotheses (#846)

INTRODUCTION

"Momma do you think it's proper; how
did you react to Poppa?"

Popular song.

In this paper I shall discuss probability, rationality, induction and the relative
odds of theories, weight of evidence and corroboration, complexity and simpli-
city (with a partial recantation), explicativity, predictivity, the sharpened razor,
testability and metaphysicality, and gruesomeness.

I agree with some of the things that Popper has said about several of these
topics, in his stimulating writings, but I by no means have a Popper fixation.

I. THE PHILOSOPHY OF PROBABILITY
AND RATIONALITY THAT I ACCEPT

A. The Shifting Meaning of "Bayesian"

I used to call myself a Bayesian when it was not misleading to do so. I have
not changed my position, but the meanings of words change. As Winston Chur-
chill said, his political opinions had not changed when he changed his political
alliance: it was the political parties that were marching out of step, or words to
that effect. If one could imagine a space of statisticians, in 1950 there were so
few Bayesians that they clearly formed a cluster including myself, as in Figure 1a
(which, however, is not of course complete). But in 1973 the picture is more like
that shown in Figure 1b, where it would be less misleading to say that I repre-
sent a Bayes/non-Bayes compromise. The meanings of words are often deter-
mined by clusters in abstract spaces.

At last count there were 46656 varieties of Bayesians (#165) so I shall have
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to describe to some extent where I stand. I shall try to be succinct because there
are several other topics to discuss. (Previous descriptions of my philosophy are
given, for example, in ##13, 26, 230, 290, 398, 522, 547, 679, 838.)

"Bayesian" is not the only ambiguous word that might give trouble during
this conference. "Probability" has at least five meanings (for example, ##182,
398, 522, p. 16 of #750), and the expressions "subjective probability" and
"logical probability" or "credibility" both need clarification.

B. Subjective and Logical Probabilities

I use the expression "subjective probability" in the sense of "personal proba-
bility" if an attempt at coherence or consistency with axioms has been made.
For a purely snap judgment of a degree of belief or an intensity of conviction,
without such an attempt at coherence, I use the expression "psychological
probability," the kind that has been investigated, for example, by John Cohen
in children. By "logical probability" or "credibility" (an expression used by
F. Y. Edgeworth and by Bertrand Russell) I mean the unique rational belief, if
it exists. Carnap (in Carnap and Jeffrey, 1971, p. 13) said that what I call
"subjective probability" would be better called "rational credibility," but since
it depends on the person or group of people making the judgment, whom I call
"you," I think "subjective" or "personal" (or multisubjective or multipersonal)
is a better term, although Ioglco-subjective (or logico-multisubjective] would be
even better apart from its clumsiness. (The differences between the upper and

Figure 1. Statistician's space: (a) 1950, (b) 1973.
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lower probabilities, that is, the widths of the intervals of estimation, might be
much larger for groups than for individuals.) There is a continuous gradation
from psychological probability to logical probability. Whether logical probability
exists or not it is an ideal to hold in mind like absolute truth. Probabilities might
be strictly logical and constructive relative to a precisely formulated and appro-
priately chosen language and then only if exact rules could be given for com-
puting them, as was Carnap's original program (Carnap, 1950). Between 1950
and 1961 Carnap moved close to my position in that he showed a much in-
creased respect for the practical use of subjective probabilities.

In my opinion both subjective probabilities and logical ones should be based
on external reality and not just on an arbitrary language (cf. p. 48 of #13). In so
far as they are based on a language, the choice of this language is likely to be
largely subjective or multisubjective in practice. In this choice of a language a
large measure of rationality is possible in principle, because, as a guiding princi-
ple in its selection, we could try to make it as economical as possible for expres-
sing what we would like to express (cf. p. 24 of #617). There are reasons for
believing that languages have some measure of efficiency; for example, this
assumption leads to an economical economic explanation for the approximate
validity of the Zipf law of distribution of word frequencies (Mandelbrot, 1953;
#130; p. 575 of #524, where it is mentioned that Zipfs law "is unreliable but
is often enough a good approximation to demand an explanation"). It should be
held in mind that part of the description of a language is its statistical properties
which unfortunately dictionaries do not adequately supply. Carnap ignored this
point as far as I know. If a word is used with frequency 10~12 it might be diffi-
cult to decide that it definitely belongs or definitely does not belong to the
language. It is simpler to say that its frequency of use in the language (or in
some dialect at some place and time and in some context) is 10~12 and leave it
at that.

Languages and sublanguages have evolved during the course of billions of
man-hours of usage, and have adaptively achieved some measure of efficiency.
So it is not surprising that they are helpful for your judgments of initial proba-
bilities of theories although they are not yet as helpful as we should like them to
be. Note that the probability that the next book you see will be blue is not equal
to the reciprocal of the number of names of colors, but is closer to the frequen-
cy of use of the word "blue" in English, when referring to a color. Credibilities
based on artificial langauges can be much worse. Certainly artificial languages
can be designed for the special purpose of being misleading. George Orwell
(1949) emphasized this point and Goodman's paradox of grue and bleen demon-
strates it. I shall return to the gruesome paradox later.

In one of his attacks on subjective probability, Popper argued that it was
impossible to generate knowledge from ignorance (Popper, 1957). But it seems
to me that this is precisely what mammals have been doing for the last billion
years, and I even once heard Popper state that science is based on a swamp. Just
as language develops adaptively, both in men and in man, in order to cope with
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reality, there is no reason why probability judgments should not develop in
much the same way. So it seems to me that Popper has been inconsistent.

One cannot infer probabilities by using the axioms of probability unless one
starts with some probabilities or functions of probabilities as input, and these
have to be based on judgments. One example of a judgment that the frequentist
will be prepared to make is that of a probability based on a large sample. Then
we can use Bayes's theorem in reverse so as to obtain inequalities relating his
implicit initial probabilities, the existence of which he would like to whistle
away. No amount of whistling will remove them. This use of Bayes's theorem in
reverse is a legitimate method of inference and is especially effective when
combined with the Device of Imaginary Results (##1 3, 398, 547).

There is no need of magic here. Even an intelligent robot would be advised to
adopt a subjectivistic theory of probability and rationality, in the interests of
self-preservation. More precisely, the robot, like a man, should behave as if it
adopted these theories as an approximation. The reason magic might seem to be
present is that we do not know how judgments are made; if we did we would not
call them judgments but inferences. Judgments depend on complicated neural
circuits and half remembered information and not on known simple algorithms
(#1 83; p. 11 5 of #411). If we knew the structure of these circuits the engineers
would call them "logic circuits" and judgments would have been reduced to logic.
Until such time it seems better to accept subjectivism as a practical necessity.

Subjectivism is bridled. Various sets of desiderata or constraints have been
shown to lead to essentially the usual axiomatics of the theories of probability
and rationality. (See, for example, F. P. Ramsey, 1931; C. A. B. Smith, 1961.)
We all have to make subjective probability judgments but the person who
recognizes this clearly enough is prepared to constrain his judgments so that they
tend to satisfy a certain set of axioms. In short his judgments are to that extent
more likely to have a measure of objectivity than those of the objectivist who
refuses to allow his subjective judgments to be so constrained. Honest objectiv-
ism leads inevitably to subjectivism. Contrary to Agassi's thesis, it is the denial
of the need of subjectivism, not '^acceptance that is the chronic illness.

C. Brief Outline of My Philosophy

I believe that, of the various interpretations of probability, the most opera-
tional, the one closest to action, is subjective or personal probability, for it
enables us to extend ordinary logic into a useful general-purpose system of
reasoning and decision-making. Moreover I believe that a theory of subjective
probability is necessary as a reasonably consistent basis even for the measure-
ment of physical probabilities. (The distinction between physical and sub-
jective probability was emphasized, for example, by Poisson, 1837, and Carnap,
1950.) (See also ##659, 838.)

I believe that subjective probabilities and utilities are only partially ordered.
This means that a comparison can sometimes be made between a pair of proba-
bilities or a pair of utilities but not necessarily always. This comes to the same
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thing as ascribing an interval of values to each probability or utility, and thus an
upper and a lower probability, an upper and a lower utility, and an upper and a
lower expected utility. This theory differs from the currently more popular one
of sharp probabilities and utilities. I reserve historical comments until later.

To be more precise it is better to describe my philosophy as an adherence to
the "black box theory of probability and rationality." The black box is sup-
posed to contain the axioms of the subject; it has an input that consists of
inequalities between probabilities, probability ratios, utilities, expected utilities,
etc. These inequalities constitute a "body of beliefs." The output consists of
discernments. By a "discernment" I mean a judgment that becomes compulsory
once it has been deduced. The inside of the black box is supposed to operate
with sharp probabilities and utilities although the judgments and discernments
are only partially ordered. The advantage of this theory is that it is dead realistic
yet as simple as possible because it is based on a more or less classical set of
axioms while not being committed to the notion of sharp judgments of probabil-
ities and utilities. The purpose of the theory is to enlarge the body of beliefs and
to detect inconsistencies in it, whereupon the judgments need revision (##13,
26, 230). In this respect it resembles Aristotelean logic.

The principle of rationality of Type I is the recommendation to maximize
expected utility. The principle of rationality of Type II is the same except that
the costs of theorizing and calculation are allowed for. The Type II principle of
rationality is not consistent but at any given moment it should appear reason-
ably consistent to you. The notion of an inconsistent logic is not one that logi-
cians support as yet. But if we imagine a futuristic robot making use of a sub-
jectivistic theory it is obvious that all it can do at any given moment is to use the
judgments that it has made up to that moment. I can see no reason to suppose
that a person could do any better without divine guidance. This is a sufficient
reason for calling my theory subjectivistic rather than credibilistic. But I regard
it as mentally healthy to think of subjective probabilities as estimates of credi-
bilities although I am not sure that credibilities exist. It's like half-believing in
God. One might say that a belief in credibilities constitutes a religion, whereas
subjective probabilities emerge more directly from ordinary experience.

D. Historical Comments

J. M. Keynes put forward a theory of partially ordered logical probabilities
whereas F. P. Ramsey dealt with sharp subjective probabilities. B. O. Koopman
proposed a theory of partially ordered so-called "intuitive probabilities," which
could be either logical or subjective, but I think they were intended to be
logical. Koopman was not concerned with utilities. The theory of Dorothy
Wrinch and Harold Jeffreys was one of sharp credibilities, and again utilities did
not come into the argument. My philosophy can be regarded as based on a com-
bination of those of J. M. Keynes and F. P. Ramsey. In the interests of simpli-
city I often talk about sharp probabilities and utilities, and then I justify it by
means of the Type II principle of rationality. That is, I make a high order
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judgment that in some circumstances this use of sharp probabilities and utilities
is good enough for the application, in fact that it roughly maximizes expected
utility because it avoids complexities with little loss of realism.

de Finetti showed that a consistent set of sharp probabilities imply, in certain
circumstances, that the probabilities could be expressed as if they were subjec-
tive expectations of apparent physical probabilities. It is impossible to disprove
solipsism. Therefore de Finetti's important theorem had to be true! He never
says that physical probabilities exist but that a consistent subjectivist would act
in certain respects as if they did. In my opinion one might just as well assume
that the physical probabilities exist as well as the subjective ones. After all,
Ramsey's approach to the axioms, as elaborated by L. J. Savage and others, also
shows that a rational person will act as if he had subjective probabilities and
utilities. To quote from #617, "Thus physical probabilities can be described as
metaphysical in the same sense that the postulate of the existence of the ex-
ternal world is metaphysical. All kinds of probability are metaphysical but some
are more metaphysical than others. Subjective probabilities involve a single "as
if" whereas physical probabilities involve two "as if s." . . . Physical probabili-
ties are metametaphysical."

Perhaps all our concepts are no more than "as if" in which case we might just
as well drop the as if's in discussion (#838). If a concept can always be used in
an "as if" way then one might as well say that the concept is "real." Perhaps this
is an adequate definition of reality. The reason it sounds like an inadequate
definition is that in ordinary usage when we use the expression "as if" we mean
than there are exceptions. In other words, an object or a concept can be said to
be real or to exist if for all purposes it is as if it were there.

Popper's main criticism of theories of subjective probability is that they are
incapable of expressing physical independence (Popper, 1957). I think he
overlooked de Finetti's theorem.

My criticism of the permutability assumption is that it would be abandoned
if the evidence showed it should be, and this means that it was not held in the
first place except as an approximation. But I have little objection to approxima-
tions. [For the meaning and history of "permutability" see #398, p. 13.]

E. Evolving or Dynamic Probabilities

[See #938.]

II. COMPLEXITY: A RECANTATION

In #599 I defined the complexity of a proposition H as the amount of informa-
tion in it, namely /(H) = —log P(H). I wish to withdraw this definition of com-
plexity, although I still accept the definition of information (p. 75 of #13;
#505). It disturbed me at the time that the proposition 0 = 1 , which looks
simple, should be said to be infinitely complex, although it does imply any other
proposition however complex. My definition was further weakened when
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K.S.Friedman (1973) pointed out an objection to my postulate that the
complexity of H • K is greater than that of H. He showed that it leads quickly to
the conclusion that A v B is simpler than A, which is counterintuitive. What I
should have said is that H • K is more complex than H when H and K are entirely
independent propositions. In fact it seems very reasonable to assume that in this
case

K(H- K) = /c(H) + /c(K).

But if K(H) is some function f of the probability of H it follows that identically

f(xy)=f(x)+f(y]

from which it follows that f(p) must be proportional to log p, and we are back
to the previous unsatisfactory definition in which 0 = 1 is infinitely complex. I
conclude that the complexity of a proposition cannot be defined in terms of its
prior probability alone. Fortunately this has very little effect on my paper on
the sharpened razor (#599).

Valery (1921, and p. 109 of the 1968 printing) called a figure "geometric" if
it can be traced by motions which can be expressed in a few words. (I wonder
whether he got this idea from Lemoine, 1902, referenced by Coolidge, 1916,
p. 170.) He is here explicating the concept of simplicity. It must have been
obvious for centuries that the complexity of a statement had something to do
with the length of that statement and clearly this definition can be sharpened by
describing the complexity in terms of the smallest number of words that could
be used for making an equivalent statement. This definition depends on the
language used but often we want to talk about the complexity in the real world
of a hypothesis, rather than in some specific language. So, just as before, the
quantitative definition of complexity depends on the choice of an economical
language for describing the world or some field of interest.

One consequence of this approach, even before we have identified the appro-
priate language, is that if we have two theories that are totally unrelated placed
end to end we are forced to say that the complexity of the conjunction of the
two theories is the sum of the separate complexities as I assumed before.

Perhaps the best plan is to define the complexity of a theory, not as minus
the logarithm of the prior probability that the theory is true, but as minus the
logarithm of the probability that the linguistic expression that describes the
theory would occur in the language when the statistical properties of the lan-
guage are specified up to say di-word frequencies. Moreover we must take the
largest possible value of this probability by an appropriate linguistic transforma-
tion. Since the word "and," or the corresponding symbol in a formal logic, say
an ampersand or period, naturally has a high probability, it will still be approxi-
mately true that the complexity of a conjunction of two theories that have
nothing to do with one another is approximately the sum of the complexities,
or slightly greater because of the symbol for conjunction. Likewise, a proposi-
tion and its negation have approximately equal complexities, for example
0 + 1 and 0 = 1 are about equally simple.
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But if we adopt this definition of complexity is it still true that we like a
theory to be simple? (More precisely, of two theories that explain the same
facts, the simpler is preferable.) The answer is that it is still true but it is more
important that its probability should be high (but see Section V) rather than
that the maximum probability of its linguistic expression should be high. Al-
though there is obviously a rough relationship between these two probabilities
they are not equal. The probability of its linguistic expression is more closely
related to brevity of the statement than is the probability of the theory itself. A
very easy way to see this is by considering a theory and its negation, H and H.
They take about the same number of words to assert yet one of them might have
a probability close to 0 and another close to 1. We would not wish to regard
both of these as equally good theories though they have nearly equal complex-
ities (or simplicities).

Apparently then there is no clear-cut relationship between probability and
complexity when negations or disjunctions are allowed. As far as I can see the
best prospect of establishing a relationship would be to restrict our attention to
conjunctions of propositions that are in some sense atomic propositions. (For a
definition of atomic propositions, see, for example, Good, 1952.) This raises the
question of whether scientific theories can be expressed without using the words
"not" or "or" or their equivalents. (This is reminiscent of an "affirmative
logic" of D. van Dantzig.)

A relationship between the probability and the complexity of a theory or
hypothesis H is that if H is very complex then its initial probability is low and
the probability tends to zero when the complexity tends to infinity. But it is
also possible for a theory to be simple and improbable, the theory that 0 = 1
being an extreme example. Brevity is the soul both of wit and of high probabil-
ity but is not a sufficient condition for either.

What does this do to Ockham's razor? Ockham's razor is sometimes expressed
in the form that of two hypotheses, both of which explain the same facts, the
simpler one is to be preferred. In accordance with what I have just said it would
be more appropriate to say that the more probable hypothesis is to be preferred
in these circumstances. In this form the razor would contradict Popper, who
likes improbable theories, but a compromise can be reached as we shall see later.

III. THE PROBABILITIES AND THE
RELATIVE ODDS OF THEORIES

Perhaps the true fundamental laws of physics are infinitely complex, but it
would be dogmatic to regard this as certain. (In the discussion David Miller
acutely pointed out that Godel's work shows that even arithmetic is infinitely
complex in that an unlimited number of independent axioms can be introduced.
My reply was that, with non-zero probability, the fundamental laws of physics
could be formulated without reference to Godel. Moreover one could argue that
Godel's proof describes, in finite terms, the recipe for constructing the transfinite
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sequence of new axioms. In effect, each new axiom can be expressed "the
axioms that have been mentioned previously form a self-consistent system" so
that the "infinite complexity" can be collapsed into the phrase "etcetera,
etcetera, etcetera.") Let us denote the logical or subjective probability that they
are infinitely complex by c. Then 1 — c, which exceeds 0, is the total probability
of all the mutually exclusive theories that are not infinitely complex. These can
each be expressed in a finite number of words, therefore there are not more than
a countable infinity of them. Thus their probabilities cannot all be zero, because
the sum of a countable (enumerable) number of zeros is zero (compare Wrinch
and Jeffreys, 1921; #191). This refutes Popper's claim that, in an infinite
universe, the probability of a fundamental law is always zero (Popper, 1959,
p. 363). Popper apparently believes that the universe is an unbreakable cypher.
It might be or it might not be: there is hardly any evidence either way.

Similarly each fundamental dimensionless constant of nature, if it is a con-
stant, has a priori a non-zero probability of being any given computable number
(p. 55n of #13). It also has a non-zero probability of being non-computable, in
which case its numerical value will never be precisely specifiable.

Once it is conceded that universal laws cannot all have zero initial probabili-
ties, there is no reason for picking on any self-consistent one of them and saying
that it does have zero probability. The only sensible conclusion is that all those
laws that are not self-contradictory have positive probability.

Against this thesis it might be argued that languages evolve and the meanings
of words change, so that there is no clear-cut language for expressing all the laws.
But I don't think it affects the thesis. The new words and forms of speech can
either be defined in terms of the old language or can be incorporated into an
axiomatic scheme together with rules of application. I think the English of the
fifteenth century would be more than sufficient, when combined with defini-
tions and axioms, to describe the whole of modern science. The concepts of
science, even when new, are not so new as to be indescribable, as if they were
mystical experiences.

On the other hand, since all science and all language is based on a swamp it
may never be possible to express any idea so that the meaning is completely
unambiguous. Otherwise we'd say that Adam was the son of a monkey, and that
either the egg or the chicken came first. From this point of view there are
obvious difficulties in pinning down what is meant by the probability of a
theory. We cannot expect to get a sharp value for the probability if we cannot
obtain a sharp meaning for the statement of the theory. But as far as I know it
is not this semantic problem that Popper regards as underlying his thesis that
general theories have zero probabilities. It would not be appropriate to say that a
proposition had zero probability merely because its meaning was not completely
clear.

Even apart from the semantic difficulty we do not yet have adequate formal
procedures for fixing sharp initial probabilities for theories. The probabilities are
small and are difficult to judge (compare #6038), but I claim most of us have
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implicit judgments about lower bounds for the initial probabilities that some
theories are true, for example that chromosomes exist (in our world). Otherwise
we would not accept them on the basis of the experimental evidence. I shall
return to this point when discussing induction. (See also de Finetti, 1971.)

Some vague rules can be given. The initial probability of a theory will tend to
be small if its statement is long or if it has many probabilistically independent
adjustable parameters (Jeffreys, 1961, p. 246). Also the initial probability
depends on what competitive theories there are. But it is impracticable to
consider all the theories, even the reasonably simple ones, in advance of experi-
ments, owing to the "combinatorial explosion." By this I mean that the number
of statements of length n is asymptotically of the form e and so is expo-
nentially large for large /?. We cannot even list all statements ten words long. So
we often look at the experimental results first, and then formulate hypotheses.
We usually test them by further experiments, but farfetched hypotheses would
need extra strong corroboration because to say that they are farfetched is to say
that their initial probabilities are low.

One can make sharper judgments about the relative odds of two hypotheses
concerned with the same subject matter than about the separate probabilities.
This helps to explain why we sometimes consider hypotheses or theories in pairs
(pp. 66, 83-84 of #13). Suppose that HX and H2 are two mutually exclusive
hypotheses and let

Then H1} H2, and H3 form a set of mutually exclusive and exhaustive hypothe-
ses. Let their initial probabilities, given some background assumptions, which I
take for granted, be plt p2, ar\dp3(pl +p2 +Pa = 1). Now it easily proved that

Therefore, if Hj v H2 is denoted by G, we have,

0(Hl\G)=pl/p2

where O denotes odds. (The odds corresponding to a probability p are defined as

Pl(\ -/>)•)
Now de Finetti (1968/70) has claimed that it is easier to judge the probability

of an event E than of a statistical hypothesis (indeed that the latter judgment
cannot be made). This of course is consistent with his disbelief in the reality of
physical probabilities, but it may often be good advice in any case. Let us con-
sider how we can use a judgment of P(E) to infer a value for Pi/p2- We must
assume that P(E) is well approximated by P(E\G) otherwise we could not take
G for granted. So

Now ^(EIHj) and P(E\H2) are known tautologically, at least when H! and H2

are simple statistical hypotheses, and in any case are often easier to judge than

Therefore, if Hj v H2 is denoted by G, we have,

p9h1|h1vhepkjlkjlkjkljljkjkljkljdkkdjjdkjkkjk

ljjkfdkjkljldjfkjjdikjdkjpajfhkkkkkkphkphjkjjpjpjpjkjkjkjk



This one way of judging;?!/^ without judgingpt itself.
But my own view is that is sometimes less difficult to make a direct judgment

of P\\Pi than of P(E}. I shall return to this matter when answering one of
Agassi's arguments of 1960.

IV. WEIGHT OF EVIDENCE EXPLICATES
CORROBORATION

When Peirce (1878) used the expression "weight of evidence" in a technical
sense, though in a popular article, he was obviously talking about corroboration.
He did not express it symbolically and made rather heavy weather of it. [In fact,
he got it slightly wrong. See #1382.] In succinct modern notation, the weight of
evidence in favor of H provided by E given G is

W(H:E|G) = log 0(H|E • G)/O(H|G) ,

the logarithm of the factor by which the odds of H are multiplied when E is
observed, given G as background information. Turing (1941) called this factor
"the factor in favor of H." Since, by two applications of Bayes's theorem, this
factor is seen to equal /'(EIH • G)/P(E|H • G) it may also be called the Bayes
factor in favor of H (provided by E given G), or perhaps the Bayes-Jeffreys-
Turing factor. The theorem that this factor was equal to the probability ratio, or
simple likelihood ratio, was mentioned by Wrinch and Jeffreys (1921, p. 387).
Weight of evidence was called "support" by Jeffreys (1936), but in his book
(Jeffreys, 1939/61) he dropped this term because he always assumed that the
initial probability of H was 1/2, that is, that the initial odds were 1, so that the
weight of evidence was always equal to the final log-odds of H. Turing used the
term deciban, by analogy with the acoustic term decibel, for a unit of weight of
evidence, and we called weight of evidence "decibannage," a clumsy term. We
also called it the log-factor. The concept can be generalized (#599) to the
weight of evidence in favor of Hj as compared with H2,

an equation that is true even if Ht and H2 are not mutually exclusive.
The concept of weight of evidence was central to my first book (#13) and

occurred also in at least 32 other publications (Good 1954, 1965; ##174, 191,
210, 211, 221, 223B, 245, 315, 397, 398, 508, 518, 524, 541 A, 547, 570, 574,
599, 603B, 618, 622, 659, 690A, 699, 701, 705, 755, 795, 798, 810). What I
say thirty-three times is true.

Kemeny and Oppenheim (1952), in a paper I overlooked, introduced the
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Pi/Pi. So we now have a linear equation for P(t\2], which \sp\Kpi + Pi). Thus
we arrive at a value for the relative odds

P i / P 2 = 0 ( H 1 / H 2 ) = 0(^/^1^ v H 2 ) .
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expression factual support for a hypothesis (provided by evidence). They laid
down a number of desiderata and from these desiderata arrived uniquely at the
explicatum

In my notation this is sinh {W(H:E)/2}.
Popper (1954; 1959) also assumed a variety of desiderata for corrobora-

tion and showed his desiderata were self-consistent by exhibiting at least two
formulae, in terms of logical probabilities, that would satisfy them. He says
(1959, p. 394) "I regard the doctrine that the degree of corroboration or accept-
ability cannot be a probability as one of the most interesting findings of the
philosophy of knowledge." This finding had been taken for granted by some
earlier writers.

Minsky and Selfridge (1961) again independently used the expression "weight
of evidence" in the same sense that it had been used by ... myself. . . . The
expression was used by J. M. Keynes (1921, p. 71) in a less satisfactory sense, to
apply to the total bulk of evidence whether any part of it supports or under-
mines a hypothesis, almost as if he had the weight of the documents in mind.

Without knowing of the work of Kemeny and Oppenheim, I took Popper's
desiderata, modified them a little and was able to determine all the formulae
that would satisfy the modified set (#211). The most convenient of these is
weight of evidence. Although my arguments were quite different from those of
Kemeny and Oppenheim it is interesting that the weight of evidence is a mono-
tonic function of their explicatum, namely log[(1 + x)/(1 — x } ] . It has the
additional convenience of having the additive property,

M>(H:E- F)= W(H:E) + W(H:F|E).

In particular if E and F are independent pieces of evidence then we get ordinary
additivity. Somewhat more compelling desiderata are given in #599. The addi-
tive property makes it reasonable to regard weight of evidence as a quasiutility,
whose expectation might reasonably be maximized when true utilities are
difficult to judge. But we shall meet other quasiutilities.

It would take too long to describe the methods of arriving at weight of
evidence as the best explicatum of corroboration along the lines of #21 1 and
some of #599. There is, however, a short argument that can be given (p. 127 of
#599). Assume that corroboration is a real function of f(E|H) and P(E\\-\) that,
together with P(H), mathematically determines /'(HIE). Then it must be a
monotonic function of weight of evidence. This would give a wide variety of
possible explicata but for convenience we might as well use the weight of evi-
dence itself because of its additive property.

Weight of evidence can be expressed in a third way, namely in terms of
"amount of information" /(H:E|G) (for example, p. 126 of #599). This is
defined by
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and we have

W(H:E|G) = /(H:E|G) - /(H:E|G)

W/(H1/H2:E|G) = /(H1:E|G)-/(H2:E|G)

/(H:E • F|G) = /(H:E|G) + /(H:F|E • G).

Various other properties of weight of evidence are mentioned in the listed
references.

As six examples of its use I mention here
(i) For evaluating the hypothesis of gravitational frequency shift by using the

Mossbauer effect (Good, 1960).
( i i ) For evaluating the evidence in favor of General Relativity as compared

with Newtonian physics (in two forms) by the observations of the deflection of
light by the gravitational field of a star. The calculations could be done without
difficulty if they have not yet been done, provided that the "law of error" is
known. The calculations of weights of evidence from (i) and (ii) do not of course
determine the final odds of General Relativity as compared with Newtonian
physics. We need to take into account all other evidence and also the relative
odds of the two theories. In my opinion the relative ini t ial odds in favor of
Newtonian physics do not exceed 10000 whereas the factor against it is far
greater than 10000. (I believe that the relative in i t ia l odds are much less than
10000 but I have used an extravagantly large value to indicate how little accura-
cy is needed. I suspect that much of the opposition to inductivism arises through
overlooking this point, and for this perhaps some of the blame should be ascribed
to [those] inductivists who insist on the use of sharp probabilities.) Therefore,
in my opinion, General Relativity has very heavy odds on as compared with
Newtonian physics. I believe most physicists would agree with me once they
understood what I am saying.

( i i i ) For medical diagnosis (##155, 798).
(iv) For computing the probability that a person wi l l contract lung cancer;

for example, a heavy smoker with a morning cough scores 70 centibans, and if
he lives in a highly urban area he scores another 32 cb, a total of 102 cb, or
roughly a factor 10 on the initial odds (#570).

(v) For weighing the evidence concerning authorship from the frequency of
use of vocabulary (Mosteller and Wallace, 1964).

(vi) For an appealing proof and improvement of one of Shannon's coding
theorems in communication theory (#574).

Now consider Nelson Goodman's hypothesis H! that emeralds are grue,
meaning green unt i l 1990 and blue thereafter. Compare this with the hypothesis
H2 that emeralds are green unt i l at least the year 2000. Clearly,

W(H1/H2:E|G) = 0,
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where G is our background knowledge and E asserts that all emeralds seen to
date have been green. (I assume there is some other test for deciding whether a
stone is an emerald.) Therefore,

the final (or posterior) odds are equal to the initial (or prior) odds. Now in
Goodman's artificial language H! is about as easily stated as H2. But (a) it is
physically more complicated, and (b) it loses an enormous factor on its initial
probability because of the arbitrary choice of the parameter 1990. So here we
have an example where the weight of evidence is zero and a judgment of initial
probabilities must be made, and moreover the example shows that simplicity of
expression as a linguistic string does not necessarily provide high initial proba-
bility, especially in a language deliberately designed to mislead. (Compare Good,
1970, p. 11 3; and p. 24 of #61 7.)

V. EXPLICATIVITY AND PREDICTIVITY

There are at least three kinds of explanation:
(i) Semantic explanation or elucidation.
(ii) Informative explanation which increases the probability of an explican-

dum E.
(iii) Purely theoretical explanation which increases the evolving probability of

an explicandum. [For more on evolving or dynamic probability see #938.]
All that needs saying about semantic explanation is that it is an aim of dic-

tionary makers and of philosophical conferences. Scientific explanation is more
concerned with informative and theoretical explanation, and I should like to try
to elucidate the distinction between these two.

Suppose that we wished to explain cell division (mitosis) E and that we dis-
covered it depended on some electrostatic field. This discovery H would provide
a partial informative explanation, because it would be new relevant information
that would increase the conditional probability of E, P(E|H) > ^(E). To give an
example of a purely theoretical explanation I shall refer to a discussion I once
had with Dr. Agassi in about 1960. What I shall say here is essentially the same
as in p. 129 of #599, except that there I brought in notions of complexity or
simplicity which are unnecessary.

Popper (1959) argued that useful theories are improbable ones. I disagreed
with this and Agassi argued along the following lines: At one time the motions
E of the planets seemed very improbable, yet these motions follow from the
hypothesis H of the inverse square law of gravitation. (There were some dis-
crepancies but I am ignoring them for the moment.) Therefore H must be even
more improbable than E. To this I gave the following reply about seven years
later (#599).

P(E) suddenly increased greatly, as judged by the astronomers of the
time, as a consequence of Kepler's and Newton's calculations. I do

0(H!/H2:F|G) = 0(^^16),



EXPLICATIVITY, CORROBORATION, ODDS (#846) 163

not mean merely that P(E|H) > P(E), but that />(E), now judged to
satisfy

is judged to be much larger, in ratio, than it had been judged to be
before it was noticed that P(E|H) ̂  1 . . . . We are forced to the view
that explanations depend on evolving probabilities when the explana-
tion does not involve any new empirical observations. It is surprising in
retrospect that this argument was ever overlooked.

That example should elucidate "theoretical explanation." (Agassi used the
slightly better example of Fresnel's laws following from Maxwell's equations but
I've used the gravitational example because of its greater familiarity. The dis-
crepancies I mentioned would at first be ascribed to the influence of heavenly
bodies not yet detected rather than to incorrectness of the inverse square law.
For the implications of the inverse square law were extremely close to the
observed orbits, even though some of the discrepancies were statistically signifi-
cant. Allowing for these discrepancies, P(E] was much smaller than P(t\), even
after Newton, but still far far greater in ratio than P(E) was before.)

Popper (1959, p. 403) recognized that it would be interesting to have some
measure for the explanatory power of a hypothesis, and I developed the subject
further in #599. By means of the desideratum-explicatum approach I was able to
show that a satisfactory explication for the explanatory power of H of evidence
E could be defined as the mutual information between E and H, namely

More precisely I called this the explanatory power in the weak sense and I found
it necessary also to define explanatory power in a strong sense. To explain this
let us suppose that we add an arbitrary hypothesis K to H that has nothing to do
with the evidence. Then the conjunction H • K would have the same weak
explanatory power for E as does H but it does not deserve to be regarded as
having the same explanatory power if we object to the "clutter," namely the
irrelevant hypothesis K.

Instead of the clumsy expression "strong explanatory power" let me use the
single word explicativity. . . . [For more on explicativity, see #1000.]

VI. INDUCTION AND THE TRUTH OF THEORIES

When reading Popper's work I assume, by the principle of induction, that the
words he uses have much the same meaning as they seem to have had in the
past in other writings. Sometimes there might be an exception, such as his use
of the term "simplicity," but even when I detect Humpty-Dumptyism it is
because, by scientific induction, I have an understanding of normal English
usage. ("When / use a word . . . it means just what I choose it to mean . . . "
— Through the Looking Glass, Chapter 6.) Then again, when he says that induction

P(E) = P(H)P(E\H)+P(H)P(E\H)>P(H)P(E\H)*iP(H),

/(H:E) = log[A>(E|H)/P(E)].



164 EXPLICATIVITY, CORROBORATION, ODDS (#846)

is not used for the acceptance of scientific theories but by their "proving their
mettle" in virtue of our honest attempts to refute them, I assume that he has
noticed this happening in the past and, by scientific induction, he expects this to
continue in the future. He has formulated a scientific hypothesis here, belonging
to the area of the sociology of scientists, a hypothesis that, if it can be accepted
at all, will either have to be accepted by scientific induction, or because it proves
its mettle by surviving our honest attempts to refute it.

Hume argued that induction cannot be logically justified because induction is
needed to justify it. Equally we could argue that mettle-proving cannot be logi-
cally justified except either by induction or by another mettle-proving opera-
tion, so we are once again in an infinite regress (#191), or we hit metaphysics.

Similarly Popper often makes statements in the present tense of the form that
"we can learn from experience" (Popper, 1962, p. 291). I think what he means
is that in the past we have learned from experience but there is presumably an
implication that we shall go on doing so. If he means that then he seems to have
accepted a principle of induction as applied here to a hypothesis in psychology.

I conclude (i) that Popper really relies on induction in spite of his disavowals,
and (ii) that even if induction could be replaced by mettle-proving, Hume's
claim of the impossibility of a complete justification of induction would not be
effectively by-passed.

As far as I know, the best mathematical treatment of pure induction was
given by Keynes (1921, Chap. XX), Wrinch and Jeffreys (1921), apparently
independently, and Huzurbazar (1955). Since the kudology is difficult I shall
call the results the First and Second Induction Theorems. The First Induction
Theorem states that, if P(H\G) > 0, and if Elt E2, E3, . . . are all implied by
H- G, then

when m and n tend to infinity in any manner. Note that this first theorem says
nothing about the final probability of H, in fact the conclusion does not men-
tion H at all. But the Second Induction Theorem, slightly improved here, states
that if P(H\G) > 0, and if (again) EI, E2, E3, . . . are all implied by H • G, and
if moreover P(El . . . E^\H- G) ->• 0 as n -» °° then

/>(H|E tE2 . . . E,,G)-»1.

Proof of the Second Theorem. After n observations, the Bayes factor in favor of
H is equal to P(El . . . EJH • G)//3(E1 . . . EJH • G) which tends to infin-
ity. Therefore the odds of H tend to infinity, that is, its probability tends to 1 as
asserted. Q.E.D.

A sufficient condition for P(El . . . EJH • G) -> 0 is of course that the
infinite product

II/>(E,,+ 1 |E, E2 . . . E^HG)

diverges to zero. For example, it would be sufficient to have, for large n,

P(En+iEn + 2 • • • EA7 + m|E1E2 . . . E,,G)-M
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P(En+l\E1E2 . . . E^HG) < 1 — I/A?. Keynes uses the somewhat stronger
condition with 1 — e instead of 1 — I/A?.

Note how difficult it is to establish high probability for a hypothesis unless
one is able to state other hypotheses clearly enough to be able to judge P(En . ,

As an example of the First Induction Theorem let me give a proof that a
printed language is not a Markov process of any finite order. (The proof of this
in #524 made unnecessarily heavy weather of it.) If we have two texts that agree to
n letters, then the probability that the next letter will be the same in both tends
to 1 as A? tends to infinity. This is impossible for a Markov chain of finite order
unless it runs into a periodic sequence which I shall assume is not the case for real
languages. The explanation might be that the two texts had to have come from the
same source, or any other hypothesis that implies that the two texts are identical.

Both induction theorems depend on the assumption that the probability of H
is not zero, whereas Popper claimed (for example, 1962, p. 281) that they
typically are zero when H is a general law of Nature. He supports his thesis by
reference to Carnap (1950, p. 571 ), but the argument had already been answered
by Wrinch and Jeffreys and I have I believe strengthened the argument in Sec-
tion III of the present paper. It should be pointed out that part of Carnap's
theory is contained in Perks (1947) and in Johnson (1932).

At first sight the Second Induction Theorem might seem impossible. For
suppose our hypothesis is of the form H • K where K has, up to the present, had
nothing to do with the experimental evidence. In fact K might even be a meta-
physical statement incapable of either refutation or verification. Then how can
the probability of H • K tend to 1? The answer is of course that the condition
that />(E1 . . . E^IG • H • K) is small is not satisfied in this case, for H • K can
be false although H is true.

It can easily happen that a scientific theory is, for practical purposes, in terms
of observable deductions, equivalent to other theories. For example, quantum
mechanics can be expressed in at least two forms, Schrodinger's and Heisenberg's
(which are at least nearly equivalent) and perhaps many other forms. In such
cases the question of the meaning of the "truth" of the theory needs discussion.
If the "as if" meaning of truth is accepted, then any one of a set of equivalent
theories is just as true as any other. [My usage of the expression "as if" is some-
what different from Hans Vaihinger's.]

If you ask whether I think quantum mechanics has a high probability of being
true, I would say that it depends on a judgment of whether there are likely to be
entirely new kinds of tests that could be devised, possibly related to rare elemen-
tary particles, or to conditions of exceptionally high complexity (as in a living
system) or of exceptionally high density (as in a white dwarf or perhaps in a
space-time singularity). To that extent I agree with Popper: so long as one can
think of qualitatively new kinds of test of a theory that have not yet been
applied, the theory has not, in accordance with your subjective judgment, been
properly tested. Note that this follows clearly enough from the theory of sub-

Ej . . . EnHG).
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jective or logical probability and from the induction theorems that belong to
these theories. In the example just given it is a question of testing K, however
well H has been tested, if you wish to make H • K probable. Thus Popper's
emphasis on "honest attempts at refutation" is a consequence of inductivism
although the inductivists seem not to have emphasized it enough.

To summarize my position on induction from a practical point of view:
Provided that we are prepared to estimate probabilities of theories conditional
on a disjunction of reasonably well specified theories, then the Second Theorem
of Induction can be used to achieve near certainty. But we should not forget
that this is conditional on one or other of these theories being true. In funda-
mental physics we cannot be sure that we have not overlooked some other
theories, so that the First Theorem of Induction must be used if we want a non-
conditional and non-evolving statement and it refers to the near certainty of
observational results deduced from theories and not to the theories themselves.
(Both induction theorems also have the weakness of being only limit theorems.)
But, in other subjects, near certainty is achievable for theories; for example, the
theory that chromosomes exist seems firmly established.

If Newtonian mechanics were stated with appropriate limitations, including
upper bounds on all relative velocities and lower bounds on the accuracies of the
observations, I would expect its discrepancies from the Special Theory of
Relativity to be negligible. In this modified form, Newtonian mechanics would not
be refuted as compared with Special Relativity, but would merely explain a smaller
collection of observations and would have less explicativity and less predictivity.
Such a modified form of Newtonian mechanics would perhaps be strictly true,
and a subjectivist might be able to say that its probable truth had been estab-
lished inductively. Such an approximative form of Newtonian mechanics is of
course still extremely useful and cannot reasonably be said to have been refuted.

Incidentally Popper has beliefs about the truth of metaphysical statements
(Popper, 1962, p. 195), so why not about some scientific ones also?

I have one further isolated point to make before going on to the seventh and
last section, namely that the problem of induction is a special case of that of
estimating probabilities in multinomial distributions, the case where all the
entries are in one cell. This probability estimation problem has some history
much of which can be found in ##398, 547 where it is also related to the prob-
lem of testing the "null hypothesis" of equiprobability. (There are 2f — 1 possi-
ble null hypotheses of the form "all p's [are] equal except those that are zero,"
where t is the number of cells. These could all be tested by the same method.)

VII. TESTABILITY, SIGNIFICANCE TESTS,
AND CHECKABILITY

Popper (1962, p. 36) defines the testability of a theory as the degree to which it
is exposed to refutation and he uses this as the demarcation between science and
non-science. He says (1962, p. 256):
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. . . a system is to be considered scientific only if it makes assertions
which may clash with observations; and a system is, in fact, tested by

attempts to refute it Thus testability is the same as refutability, and
can therefore likewise be taken as a criterion of demarcation.

And again on p. 197:

Every serious test of a theory is an attempt to refute it. Testability is
therefore the same as refutability, or falsifiability.

Since I regard refutation and corroboration as both valid criteria for this

demarcation it is convenient to use another term, checkability, to embrace both
processes. I regard checkability as a measure to which a theory is scientific,
where "checking" is to be taken in both its positive and negative senses, con-

firming and disconfirming. (I was unable to find a better word in Roget's The-

saurus. )
As an example I would say that the two propositions 0= 1 and 1 = 1 are

equally checkable, namely not at all, because their probabilities are respectively

0 and 1 and ever more shall be so. But 0 = 1 is easily falsifiable whereas 1 = 1 is

not, so Popper should call the former scientific and the latter metaphysical.

Perhaps he excludes purely mathematical propositions from his scheme in an
ad hoc manner, whereas "checkability" needs no ad hoc appendage.

Again consider the proposition that there is consciousness after death. If
false it cannot be refuted, but its opposite could be refuted if false, though not
necessarily by living men. So Popper should regard the hypothesis as metaphysi-
cal but not its opposite. I think they are equally scientific or equally metaphysi-
cal (#243).

Or consider the proposition that chromosomes exist, or even that horses still
exist on earth (fortunately, —we might need them again). One of the best pieces
of evidence is that they can be observed. Are we then to say that the non-
existence of chromosomes and horses is more scientific than their existence? I
think it would be a strange use of language.

When Eddington organized the expedition to detect whether light was de-
flected by the gravitational field of a star, during an eclipse, I believe he was
excited by the General Theory of Relativity and was anxious to prove it right
not wrong. On theories available, there were three possible "expected" deflec-

tions, one being zero, and all three would be combined with experimental error.
The degree to which any of these theories was scientific should surely not

depend on whether the experimenter was trying to refute any one of them. Thus
Popper's remark, which I just quoted (1962, p. 256), does not hold water. His

remark was scientific in the sense of being refutable, in fact I have just refuted it

to my own satisfaction.

That Popper was not entirely happy with this remark is made clear by the

following quotation from p. 36 of the same book: "Confirming evidence should

not count except when it is the result of a genuine test of the theory; and this

means that it can be presented as a serious but unsuccessful attempt to falsify
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the theory." (His italics.) So apparently seeing a horse doesn't count as support
for the hypothesis that horses still exist.

It has always struck me as surprising that Popper does not discuss statistical
significance tests in his books (1959, 1962). At least the expression is not in the
index of either of them. In statistics a so-called "simple statistical hypothesis" is
a hypothesis H such that, for a certain set of propositions E, the probabilities
P(E|H) are known tautologically, that is, by the definition of H. It is not usually
pointed out that many scientific theories satisfy this definition. For example,
provided a precise assumption is made for the law of error of observation, the
following theories are simple statistical hypotheses: Newtonian Mechanics,
Special Relativity, General Relativity, Quantum Mechanics, and Classical Statisti-
cal Mechanics (p. 912 of #322; p. 40 of #13).

Often a particular simple statistical hypothesis of interest is called a "null
hypothesis," and, more often than not, the negation of a simple statistical
hypothesis H is a so-called "composite hypothesis" which is a logical disjunction
of one or more simple statistical hypotheses, usually a continuous infinity of
them (in the mathematical model). For example, a null hypothesis might assert
that some real parameter is equal to zero, and the non-null hypothesis might
assert that it is not. In this case the non-null hypothesis "abuts" the null hy-
pothesis, in fact we might as well say that it includes it. Then a test of the null
hypothesis can be regarded as a test within a larger class of hypotheses. I shall
say that such a null hypothesis is immersed.

It is part of the lore of orthodox statistics that an immersed null hypothesis
cannot be made more probable, but that all one can do is to test it and see if it
can be rejected at various levels of significance. This seems to be very close to
Popper's attitude to scientific theories. Many statisticians ore prepared to accept
immersed null hypotheses, at least provisionally and as approximations. Jeffreys
(1939/61) adopts a Laplace/Bayesian approach with the modification of assum-
ing non-zero initial probabilities for immersed null hypotheses (usually 1/2) so
acceptance of them became possible for him in a stronger sense, namely that
they could gradually become more probable, and could approach certainty. My
own position is slightly different (p. 90 of #13) in that I regard most null
hypotheses in statistics as only approximate, but my conclusions are similar to
those of Jeffreys. In physics some immersed null hypotheses might be exactly
true.

But even in this Bayesian approach corroborating evidence for an immersed
null hypothesis can arrive only slowly whereas refutation can arrive quickly. So
it makes sense to say that immersed null hypotheses, including the scientific
theories I just mentioned, are readily refutable if false but could be corroborated
only slowly. I think it is this phenomenon, a deduction from a modern Bayesian
philosophy, that can provoke people into assuming that a theory is scientific
only to the extent that it is refutable.

But there are simple statistical hypotheses where the number of alternatives
under consideration in some experiment is small, or even only one. I have
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already mentioned some examples of scientific theories of this kind in Section

IV: the Mossbauer effect as tested in the laboratory, General Relativity as tested

by the deflection of light, and some medical diagnosis problems, and a null

result for the Michelsson-Morley experiment and various hypotheses in genetics.
In these cases corroboration can be just as useful as refutation, or in other words
one can obtain a large positive or a large negative weight of evidence. In fact

when there are just two simple statistical hypotheses under consideration their

logical relationship is a symmetrical one and they are equally scientific.
Thus, a modern Bayesian philosophy shows why refutability is usually more

important than corroborability but not always. In other words the Bayesian

philosophy explains how it is possible for a philosopher of science to fall into a

dogmatic position and put all the emphasis on refutation: it explains the exis-
tence of a Popperian philosophy and at the same time improves it.

The concept of checkability can be put on a more quantitative basis. Consider

the case where there are just two simple statistical hypotheses under considera-
tion, H and H. If, for a given cost, we move the probability of H from p to q, the

revealed checkability should be a function of/? and q, and this function should
be unchanged when p is replaced by 1 — p and at the same timeg is replaced by
1 — q. To choose between such functions is not easy, but perhaps some guidance
can be obtained by generalizing the problem to n hypotheses and also to a con-
tinuous infinity of them. The somewhat analogous work on the measurement of
decisions, the "change of mind with respect to a class of acts" (#315), gives a
plausible clue, namely that the "divergence" could be used as a measure of the
revealed checkability for a set of hypotheses in the light of a definite experi-

mental result. The divergence (Jeffreys, 1946; or 1961, p. 179;Kullback, 1959) is

where the initial and final probabilities of the hypotheses are respectively pu p2>

. . . , pn andc?!, q2, • • • , qn- (If P/^ <?/for all/, the divergence « 2S(/?/—
<7/)2 j{pi +q/).) This reduces to

when n - 2. (Compare #243 where the formula did not include the factor

(p-q).)
For a given cost we imagine the expected value of the divergence maximized

by choice and design of an experiment, and the result may be called the check-

ability (or scientificality) of the set of theories for that cost. (Granting Founda-
tions please note!) The expectation will depend on the relative initial probabili-

ties of the n hypotheses, so it will depend on your judgment. Clearly a hypothesis

of negligible initial probability should not contribute much to the checkability

of the set of n hypotheses.
In high-energy physics qualitatively new kinds of experiments seem to have a



170 EXPLICATIVITY, CORROBORATION, ODDS (#846)

propensity to become successively more expensive. Expense certainly has some-
thing to do with testability. To quote,

Until recently it might have been regarded as metaphysical to conjec-
ture that the other side of the moon is populated by animals hundreds
of miles high that occasionally sling a surreptitious flying saucer at the
earth. This hypothesis has now been refuted [at considerable expense]
and was therefore not metaphysical. It used to be safe to maintain the
even more far-fetched theory that the earth rested on an elephant
standing on a tortoise [even larger animals]: it cost nothing to accept it
when it was unverifiable, and it comforted people who suffered from a
fear of falling (p. 493 of #243).

I can see no way to avoid arbitrariness in the magnitude of the cost unless we
equate it to the total value of the observable universe. At one cent per kilowatt-
hour, this comes to about $1061. If a theory in high-energy physics costs more
than this to be tested, then it is metaphysical.



Part IV. Information and Surprise
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CHAPTER 16

The Appropriate Mathematical Tools
for Describing and Measuring
Uncertainty (#43)

1. INTRODUCTION

In this paper I shall be concerned less with decisions that are made than with
those that are rational. But the paper will have some relevance to economics
since the decisions of Homo Sapiens are not entirely irrational. Moreover the
"theory of rational decisions" or rational behavior includes a completely general
theory of probability and is therefore applicable to economics, whether human
decisions are rational or not. The economist himself should attempt to be
rational.

2. SCIENTIFIC THEORIES

. . . The function of the theory is to introduce a certain amount of objec-
tivity into your subjective body of judgments, to act as shackles on it, to detect
inconsistencies in it, and to increase its size by the addition of discernments. It
is not misleading to describe the discernments as implied judgments. We do not
yet know precisely how the mind makes judgments: if we did we could build a
machine to do all our thinking for us. Until we can do this it will be necessary to
describe scientific techniques with the help of suggestions as well as axioms and
rules. . . .

3. DEGREES OF BELIEF

I shall now make thirteen remarks about degrees of belief. . . .
(ii) Following Shackle (1949) we could order our degrees of belief by the

potential degrees of surprise associated with them. Personally, if I used this
method I think I would use, in reverse, the definition of the surprise index given
by Weaver (1948), namely^p2)//?!, the expected value of a probability divided
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by the probability of the event that actually occurs. Here pi, p2, ... are the
probabilities of mutually exclusive propositions that you consider appropriate to
regard as separate. The meaning of the qualification "in reverse" is that you can
first write down a partial ordering of (a set of inequalities concerning) your
subjective estimates of the (potential) surprise indexes and only then convert
these inequalities into inequalities circumscribing the values of plf p2, p3 . . .
to some extent. If you apply this method you could cultivate a judgment about
the numerical values of surprise indexes by first considering some examples in
which the values of pb p2, p3 . . . were known in advance with considerable
precision, as in some games of chance.

It is possible to modify Weaver's definition of a surprise index without affect-
ing its main properties. It may, for example, be preferable to use ^{p/-/Pr)Pi or
its logarithm

(This suggestion may be compared with Bartlett, 1952.) Both Weaver's surprise
index and this modified one have the property that the index for the combined
event E & F, where E and F are independent, is a function, namely the product
or sum, of the two separate indexes. A general class of indexes with the multi-
plicative property is

Weaver's index is the special case n - 1. If the logarithmic form of any of these
indexes is used, the index of surprise associated with turning up any card in a
well-shuffled pack of playing cards would be zero. The index would, however,
become positive if the card happened to be predicted in advance. Negative values
of the logarithmic surprise indexes correspond to events that are in a sense
"more probable than the average." (For some further related comments see
Good, 1953b.)

Consider a bet on a "double event" at a race-course. The logarithmic surprise
index (in any of the senses) for the double event is the sum of the separate loga-
rithmic indexes. Hence these surprise indexes cannot be functions of Shackle's
degree of surprise, which is equal to the greater of the two degrees of surprise as-
signed to the separate events. [I regard this as a defect in Shackle's theory.] . . .

(x) It is convenient to use the word "you" for the person to whom the.
degrees of belief belong. The word can be interpreted in the singular or plural.
The subjective theory thus includes what de Finetti (1 951 ) calls "multisubjective
problems."

(xi) The postulate that credibilities exist is useful in that it enables other
people to do some of our thinking for us. Naturally we pay more attention to
some people's judgment than to others'. . . .

4. UTILITIES

. . . People's judgments of utilities are, I think, [usually] liable to disagree more
than their probability judgments. Utilities can be judged with a fair amount of
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agreement when the commodity is money but not when deciding between, say,
universal education and universal rowing.

It is possible that infinite utilities could occur in questions of salvation and
damnation, as suggested by Pascal (1670), and expressions like °° — °° may occur
when deciding between rival religions. To have to argue about such matters as a
necessary preliminary to laying down the axioms of probability would weaken
the foundations of that subject.

Some philosophers regard the phrase "degree of belief" as metaphysical. They
would presumably prefer to use the theory with a body of decisions rather than
a body of beliefs. It is more convenient however to work with a joint body of
beliefs and decisions. There is not much harm in introducing a little metaphysics
provided it is simple, convenient, free from contradictions and expressed axiom-
atically.

JUSTIFICATION OF THE PRINCIPLE OF
RATIONAL BEHAVIOR

The simplest attempt to justify the principle of maximizing expected utilities is
in terms of some form of the law of large numbers. This law is inapplicable if
some of the utilities are very large. For example, if the possible positive and
negative utilities of marriage are large then the law of large numbers is inappli-
cable in monogamous societies. Nevertheless the law of large numbers does show
that the principle of rational behavior is consistent with the theory of probabil-
ity. This justification is analogous to the frequency (long-run) definition of
probability. It shows that the theory is self-consistent, and then the theory can
be regarded as containing an implicit definition of probability and utility, even
when there is no question of long runs.

Other types of justification of the principle of rational behavior have been
given by von Neumann and Morgenstern (1947), Savage (1951), Marschak
(1951), Lindley (1953) and perhaps Samuelson. Marschak shows that the princi-
ple is equivalent to a more convincing one that he calls the "rule of substitution
between indifferent prospects." This rule seems to be essentially the same as
some assumptions made by von Neumann and Morgenstern. Savage uses a similar
rule called the "sure-thing principle." . . .

6. AXIOMS AND RULES

The theory of probability that I accept is based on six axioms. [See #13.] The
origins of these axioms will not be discussed here. . . .

Typical axioms are
A1. /'(EjF) is a non-negative number (E and F being propositions).
A4. If E is logically equivalent to F then P(E\G) = P(F|G), P(G\E) = P(G\F).

There are two less "obvious" axioms called the sum and product axioms. They
have been shown to be at least partly conventional by Jeffreys (1948), Schro-
dinger (1947), Barnard (1951) and Good (App. Ill of #13). [See also R. T. Cox
(1946).] Any strictly increasing continuous function of probability can be used
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instead of probability, without any effect on the partial ordering, although the
axioms would be transformed. It is mainly in this sense that the axioms are to
some extent conventional.

Finally there are two axioms that say that there exists a zero probability but
that not all probabilities are zero. I am also prepared to use an axiom of com-
plete additivity as a mathematical convenience but do not regard it as essential
to any application. It is purely metaphysical. It is concerned with the probability
of the logical disjunction of a countable infinity of propositions. (Note: By a
purely metaphysical statement I mean one which is incapable of observable
logical consequences. The actual enunciation of the statement has, however,
material consequences. A metaphysical statement is logically useful if it lends
simplicity to thought. The enunciation of logically useless metaphysical state-
ments can also be useful [or harmful], roughly in the same sense that music is
useful. [Such statements do not correspond to propositions.])

It is possible to replace A4 by
A4'. If you have proved that E is logically equivalent to F then ^(EIG) =

A»(F|G), etc.
The adoption of A4' amounts to a weakening of the emphasis on consistency

and enables you to talk about the probability of purely mathematical proposi-
tions. . . . [See #938.]

7. EXAMPLES OF SUGGESTIONS

[This section has been omitted.]

8. RATIONAL BEHAVIOR

. . . In the applications of the principle of rational behavior some complica-
tions arise, such as—(i) . . . My impression of Shackle's method (1949), of
focussing attention on special outcomes, is that it is often an excellent time-saver
and could therefore be incorporated as a suggestion in the technique of rational
behavior. I suspect, however, that it would occasionally contradict the principle
of rational behavior and I would then classify the use of it as unreasonable. If
most people use the principle it must be relevant for economists. . . .

9. FAIR FEES

. . . When we engage a professional expert to make probability estimates p\,
Pit • • • > Pn f°r the n mutually exclusive events, we may have already formed
our own "amateur" estimates av, a2) . . . , an of the probabilities. By regard-
ing ourselves as one of the two experts we see that the fair fee to pay will be of
the form k.\og(prlar) if Er occurs, where k is a factor depending on the utility of
the forecast. This fee can be seen to have the desirable property that its expecta-
tion is maximized if the estimates /?/ are all equal to the true probabilities or
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credibilities, t; say. It is therefore in the expert's interest to give objective
estimates.

In #26 I assumed that the payment should be of the form k.\og(prb) where b
is independent [of] r. By insisting that the expected payment should be zero
when the professional's probability estimates are the same as the amateur's, I
found that log b had to be of the form of Shannon's "entropy," — So/logo/. But
I cannot now see why b should be independent of r.

The objective expectation of the payment to the professional, if his judgment
is objective, and if the o/s are all equal, is expressible in terms of entropy;
otherwise the expression is of the more general "cross-entropy" form. (Cf.
Good, 1950/53, 180.)

If Daniel Bernoulli's formula for the utility of money is assumed, and if we
wish to pay k.\og(pr/ar) utility units, then the money can be written c{(pr/ar}k —
1}, where c is the professional's initial capital.

These fair fees could be sued as a method of introducing piecework into the
Meteorological Office.

When making probability estimates it may be help to imagine that you are to
be paid in accordance with the above scheme. . . .

10. MINIMAX SOLUTIONS

[This section has been omitted.]

APPENDIX. AN APPROXIMATELY INVARIANT FORM
OF THE FOCUS-OUTCOME

The conditions under which the focus-outcome method is rational can be
roughly expressed in the following manner. . . .



CHAPTER 77

On the Principle
of Total Evidence (#508)

Ayer (1957) raised the question of why, in the theory of logical probability
(credibility), we should bother to make new observations. His question was not
adequately answered in the interesting discussion that followed. . . . The
question raised by Ayer is related by him to a principle called by Carnap (1947),
"the principle of total evidence," which is the recommendation to use all the
available evidence when estimating a probability. Ayer's problem is equally
relevant to the theory of subjective probability, although, as he points out, it is
hardly relevant to the theory of probability in the frequency sense.

In this note, Ayer's problem will be resolved in terms of the principle of
rationality, the recommendation to maximize expected utility. . . .

Our conclusion is that, in expectation, it pays to take into account further
evidence, provided that the cost of collecting and using this evidence, although
positive, can be ignored. In particular, we should use all the evidence already
available, provided that the cost of doing so is negligible. With this proviso then,
the principle of total evidence follows from the principle of rationality.

Suppose that we have r mutually exclusive and exhaustive hypotheses, HX,
H2, . . . , H0 and a choice of 5 acts, or classes of acts, Aj, A2, . . . , A5. It
will be assumed that none of these classes of acts consists of a perpetual exami-
nation of the results of experiments, without ever deciding which of A1} A2,
. . . , A5 to perform. Let the (expected) utility of act Ay if H/ is true be t/(Ay|
H/) = Ujj. Suppose that, on some evidence, E, we have initial (prior) probabilities,
Pi = /'(H/IE). If just this evidence is taken into account, then the (expected)
utility of act Ay is 2/jD/w// and the principle of rationality recommends the choice
/ =/0, the value of/ that maximizes this expression; and therefore the (expected)
utility in the rational use of E is
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We now consider making an observation whose possible outcomes are Ex , E2,
. . . , Ef, where P(Ek\U,) =plk(i = 1,2, . . . , r;k = 1, 2, . . . , t). Let

Now the initial probability of E# is Z/p/p//?, so that the expected utility, in
deciding both to make the new observation and to use it, is

with strict inequality unless the matrix (f(j,k)} has a "dominating row." (By a
"dominating row" of a matrix we mean a row in which each element is at least
as large as any element in its own column.)

Proof of Lemma. Let a value of y that maximizes Sfcf(/,/?) bey'0. Clearly
maXyf(/,/?) > f(/o,k), since this would be true however j0 were defined. The
inequality is strict, when the definition of/0 is used, unless f(j,k] and T,kf{j,k}
are maximized by the same value of/. Therefore

This inequality is strict unless, for all /e, f(/,/?) and S/j f {/,/?) are maximized at the
same value of/. This establishes the Lemma and hence completes the resolution
of Ayer's problem in terms of the principle of rationality.

At this point an opponent might say "You have justified the decision to make
new observations and to use them for the choice of the act Ay, but you have not
justified the use of all observations that have already been made." To this we
can reply, "The observations already made can be regarded as constituting a
record. The process of consulting this record is itself a special kind of observa-
tion. We have justified the decision to make this observation and to use it, pro-
vided that the cost is negligible. In other words we have justified the use of all
the observations that have been made, and this is the principle of total evidence."

with strict inequality unless the act recommended by the principle of rationality
is the same irrespective of which of the events E^ occurs; in other words unless
there is a value of/, mathematically independent of/?, that maximizes (/(A/I
E.E^) = ^jqjkUjj = ?,ipjpikUijl^ipjpjk, or equivalently that maximizes S/p/p/^w/y.

Since 2/jp//? = 1, the above proposition follows from the following Lemma by
putting f(/,k) = ^ipiPikUjj.

LEMMA. Let f(j,k) be any real function of] and k. Then

Accordingly we should like to prove that

the final (posterior) probability of H/ if Ek occurs. (We denote logical conjunc-
tion by a full stop or period.) If in fact E^ occurs, then the expected utility of
the use of E^ combined with E becomes



180 ON THE PRINCIPLE OF TOTAL EVIDENCE (#508)

Our opponent might then say, "What you have shown is that, when faced
with the two following possibilities, it is rational to select the second one:

(i) Not make an observation;
(ii) To make the observation and to use it for the choice of A/;

but you have ignored a third possibility, namely
(iii) Make the observation and then not use it."

My reply would be "if we make an observation and then do not use it, this is
equivalent to putting it back into the record. We have shown that it would then
be irrational to decide to leave the observation in the record and not to use it,
since there is a better course of action, namely to take it out (observe the
record) and use it. You will now suggest other possibilities, such as the making
of an observation, putting it on record, taking it out, putting it back, and so on,
several times, and finally not using it. Our previous argument, with an obvious
modification, shows that any such procedure is irrational, and it remains for you
to suggest that your vacillating procedure should be continued for ever. But this
would be a perpetual examination of the results of experiments, without a deci-
sion, and we have ruled this out by an explicit assumption."

The simple mathematical theorem of the present note is not entirely new.
Raiffa and Schlaifer (1961), p. 89, refer to the expected value of sample infor-
mation, and seem implicitly to take for granted that it is positive. Lindley
(1965), p. 66, explicitly states part of the theorem without proof. Perhaps the
main value of the present note is that it makes explicit the connection between
Carnap's principle of total evidence and the principle of rationality, a connection
that was overlooked by seventeen distinguished philosophers of science.



CHAPTER 18

A Little Learning
Can Be Dangerous (#855)

It has been proved that, under certain assumptions, it pays you "in expectation"
to acquire new information, when it is free. A precise formulation of this thesis,
together with a proof, was given in #508 with historical references to Carnap,
Ayer, Raiffa and Schlaifer, and Lindley. The "expectation" in this result is your
own expectation. In the present note it will be pointed out that the result can
break down when the expectation is computed by someone else. It is of course
familiar that an experiment can be misleading by bad luck, but this is not by
itself a justification for ignoring free information. It is perhaps surprising at first
sight that, "in expectation," an experiment can be of negative value to a subject,
in the opinion of another person who may or may not be better informed or
have better judgment.

The argument supporting the main thesis of this note is very short, but I
should like to take the opportunity of replying to a criticism of #508. Let us
first recall the result of that note in precise form.

We refer to "you," the subject, by the symbol S. Suppose that there are r
mutually exclusive and exhaustive hypotheses H!, H2, . . . , H,-, and a choice of s
acts, or classes of acts, A j , A2, . . . , As. Let your expected utility of act Ay if
hypothesis H/ is true be (75(A/|H/) = u,-j(i -1,2, . . . , r;j = 1, 2, . . . , s) and
let your initial (prior) probability of H/ be /^(H/) = p/. (There will always be
some previous evidence, but we take it for granted and omit it from the nota-
tion.) You now have the option of performing an experiment, or making an
observation, whose possible outcomes are Ej, E2, . . . , E?, where /)(E/?|H/) =
Pik(i ~ 1, 2, . . . , r; k = 1, 2, . . . , t). Here there is no need for a suffix S if
we regard the hypotheses as being simple statistical hypotheses, for in this case
the conditional probabilities p//? are "tautological" (having values known by the
definitions of the hypotheses and not subject to dispute nor to empirical verifi-
cation). Suppose further that the cost of the experiment is zero (or negligible),
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and that the expected utilities u-,j and the probabilities /?/ have sharp (precise)
values. Then the theorem proved in #508 is that, before the experiment is
performed, the expected utility available to you would not be decreased in the
light of the experiment, and would be increased unless the act recommended by
the principle of rationality (maximizing expected utility) is the same irrespective
of the outcome of the experiment. So it is always rational for you to perform a
costless experiment.

It has been pointed out to me (by Isaac Levi and Teddy Seidenfeld) that, in
the light of my repeated emphasis on the need for non-sharp subjective probabil-
ities and utilities, I should have dealt also with the case where the u/j's andp/'s
are not sharp. The use of "comparative" utilities and probabilities leads one to
the conclusion that there will be situations where there is no rational choice
between two options. As Dr. Levi said in effect (private communication) the
result of an observation might lead to a vaguer state of information than one had
before, and so to a state of confusion. I think one way of coping with this
criticism is to invoke the "black box" theory of rationality (see ##13, 26, 230).
In this theory, inequality judgments are plugged into the black box, but the
calculations within the box are assumed to be performed with sharp values. The
box will imply a discernment that we cannot be worse off by performing the
experiment, and this result can therefore be regarded as proved if it is assumed
that the black box theory is self-consistent. It was proved self-consistent by
C. A. B. Smith (1961) [if ordinary mathematics is consistent]. Although this
argument seems a little too glib, I cannot see anything wrong with it. At any
rate in what follows I shall assume sharp values.

Suppose that some other person, T, who might be a demiurge (T for Teufel],
has some other set of initial probabilities PT(H,-)(i = 1,2, . . . , r) although he
agrees with the values of/?/# and u,-/ (for all /, j, and k), and he also knows S's
initial probabilities. It might be conjectured that, in T's opinion, S is again
better off in expectation if he performs the zero-cost experiment. But the
following example shows that this conjecture is false.

To disprove the conjecture we need very little notation because it can be
done with a very simple example. We suppose that there are just two hypotheses,
either a certain coin is "fair" or it is double-headed, and that the acts available to
S are to bet on one or other of these two hypotheses in a level bet. S must make
the bet without examining the coin, but he is given the option of being told the
outcome of a single toss of the coin.

It so happens that initially S regards it as just "odds on" (probability greater
than a half) that the coin is fair, whereas T knows that the coin is indeed fair.
(Or T's estimate of the probability is close to 1.) S might be entirely rational in
his opinion, in fact we can imagine that his subjective probabilities are "credi-
bilities" if such things exist; but T happens to have more information.

Then T knows that with chance one half, the coin will come up heads and
that this would cause S rationally to regard the wrong hypothesis as "odds on."
In this case S will lose his bet. Thus T knows that S has nothing to gain and
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something to lose if he opts for the experimental information, and therefore T's
expectation of S's utility is decreased if S opts for the experiment. T would do
S a service by not allowing him to acquire the new information. This would be
true even if the experiment consisted of several tosses of the coin, because we
have considered a rather extreme situation where T knows the truth about the
coin. In less extreme situations the result would be true only for experiments
involving a small amount of information. When ignorance is bliss, a little learning
can be poison according to another man.



CHAPTER 19

The Probabilistic Explication
of Information, Evidence, Surprise,
Causality, Explanation,
and Utility (#659)

My purpose in this paper is to review some of my life's work in the mathematics
of philosophy, meaning the application of mathematics in the philosophy of
science. Apart from the clarification that the mathematics of philosophy gives to
philosophy, I have high hopes for its application in machine intelligence re-
search, just as Boolean logic, a hundred years after its invention, became impor-
tant in the design of computers. I think philosophy and technique are both
important, but I do not intend to argue the case for the use of subjective proba
bility on this occasion. I would just like to quote a remark by Henry E. Daniels
(c. 1956) that each statistician wants his own methods to be adopted by every-
body.

I shall cover a variety of topics and will have to be too succinct for complete
clarity. But I hope to give some impression of the results attained, and I shall
refer to the original sources for fuller details.

Some unifying themes for this work are the simple concepts of weight of
evidence and amount of information, and also what Carnap calls the desidera-
tum-explicatum approach to the analysis of linguistic terms. The desiderata are
extracted from normal linguistic usage of a term, and an explicatum that satisfies
the desiderata constitutes a sharpened form of the term, likely to be of more use
in scientific contexts than the original vaguely defined term. Of course, the
explicatum is not necessarily uniquely determined by the desiderata, and this
ambiguity gives us an opportunity of enriching the language.

The desideratum-explicatum approach has been used by several writers for
arriving at the usual axioms of subjective probability and utility. In the present
paper, I shall take the usual axioms of probability and utility for granted. By
doing so, I do not imply that judgments are precisely representable by numbers;
on the other hand, I think that all judgments are judgments of inequalities: see
for example, Keynes (1921), #13. I hope that this point is well taken since I do
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not intend to repeat it; and I hope what I shall say later will not give the impres-
sion of being overprecise merely because symbols are used.

In order to clarify my presuppositions, it is necessary to make one or two
comments concerning the principle of rationality, the recommendation to
maximize expected utility. I call this rationality of type 7 and, when allowance
is also made for the cost of theorizing, rationality of type 2 (##290, 679).
Rationality of type 1 implies complete logical consistency with the axioms of
rationality; but rationality of type 2 should be adopted in practice. For example,
you should not normally and knowingly allow any blatant contradictions in
your judgments and discernments when the axioms of rationality are taken into
account; but an exception is reasonable if a decision is extremely urgent. In
particular, apparently non-Bayesian methods are often acceptable to me. I think
this compromise resolves all the important fundamental controversies in statis-
tics, but we shall go on arguing because, being mortal, we are anxious to justify
our existence, and for other reasons not mentioned in polite society.

The notion of rationality of type 2 is closely related to that of evolving
probabilities. An evolving probability is one that changes in the light of reason-
ing alone, without the intervention of new empirical information. \ shall return
to this matter later.

People will say that the principle of rationality is inapplicable in a situation of
conflict, and that then the theory of games and minimax solutions are more
fundamental. I do not agree. I think the principle of rationality is still the
overriding principle; but you should, of course, take into account your opinions
concerning your opponent's (randomized) strategy (which opinions might be
largely based on his past behavior) and whether his past behavior appears to have
been based on yours. In particular, if you are convinced that he is playing a
minimax strategy then, by von Neumann's theorem, you maximize your ex-
pected utility by also adopting a minimax strategy in a zero-sum game.

I mentioned that point in order to emphasize that the principle of rationality
has no real exceptions, although pseudo-utilities can be used, as discussed later.
[I now call them quasiutilities.]

It is convenient to make a distinction between information and evidence, and
I shall discuss information first. My approach is fairly closely related to that of
Shannon, the main difference being that he was concerned with the average
amount of information transmitted by a communication channel, whereas my
approach is in terms of the amount of information concerning one proposition
that is provided by another one.

Let E, F, G, and H be propositions, and let /(H:E|G) denote the amount of
information concerning H provided by E when G is given throughout. Let us
consider the explication of /(H:E|G) as a real number in terms of probabilities.

We write E.F for the logical conjunction of E and F.
From six reasonable axioms (#505) we can deduce that /(H:E|G) must be a

continuous increasing function of the association factor (Keynes's term)

P(H.E\G)f[P(H\G)P(E\G)] or />(E|H.G)//>(E|G).
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If we are concerned only with preserving the ordinal relations (inequalities)
between amounts of information, then we might as well, by convention, select
the logarithm of the association factor, to some base exceeding unity, since this
choice leads to simple additive properties. I shall do this.

The analysis applies whether the probabilities are physical, logical, or subjec-
tive, in which case we are talking about physical, logical, or subjective informa-
tion respectively.

The main axiom assumed was that /(H:E.F|G) is some function of /(H:E|G)
and/(H:F|E.G).

In terms of communications, H can be interpreted as the hypothesis that a
particular message was transmitted on a particular occasion, and E as the event
that a particular message was received. Then, upon taking expectations with
respect to both H and E we obtain the rate of transmission of information, as in
Shannon's theory of communication.

A philosophical approach is not necessary for the theory of communication
since the main theorems of that theory deal with efficient coding for transmis-
sion through a given communication channel; and these theorems can be proved
without even giving a definition for the rate of transmission of information.
Nevertheless, I think the theorems are easier to understand when such a defini-
tion is given.

I should now like to discuss evidence. This differs from information in the
following respect. In legal and other circumstances, we talk about the evidenc
for or against some hypothesis, but we talk about the information relevant to or
concerning a hypothesis. Thus the notion of evidence, as ordinarily used, makes
almost explicit reference both to a hypothesis H and to its negation. On the
other hand, information concerning a hypothesis H does not seem to refer
primarily to the question of discriminating H from its negation. It seems lin-
guistically appropriate to regard the weight of evidence, in favor of a hypothesis
H, provided by evidence E, as identifiable with the degree to which the evidence
corroborates H as against its negation H. Note that I am distinguishing between
evidence E and weight of evidence, just as in ordinary English.

Now Popper (1959) laid down nine compelling desiderata that corroboration
C should satisfy. To these I (##211, 599) made some minor modifications and
also added the assumption that C(H:E.F|G) is some function of C(H:E|G) and
C(H: F| E.G). This assumption is reasonable although it is not as compelling as the
other axioms. But, since it is possible to assume it and still find an explicatum
that satisfies all the conditions, this explicatum can be expected to be the most
convenient one to accept. Any explicatum that does not satisfy this assumption
would come under suspicion. It seems reasonable to say that if an explicatum
satisfies all the compelling axioms and also the reasonable ones, then it is better
than an explicatum that satisfies only the compelling axioms.

The assumptions made in #211 did not lead to a unique explicatum so in
#599 I added the further assumption that corroboration is objective in some
circumstances, i.e. that if C(H:E) depends only on />(H), />(E|H), and P(E\H),
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then it depends only on ̂ (EIH) and ̂ (EIH). This approach led to the conclusion
that the best explicatum for corroboration is some monotonic increasing func-
tion of weight of evidence W, defined (#13) as the logarithm of the Bayes
factor (or Bayes-Jeffreys-Turing factor) in favor of a hypothesis provided by
evidence. Formally, the weight of evidence is

W(H:E|G) = logF(H:E|G),

where the base of the logarithms merely determines the unit of measurement of
weight of evidence, and the factor F is defined by

= 0(H|E.G)/0(H|G),

where O denotes odds. (The odds corresponding to a probability/? are defined as
pl(\ — p).) It is because of the expression in terms of odds that Turing (1941)
suggested the excellent name factor in favor of a hypothesis. Note that

W(H:E|G) = /(H:E|G)-/(H:E|G)

and this gives especially clear expression to the previous remark that evidence is
concerned with a comparison of a hypothesis with its negation.

Sometimes we wish to talk about the weight of evidence in favor of H as
against, or as compared with, some other hypothesis H'. A convenient notation
for this is W(H/H':E) and it is equal to ^(H:E|H v H'), where the sans serif (v)
denotes logical disjunction. A similar notation can be used for Bayes factors F
and corroborations C. The colon can be read provided by.

The expression W for weight of evidence is more clearly appropriate in terms
of ordinary English than is / for amount of information since (Bartlett, c. 1 951 )
it is not linguistically clear whether information relevant to H should ever be
allowed to take negative values. It is not unreasonable of course, since informa-
tion can be misinformation.

The calculations of the expressions /(H:E|G) and W(H:E|G) both usually
depend on a Bayesian philosophy, especially the former. But W is non-Bayesian
when both H and H are simple statistical hypotheses, since in this case the factor
in favor of H is equal to the simple likelihood ratio. Note though that even in
this case, the interpretation as a factor on the odds has more intuitive appeal to
the non-statistician. It would be more appropriate to say that the name likeli-
hood ratio is jargon than to say it of weight of evidence or factor in favor of a
hypothesis.

Proofs of some coding theorems more general than Shannon's Fundamental
Theorem can be expressed with much intuitive appeal in terms of weight of
evidence, and it turns out that amount of information occurs in this theory
merely as an approximation to weight of evidence (#574).

An entertaining philosophical application of weight of evidence occurs in the
discussion of Hempel's paradox of confirmation. In a nutshell, the paradox is
that since a case of a hypothesis supports it, and since the assertion that all

F(H:E|G) = />(E|H.G)/P(E|H.G)
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crows are black is logically equivalent to the assertion that all non-black objects
are non-crows, it follows that the observation of a white shoe supports the
hypothesis that all crows are black. This paradox might seem trivial but if left
unresolved it would undermine the whole of statistical inference. I shall here
merely mention some of the relevant references (##199, 245, 518, 600, and
Hempel, 1967).

Since I have just said that a paradox might undermine statistical inference,
I should like to take this opportunity to correct an error I made (p. 382 of
#522) when discussing Miller's paradox concerning the axioms of probability.
Succinctly, his paradox can be expressed thus: for all propositions E we have

P(E) = />(E|P(E) - P(E)) = P(E\P(E) = /2) = /2.

My attempted resolution was that P(E) = P(E) is impossible unless P(E) = J/2 and
no sensible theory of probability permits an impossible proposition to be given.
(This is permitted in Popper's theory, which is sensible, but the argument is
unaffected.) But, as pointed out by Miller (1970), this resolution is wrong since
P(E) - P(E) is not impossible unless it \sknown thatf(E) ̂  ]/2. One moral is that
it is dangerous to allow the propositions to the right of the vertical stroke to
make explicit reference to probabilities, as pointed out on p. 41 of #13 and by
Koopman (1940a, p. 275). This paradox is more or less of the self-referring kind
familiar in logic. But this resolution of the paradox will not work if the given
information is interpreted in terms of long-run frequencies. Then (#599) I think
we can resolve the trouble by quoting more precisely the theorem in the theory
of subjective or logical probability that lies behind the intuitive feeling that
x - P(E\P(E) - x). This theorem, which is a form of the law of large numbers, is
that, provided that the initial density of P(E) is positive atx, then x = P(E\s = x),
where 5 denotes the limiting relative proportion of successes in an infinite
sequence of trials, and where x is an assigned real number. Since P(E) is not an
assigned number, Miller's paradox is not a threat to the axioms of subjective or
logical probability, as least as I understand them.

An algebraic analogue of Miller's paradox was pointed out by Mackie (1966).
It can be expressed succinctly thus: J/2 = (The value of a if a = Vi] = (The value of
a if a = 1 — a) = 1 — a. Here the resolution is that an exptession involvings can-
not legitimately be said to be a value of a, so that the last step in the argument is
illogical. [See also #1159.]

Weight of evidence is especially appropriate for medical diagnosis and one
example occurs in connection with the analysis of the relationship between lung
cancer on the one hand and smoking, morning cough, and degrees of rurality or
urbanity on the other.

It turned out in this example that degree of urbanity (rural, urban, highly
urban) gave a weight of evidence that could be added to that derived from the
evidence concerning coughing and smoking, but that coughing and smoking
could not be treated as additive. In other words there was evidential interaction
between coughing and smoking in relation to lung cancer, but there was not
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important interaction between urbanity on the one hand and coughing and
smoking on the other. In this statement, the interaction can be defined as

HMH:E,F) = W(H:E.F)- W(H:E)- M>(H:F) = /(E:F|H) -/(E:F|H).

Second-order interactions are naturally defined by the expression

W2(H:E,F,G) - W(H:E.F.G) - M>(H:F.G) - W(H:G.E) - M/(H:E.F) + W(H:E)

as in ##210 and 755. It will be useful for diagnostic purposes if it turns out in
many instances that interactions of the second order can be ignored.

In my work, I put much stress on the notion of weight of evidence. This
enthusiasm is shared in a book by Myron Tribus (1969), and has also been much
used, though is somewhat different manners, by Jeffreys (1939/61) and Kull-
back (1959). Entropy enthusiasts . . . include E. T. Jaynes, Jerome Rothstein,
and S. Watanabe. . . .

The next topic I should like to discuss is the concept of surp rise. . . . [See
##43, 82.]

My next topic is probabilistic causality. . . . [See #223B.]
I believe that the philosophical analysis of strict causality, itself by no means

trivial, can be inferred as a limiting case of this treatment of probabilistic causality.
Next consider explanation. . . . [See #1000.]
My final topic is utility, especially in relation to the utility of a distribution

(##198, 211, 618). Statisticians have been giving their customers estimates of
distributions of random variables for a long time, and they hardly ever stop to
consider what the loss in utility is if the estimate is not accurate. In order to
find out something about this, let us denote by U(G\F] the utility of asserting
that a random variable x has the distribution G when the true distribution is F.
Let us suppose that U(G\F) is some form of generalized expectation of i/(x, y),
where v(\, y) denotes the utility of asserting that the value of the random
variable is y when it is really x. We naturally assume that v(\, y) < v(\, x). Com-
pelling desiderata are (a) if a constant is added to v then the same constant is
added to U; (b) additivity for mutually irrelevant vectors

U(GG*\FF*) = U(G\F] + U(G*\F*);

(c) invariance under non-singular transformations of x: U(G\F) is unchanged if
a non-singular transformation x = i^(x'), y - i^(y') is made, subject to the ob-
vious desideratum that the transformed form of v is

A doubly infinite system of functional satisfying these desiderata is

where 0<a<°°, 0 < j3 < °°. (Another system of solutions can be obtained by
interchanging F and G.) When |3-> 0 we obtain

+ W(H:F)+H'(H:G)



This can be regarded as minus an invariant/zed entropy and equation (1) as an
invariantized cross-entropy.

When there is quadratic loss, that is, when v is a quadratic form, the factor
involving A(x) is constant and can be ignored and equation (1) reduces to an
ordinary cross-entropy which was called by Kerridge (1961) the inaccuracy of
G when F is true. This reduction occurs also if v is any twice differentiable
function of a quadratic form.

The formulae could be used in the design of experiments and in the summari-
zations of their results. Another interpretation can be given if there is a density
function fQ(\) proportional to |A(x)| , that is, if f|A(x)|1//Vx converges. Then
Uoo(F\F) can be minimized by taking Fto have the density function f0, so that,
with this utility measure, f0 is the feast favorable initial density. It is thus the
minimax initial density (Wald, 1950). The principle of selecting the least favor-
able initial distribution may be called the principle of least utility. For discrete x
it leads to the principle of maximum entropy (Jaynes, 1957) if v(x, x) is co
stant, and for continuous x if |A(x)| is constant. Otherwise, for continuous x it
leads to a principle of maximum invariantized entropy. I think it is very interest-
ing to see that the principle of maximum entropy can be regarded as a minimax
procedure; and also to see how it should apparently be applied for continuous
distributions: that U^ reduces to negentropy when the loss function is quadratic
or a function of a quadratic.

Suppose that x is the parameter in the distribution 7~(z|x) of another random
vector z, the density function being f(z|x). In the Jeffreys-Perks invariance
theory (Jeffreys, 1946; Perks, 1947) the initial density is taken as the square
root of the determinant of the information matrix

(strictly Perks was concerned only with the one-dimensional case). This comes to
the same as using the principle of least utility with v defined in terms of the
expected weight of evidence
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If it required further that (d) U(F\F] > U(G\F] for all F and G we must let
a -> °° and when G has a density function g we obtain up to a linear transforma-
tion (irrelevant for utility measures)

where

(1)

(2)

(The solutions with F and G interchanged cannot satisfy condition [d].)
If also F has a density function f,
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for distinguishing the true from the assumed distribution of z. This formula
follows at once from equation (1), quite irrespective of the minimax interpreta-
tion, for we must have by definition

if the only use of x is to serve as a parameter in the distribution of z. Hence
A(x) is equal to Fisher's information matrix. Here v and A are defined for the
random variable x and should not be confused with the corresponding functions
for z.

Thus we see that Harold Jeffreys's invariant density can be derived from a
minimax procedure provided that utility differences are identified with weight
of evidence. The disadvantage of Jeffreys's brilliant suggestion can therefore be
attributed to that of minimax procedures in general.

The maximization of entropy is a very reasonable method for the estimation
of probabilities in contingency tables, and in Markov chains, since it leads to
hypotheses of generalized independence that are satisfactory to the intuition
of statisticians. But in a problem such as medical diagnosis it is reasonable,
when acquiring information, to try to minimize the entropy of a set of mutually
exclusive diseases. In a medical diagnostic search tree, one is involved both with
the estimation of probabilities and with the acquisition of new information.
Hence a reasonable procedure is to try to minimax the entropy in the sense of
the theory of games (##592, 755: rival formulae are given in these references).

Very closely related to and somewhat more general than the principle of
maximum entropy is a principle of minimum discriminability in which expected
weights of evidence are used in place of the entropy (Kullback, 1959). The
formula for U*, gives some support for this. A satisfying property of minimum
discriminability was shown in #522: if we have a chain of hypotheses H l f H2,
. . . , H,,, concerning various probabilities, where the hypotheses satisfy in-
creasing sets of linear constraints, and if we introduce additional constraints, and
determine the next hypothesis HA7+ { by minimum discriminability from any
one of the earlier hypotheses, then we always arrive at the same hypothesis
H,, + ! . This is by no means obvious, but the proof is not difficult.

When we aim to maximize the expectation of any expression, that expression
can be regarded as a pseudoutility or quasiutility, whether it be entropy, weight
of evidence, or something else. As a historical matter, my first introduction to
the use of expected weight of evidence as a measure of the value of a statistical
investigation was in 1941 when working with Turing on a war-time project in
which he invented sequential analysis [independently of Wald and of Barnard].
Expected weight of evidence also occurs in my definition of a decision (#315),
but I shall not discuss that here.

It is useful to use quasiutilities when true utilities are difficult to estimate, as

l/(x>y) = L/.(r(z|y)|7-(z|x))
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they often are, especially in problems of inference. The use of weight of evi-
dence as a quasiutility is especially appropriate when we are trying to decide
whether a hypothesis or its negation is true. If the negation of the hypothesis is
sufficiently vague, or if we are not sure which of several hypotheses we are really
interested in, then the entropy serves as a reasonable quasiutility. Moreover,
owing to an additive property of entropy, the principles of maximizing and
minimizing entropy are consistent when applied to a pair of completely inde-
pendent problems. For a further discussion of this point see #592.

There seems to be a constant interplay between the ideas of entropy and
expected weight of evidence, or dientropy as it might be called since it refers to
two distributions. Even in statistical mechanics, it seems that expected weight of
evidence is a useful concept, as conjectured by Good (1950/53) and demon-
strated by Koopman (1969) for non-equilibrium problems. [See also Gibbs in
my index.]

My conclusion is that the mathematics of the philosophy of inference is a
useful and interesting pursuit.

[The discussion of this paper is omitted.]



CHAPTER 20

Is the Size of Our Galaxy
Surprising? (#814)

Eddington (1933/52, p. 5) after pointing out that the earth and the Sun are of
middl ing size, qua planet and star respectively, says, "So it seems surpris ing that
we should happen to belong to an altogether exceptional galaxy." It is not quite
as exceptional as Eddington thought; thus van de Kamp (1965, p. 331) said that
the photometric studies by Stebbins and Whiteford in 1934 "did much to do
away with the notion that our galaxy was a 'continent' and that the others were
'islands.' " But still our galaxy is a large one, and Eddington's remark raises an
interesting logical question: Is the expected size of our galaxy larger than the
average size of a galaxy? The answer is yes, for the fol lowing reason.

Let pn be the probabil i ty that a galaxy is of "size" n, that is, it contains just
n planets inhabi table by human beings. Then the average size of a galaxy is

But if we know that we are in a certain galaxy, the l ikelihood of the hypoth-
esis that it contains n inhabitable planets is proportional to n. Therefore, by
Bayes's theorem, the f inal (posterior) probabil i ty that this galaxy contains jus t
n inhabitable planets is proportional to npn; so the expected size of a galaxy,
conditional on our being in it, divided by the average size JJL of a galaxy, is

which exceeds 1, as asserted. (Here a2 is the variance of the size of a galaxy.)
The argument can be applied in other contexts; for example, in my next reincar-
nation, assumed to be on this planet, I might very well be Chinese but would be
surprised to be born in Liechtenstein. . . .

[The remainder of this paper consisted of an attempt to evaluate formula (1)
by fitt ing a formula to the size of galaxies.]

193

(1)



This page intentionally left blank 



Part V. Causality and Explanation
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CHAPTER 21

A Causal Calculus (#2238)

1. INTRODUCTION

This paper contains a suggested quantitative explication of probabilistic causality
in terms of physical probability. (Cf. Reichenbach, 1959, Chap. 3; Wiener, 1956,
pp. 165-190.) The main result is to show that, starting from very reasonable
desiderata, there is a unique meaning, up to a continuous increasing transforma-
tion, that can be attached to "the tendency of one event to cause another one."
A reasonable explicatum will also be suggested for the degree to which one event
caused another one. It may be possible to find other reasonable explicata for
tendency to cause, but, if so, the assumptions made here will have to be changed.

I believe that the first clear-cut application in science will be to the founda-
tions of statistics, such as to an improved understanding of the function of
randomization, but I am content for the present to regard the work as contrib-
uting to the philosophy of science, and especially to what may be called the
"mathematics of philosophy." Light may also be shed on problems of allocating
blame and credit. I hope to consider applications to statistics on another occa-
sion. [See #1317.]

In #180 I tried to give an interpretation of "an event F caused another event
E" without making reference to time. It was presumably clear from the last
three paragraphs, which were added in proof [the words "added in proof" were
omitted in error, with a peculiar effect], that I was not satisfied with my at-
tempt [see Appendix I]. I shall describe the note as the "previous paper" but it
will not be necessary for the reader to refer back.

The present paper is more ambitious in that it is quantitative, but less so in
that it assumes, at least at first, that F is earlier than E. (It may be possible to
interpret the explicatum more generally.) As in the previous paper I shall take
for granted the notion of physical (= material) probability. In order to avoid
misunderstanding I must mention my opinion that in so far as physical probability
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can be measured it can be done only in terms of subjective probability, but this
opinion will not affect the arguments below. Likewise the notion of an "event"
will be taken for granted. In some earlier drafts I included material dealing with
the meanings of "event," "probability," and "definition," and with the modifi-
cations of the analysis required in order to cope with the possibility that the
future may affect the past. I have omitted this material here for the sake of
brevity.

2. NOTATION AND GENERAL OUTLINE

Propositions and events will be understood in a very general sense, and will be
denoted by the symbols E, F, G, H, and U. These will be combined by means of
the logical connectives "." meaning "and," "~" meaning "not," and "v" mean-
ing "or." A vertical stroke, "|," willmean "given," as in the expression f(E|H)
the probability of E given H. Similarly O(E|H) will mean that the odds of E
given H, i.e. /3(E|H)//3(E|H). Sometimes some or all of what is "given" is omitted
from the notation for the sake of brevity. A colon will be used to mean "pro-
vided by" or "by" or "from," as in

which can be read from left to right as the amount of information concerning
E provided by F given G. Another example of the colon notation is

= log(0(H|E.G)/0(H|G))

the "weight of evidence concerning H provided by E given G." (See, for exam-
ple, #211.)

The general plan of the paper is to suggest explicata for:
(i) Q(E:F), or Q for short, the "causal support for E provided by F, or the

tendency of F to cause E." The explicatum that the argument forces upon us is
the weight of evidence against F if E does not happen, H^FiEIU.H), where U
and H are defined below. In order to formulate enough desiderata it is necessary
to introduce some auxiliary notions.

(ii) The strength of a causal chain joining F to E.
(iii) The strength of a causal net joining F to E. Causal chains and nets will be

defined in Sections 8 and 1 1 .
(iv) x(E:F), or x for short, the contribution to the causation of E provided by

F, i.e. the degree to which F caused E. This will be defined as the strength of a
causal net joining F to E, when the details of the net are completely filled in, so
that there are no relevant events omitted. I avoid the use of the letter C for
either Q or x, because it has been used to mean corroboration: see Popper
(1959). An example is given in Appendix I to show that Q and x cannot be
identified.

/(E:F|G) = log(f(E|F.G)/P(E|G)),

W(H:E|G) = log(/>(E|H.G)//>(E|H.G))

= / H:EIG -/ H:EIG .
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It would not be appropriate to define x as the limit of strengths of more and
more detailed nets; for, if space and time are continuous, the limiting operation
could be done in a biased manner so as to get entirely the wrong result; like a
lawyer making a case by special selection of the evidence. We must have the
whole truth in order to define x in principle. (Compare the first Appendix.) If,
however, the events fill the relevant parts of space and time, and we let the
events become smaller and smaller, then the limit should be unique.

In practical uses of the notion of causality, judgments of approximate irrele-
vance are always made in order to reduce the complication of the causal net.

It is possible to draw an analogy between a causal net and an electrical
resistance network, with a resistance in each link. In this analogy it is necessary
to imagine a rectifier placed in each link in order to prevent a flow of causal
influence backward in time. It is then tempting to define the degree of causality
between the input and output of the causal net as the effective resistance of the
corresponding causal network. This analogy suggests that the causal resistances
should be defined in such a manner that they are additive for chains in "series,"
and such that their reciprocals are additive for chains in "parallel." It turns out
that the analogy cannot be pressed as far as this, but it is one of the themes of
the paper.

The main part of the paper consists of a list of assumptions, and deductions
from them, leading up to the explicatum for Q. Afterwards a general explicatum
will be suggested for x, but this will not be deduced in the same formal manner.
It is fairly convincingly unique for causal nets of the "series-parallel" type, and
has a certain cogency in the general case. [I regard Q as more operational.]

3. SMALL EVENTS

Until near the end of the paper all events will be assumed to occupy small
volumes of space (more precisely: have small diameters) and occupy small
epochs of time. For the most part "space" could be interpreted in a more
general sense than as ordinary three-dimensional space; for example, it could be
phase space or Hilbert space. On the other hand time will be assumed to be well-
ordered and one-dimensional. There must be some sort of metric in both space
and time, in order that smallness and continuity should have a meaning. If the
metrics of space and time have been mixed up, as in the theory of relativity,
then they will be assumed to be unmixed by the use of a fixed frame of refer-
ence. (Dr. O. Penrose has pointed out that the present work is consistent with
the theory of relativity provided that causal influence does not travel faster than
light.)

4. CAUSAL SUPPORT, OR TENDENCY TO CAUSE

Let H denote all true laws of nature, whether known or unknown, and let U
denote the "essential physical circumstances" just before F started. When we
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talk about "essential physical circumstances" we imply that the exact state
has a probability distribution. An equivalent description is to say that a sys-
tem is one of an "ensemble." (I must admit that there is more than meets
the eye in this description, since in quantum mechanics the word "state" can
be given at least eight interpretations, seven of which may be relevant here. See
Appendix III.)

In order to arrive at explicata for Q and x I have found it necessary to dis-
cuss them in an interconnected manner; i.e. there do not appear to be enough
desiderata for Q considered by itself, to circumscribe its possible explicata
to a satisfactory extent.

In the present section the ground will be cleared by discussing what Q and
X depend upon. It is convenient to think of this dependence in terms of no-
tation, which seems to bring out the main points better than a purely verbal
discussion. For example, the symbols Q and x are abbreviations for C?(E:F),
and x(E:F), and these expressions are themselves abbreviations for Q(E:F|
U.H) and x(E:F|U.H). To take U and H for granted, and omit them from the
notation, is parallel to linguistic usage. If we say that it is bad for eggs to throw
them in the air, we take it for granted that there is a law of gravitation, and
that there is a large gravitational body nearby.

Events later than F and earlier than E may be relevant to x but not to Q.
Accordingly I shall assume that C?(E:F) depends only on />(E|F), />(E|F), P(E),
and P(f). It is natural to define Q(E:F|G) as the same function of these four
probabilities, but made conditional on G.

Even Q(E:F|U.H) is an incomplete notation. If the subjective element is to
be removed from the expression "F caused E," then it must be expanded to
"F, as against FD, caused E rather than E'/' where the suffix, D, to F (the
negation of F), represents a complete specification of the relative probabili-
ties of the mutually exclusive events whose disjunction is F. (D represents a
probability distribution.) We could use a notation like

<?(E/E':F/FD|U.H)

or

C?(E:F/FD|U.H.(EvE')),

the degree of causation of E rather than E' by F rather than Fp.
The failure to recognise all the variables on which tendency to cause is

based was for me one of the stumbling blocks in capturing the notion of proba-
bilistic causality, if indeed I have fully succeeded even now.

It should be held in mind that E v E' is regarded as taken for granted in the
four probabilities on which Q is assumed to depend, when we are concerned
with the causation of E rather than E'. When we take E v E' for granted we
may write E instead of E'.



A CAUSAL CALCULUS (#2238) 201

5. ASSUMPTIONS AND DEDUCTIONS LEADING TO
THE EXPLICATUM FOR Q

In order to make my assumptions clear I shall list them in the form of axi-
oms, A1, A2, . . . ; and the deductions from them will be called theorems
T1, T2, . . . , for ease of reference. On a first quick reading the justifica-
tions and proofs should quite definitely be skipped, but I have not postponed
them to a later section. (I did so in an earlier draft, but the cross-referencing
made the paper more difficult to read.) The justifications of the most easi-
ly acceptable axioms, and the proofs of the easily proved theorems will be
omitted.

Let P(F) = x, P(E\ F) = p, P(E\ F) = q, P(E) = r, so that
r = xp+(\ - x)q, x=(r- q)/(p - q).

Unless p - q (in which case r - p - q), x is a function ofp, q, and/*. Therefore
by an assumption of the previous section we have:

A1. Q(E:F\G) is a function of p, q, r, unless perhaps p = q = r. We call this
function Q(p, q, r) so that the symbol Q has two slightly different meanings.
The symbol G will usually be taken for granted and omitted. Here p - P(E\
F.G),q = P(E\F.G),r = P(E\G).

A2. Q is a real number or °° or — °°; but it may be indeterminate for spe-
cial values of p, q, and r, such as when two of them are equal or one of them
is 0 or 1. (It seems sensible to look for a scalar explicatum rather than a "vec-
tor.")

The next two axioms deal with monotonicity and continuity.
A3. (i) Q Increases with p if q and r are held constant.

(ii) Q decreases when q increases if p and r are held constant.
A4. Q is continuous except when it becomes infinite or indeterminate, if

there are such points.
A5. If P(F) =£ 7, meaning, as usual, ?(F\U.H') + 7, then Q has the same

sign as p — r, and therefore also the same sign as p — q, and as r — q; and if
these expressions vanish we may say that F has no tendency to cause E, and
we put Q = 0. (This axiom removes a gloss from A1.)

A6. Any causal net joining F to E, as defined below in Section 11, has a
causal strength, S, and a causal resistance, R. These are positive numbers, ex-
cept that if p = q = r, or if p or q is 0 or 1, we may get zero or infinite resis-
tance or strength. (An important part of the definition of a causal net is that
it consists only of events that actually occurred or will have occurred.)

A7. There is a functional relationship between R and S, S = f(R), R = g(S),
where f and g are absolute functions inverse to one another.

A8. f and g are continuous decreasing functions.
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A9. \(E:F) is the strength of the complete causa/ net Joining F to E. More
precisely, it is the limit, as the sizes of the events tend uniformly to zero, of the
strengths of nets; where each net of the sequence joins F to E, consists of a finite
number of events, and omits no events temporarily between F and E. It is not
claimed that this axiom is formulated with complete rigor, but it is used in only
a weak form for the explication of Q (in the proof of T14). It is introduced at
this early stage in order to supplement the outline in Section 2. If we assume
that the degree to which F caused E has an objective meaning, with a precise
numerical value, we are committed to the idea that there is a complete world,
uninfluenced from outside. Outside influence could be allowed for by assuming
that the numerical values are not absolutely precise.

A10. The strength of the causal net consisting of F and E alone is equal to
Q(E:F) when this is positive, and is otherwise zero. We shall clearly get nowhere
unless we assume some relationship between Q and S, and A10 is the simplest
reasonable relationship that could be assumed.

The strength and resistance of a net, n, joining F to E, are denoted by 5(E:F|
n)and/?(E:F|n).

A1 1. Let n be a "chain, " F = F0 ~» F1 ->• . . . -»• Fn = £. Then S(E:F\n) is
some function, 0(s0, Si, . . . , sn _ l ), of the strengths, s0, S!, . . . , sn _ i,
of the links. Here

where U/ represents the essential physical circumstances just before F/ began.
(Causal chains are formally defined in Section 8.)

T1.0(s)=s. (Proof from A10 and A11.)
A12. 0 /5 a symmetrical function, i.e. the arguments of the function can be

permuted without changing its value.
A1 3. 0 is a non-decreasing function of each of its arguments. That is, a chain

cannot be weakened by strengthening any of its links without changing the
strength of any of the others.

T2. 0 vanishes if the chain is cut, i.e. if any of the links is of zero strength. (A
cut chain can be uncut by filling it in in more detail.) We may alternatively say
in this case that there was no causal chain.

A1 4. If two consecutive links are replaced by a single link of equivalent
strength, then the strength of the chain is unchanged. Formally,

A1 5. A chain is not weakened by "omitting" one of its links, i.e.

T3. A chain is no stronger than its weakest fink. (From A1 0 and A1 5.)
Definition. Let the maximum possible causal strength be o. This is either a

positive finite number or + °°.

5, = S(F/+1:F/|U/.H),
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A16. 5(E:F|n) < o, for any net, n. (This axiom is a mere restatement of the
definition.)

T4. Q(p, q, r) < a. (From A10 and A15.)
A17. If any of the (inks of a chain is of strength a, then it can be "omitted"

in the sense of A15, without strengthening the chain.

(From A15 and A17.)
T6. If every link of a chain is "cast-iron," then the chain is cast-iron, i.e.

(j)(o, a, . . . , a) = o. (From T1 and T5.)
A18. A chain of n finks all of the same fixed strength, T, where r < o, is as

weak as you like if n is large enough. Formally 0(V, r, . . . , r) -> 0 as the
number of arguments tends to infinity.

A19. 0 is a continuous function of all its arguments when they are all less
than o; and, if s; -* a, then the value of the function tends to the value it would
have with Sj = a. The reason for the clumsy expression of this axiom is that o
may be + °°.

T7. If a chain has n links, all of the same strength, r, where r < o, then the
chain is as strong as you like if n is fixed and T is close enough to o. Formally,
if n is fixed, then

0(r, T, . . . , T) -> o when T -+ o.

(From T6 and A19.)
T8. There is a function, g such that, identically,

0(s0, si, . . . ,sn- i ) = g ~ l ( g ( s 0 ) + g ( s l ) + . . . +g(sn. i ) ) .

777e function, g, is defined for all non-negative arguments not exceeding o, and is
itself.non-negative, continuous and strictly decreasing, and g(0) = °°, <g(o) = 0 We
may define g as + °° when its argument is negative.

Proof. Consider the function 0(s,f) of just two variables. By A19, A13, A12,
and A14, this function may be said to be continuous, monotonic, commutative,
and associative. It follows that it is of the formg~l(g(s) + g(t)), where g is a
strictly monotonic continuous function. The use of the symbol g is justified
since A7 and A8 can be satisfied with this function.

The mathematical theorem just invoked was apparently first published by
Abel (1826, . . .). It was rediscovered several times, such as by me in 1940
(unpublished) and by Aczel (1948, 1955) who improved it. See also Janossy
(1955) or Math. Rev. JO, 6857and 16, 1127. What it amounts to is that 0 can
be calculated on a suitably calibrated slide-rule.

The resultsg(Q) = Q,g(a) = °°, follow from A1 Sand A19. Q.E.D.
We may satisfy A6, A7, and A8, which are the only axioms that involve R, by
identifying g(S) with R. This identification is no restriction on the explication
of Q. As a consequence of this identification we have the following theorem.

T9. The resistance of a chain is equal to the sum of the resistances of its links.
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A20. Consider the causal net shown in the diagram below, in which P(F) - x,
P(Gj\F) =_Pj, P(Gj\F) = qh P(Gj) = rj = xPj + (1 -x)q/, P(E\Gl v G2 v G3) = 1,
P(E\Gi . G2 . G3) = 0, P(E) 2_r, j = 1, 2, 3, and where Gl; G2> G3 are indepen-
dent given F and also given F. Then the strength of the net is a function of the
strengths of the three separate chains, and this function is continuous, mono-
tonic increasing in each variable, commutative (cf. A12), and associative (cf.
AT 4).

Figure 1.

where s t , s2, . . . , sm are the strengths of the individual chains. The func-
tion h is defined for all non-negative arguments not exceeding a, and is itself
nonnegative, continuous and strictly increasing, and \\(0) - 0, h(o) - °°. (The

T10. The strength of the net of A20, generalized to m chains in parallel, is of
the form
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theorem of the generalized sl ide-rule implies this theorem, just as it implied T8
above.)

We are now at liberty to call h(S) the strength of a causal net, in place of 5
provided we are content to determine the explicatum of S and Q only up to a
continuous increasing transformation. It might be thought for a moment that
this change of notation would invalidate T9. But since T8 is now true with g(x)
replaced by g(h~l (x)), we can simply rename this function "g(x)" in order to
validate T9. With these conventions we have:

T11. The strength of the net of A20, generalized to m chains in parallel is the
sum of the strengths of the individual chains. When applying this theorem the
independence condition mentioned in A20 should not be overlooked.

It appears that the analogy with electric networks is not bad, although the
function f(x) turns out later not to be ^|x) but another self-inverse function.

A21. For the net of A20 (a "firing squad"), with G3 omitted, i.e. with only
two chains in parallel, it will be assumed that the strength of the net is equal to
the tendency of F to cause E worked out as if the only events were those in the
net. This assumption is an extension of AW. Note that it would be unreasonable
to assume this coalescence property for dependent events, for if we did so we
could collapse any net into a single event.

Although I think A21 is eminent ly reasonable, especially in view of later
developments, as in Section 9, I believe it to be the weakest part of my argu-
ment, and I conjecture that the replacement of this axiom by other assumptions
would be the most f ru i t fu l method of f ind ing other explicata of tendency to
cause, if they exist.

T12. Identically, if Pi > ̂ , p2 > q2, 0 < x < 1, then

S(PI + P2 -P\Pi, Q\ + Q2 -QiQ2, x(pi + P2 -P\Pi] + 0 -x)
(Qi + 12 -QiQz))

= S{pi, <?i, xpi + (1 -x}ql) + S(p2, q2, xp2 + (1 -x}q2}.

This follows at once from T11 by making the identification mentioned in A21.
A22. Q(p, q, r) AS an analytic function when 0<p<1,0<q<1,0<r<1,

p^q.
The only purpose of this axiom is to enable us to extend a formula proved for

a large set of values of (p, q, r) to all values except those for which Q may be
infinite or indeterminate. I think only an extreme purist would object to A22. It
could be avoided by assuming instead that Q is anti-symmetric in the sense

Q(p, q, xp + (\- x)q) = -Q(q, p, xq + (1 - x)p).

T13.

where u(x) is a non-negative analytic function of x.
This theorem, and the next one, will be superseded by T15.
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Proof. By A10 and A22, we may replace S by Q in T12, and drop the inequal-
ities/?! >qi, p2 >Q2- Let

On putting Th = T?2
 = 0, and provisionally regarding x as a constant, we get a well

known functional equation whose only continuous solution is easily seen to be
of the form

Therefore

Q(p, q, xp + (1 -x)q) = u(x) . log(1 -p) +w(x). log(1 -?).

T13 now follows from A5 combined with the equation

r = xp + (1 — x)q. •

Q.E.D.

A23. Consider a radioactive particle in a certain state, which I shall call the
"white" state. In any time interval, t, it has probability e~at of remaining in the
white state throughout the interval if it starts the interval in that state. If it does
not remain in the white state, then it proceeds to another state called here the
"black" state, from which there is no return. Now let Fbe the event that the
particle is in the white state at the start of an interval of duration T and let E be
the event that it is in the white state at the end of this interval. Then we assume
that, if F and E both occurred, \(E:F) does not depend on the unit in terms of
which time is measured.

A24. If F. E implies G, and F -> G ->• E is a chain, then this chain is of the
same strength as F-> £".

T14. R{p, 0, r) = v(r/p)-k. logp,
where v(x) is a non-negative analytic function of x, and k is a positive constant.

Proof. Consider the radioactive particle described in A23. Let P(F) - x. The
degree to which F caused E is the limit of the strengths of finite chains obtained
by breaking up the time interval (0,7") into a "Riemann dissection" (see A9).
Since g is a continuous function (A8) the resistances of these finite chains must
also tend to a limit, which we may call the causal resistance from F to E. This
must be some function of x, a, and T, say R*(x, a, 7"). By A23 we see that for

Then

where u(x) is a function of x only. (The only other solutions are in fact non-
measurable: see Hamel, 1905, or Hardy et aL, 1934, p. 96.) Likewise >//(0, TJ x)
= r? • w(x), where w(x) is a function of x only. Therefore
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any positive constant, k, the resistance must be equal to R*(x, ka, T/k). Since
this is independent of k it must be of the form of R*(x, aT).

Now, by a continuity argument, we may generalize T9 to continuous chains,
and hence deduce that, for any positive /"and U we have

R*(x, aT) + /?*(!, ail) = /?*(*, aT + aU).

By giving A- the value 1 and subtracting from the equation with arbitrary x, we
see that R*(x, aT) is of the form

R*(x, aT) = v(x] + R*(aT),

where, identically,

R*(aTi +aT2) = R*(aTi) + R*(aT2),

so that R*(aT) is of the form

R*(aT)=kiaT.

Now, by repeated use of A24, we see that

where p - e~ a T . Thus

R(p, Q, r) = v(r/p) - k . logp.
Q.E.D.

T15. <?(fc<7,/-) = log(1-<7)-log(1-A>),
R{p, 0,r) = -log/7,

where the base of the logarithms may be taken as e. Q(p, q, r) is mathematically
independent of r, and may be abbreviated to Q(p,q). It can be written in other
ways:

the weight of evidence against F if E does not happen. More precisely, Q is
uniquely determined only up to a continuous analytic increasing transformation.
Among all the explicata there is just one apart from a scale factor (choice of
unit), for which theorems T9 and TJJ are true. We lose no real generality, and
we gain simplicity, by choosing this explicatum.

Proof. By T13, T14, and A7, we have the identity

f(v(r/p) - log/?) = - u(r/p) . log(1 -p).

Let v(x) - y, —log/? = z, log f(y+z) = p(y + z}. Then p(y + z) is of the form

p(y+z)=p1{y)+p2(z).

If v(x) is not a constant, we can differentiate and deduce that p(y) is a linear
function ofy, from which we can soon derive that log(1 — p) is a power of p.

R(p,Q,xp) = R*(x,aT},
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Since this is false it follows that v(x) is a constant, and hence also that u(x) is a
constant.

The theorem now follows from the remark that the choice of the base of the
logarithms is equivalent merely to the choice of units of measurement of strength
and resistance. We may call the units "natural," "binary," or "decimal," accord-
ing as the base is e, 2, or 10. In this paper I shall use natural units. Possible
names would be "natural causats" and "natural tasuacs."

Note that the explicatum for Q was by no means obvious in advance, nor was
it obvious that all the desiderata could simultaneously be satisfied.

It is interesting to note that, if, contrary to most of the discussion, we assume
E to be earlier than F, and if the universe has the "Markov" property, defined
below, then the tendency of F to cause E is zero. This result may very well have
been taken as a desideratum, but was in fact noticed only after the explicatum
was obtained. By the Markov property is meant here that, for prediction, a com-
plete knowledge of the immediate past makes the remote past irrelevant.

T16. The relationship between R and S is symmetrical, namely

or equivalently,

Further,

R(P, Q, r] = log(1 -q}- \og(p - q).

This is an immediate corollary of A7 and T1 5.
Thus the function f is its own inverse, #. It is tempting to permit negative an

imaginary values because some of the formalism is faintly reminiscent of Feyn-
man's formulation of quantum mechanics, but I shall not pursue this matter
here.

T17. If a chain consists of n links whose p's and q's are (PJ, qj), where PJ > qj,
then its causal strength is

This follows from T16 and T9.
Before reading the proofs in the present section the reader will probably

prefer to read the next two sections, in which some examples are given.

6. TWO-STATE MARKOV PROCESSES

The radioactive process described in Axiom 23 can be slightly generalized by
permitting return from the black to the white state, with a parameter j3 cor-
responding to the a of the white-to-black transition. We have a two-state Markov
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process with continuous time. The parameters a and ]3 are of course both non-
negative. In the special case of the radioactive particle we have j3 = 0.

It can be shown that

If the particle ever entered the black state during the time interval, T, the
chain would be cut and the degree of causality would be zero. Assuming that
this does not happen, we can calculate x(E:F) by applying a Riemann dissection
to the interval, so as to obtain a causal chain consisting of a finite number of
events, and then proceed to the limit as the fineness of the dissection tends to
zero. By applying T17 and A9 we find that

which is mathematically independent of 0.
For large T, both Q and x are exponentially small, but Q is smaller than x

and is much smaller if |3 is large. This is reasonable since, if (3 is large, the initial
state makes little difference to the probability of being in the white state at the
end of the interval.

Note that x is the degree to which being in the white state rather than in the
black state at the end of the interval was caused by being in the white state
rather than in the black state at the start of the interval. A similar explicit
description can of course be given for Q.

7. PARTIALLY SPURIOUS CORRELATION

A well known pitfall in statistics is to imagine that a statistically significant
correlation or association is necessarily indicative of a causal relationship. The
seeing of lightning is not usually a cause of the hearing of thunder, though the
two are strongly associated. Such associations and correlations are often de-
scribed as "spurious," a better description than "illusory." They may also be
partially spurious, and the explicata for Q and x should help with the analysis
of such things. Smoke and dust might be a strong cause of lung cancer, but
smoking only a weak cause. Even so, the correlation between smoking and lung
cancer may be high if there is more smoking per head in smoky districts. I
mention this only as an example, and have not made a special study of this
problem.

Note that

so that the tendency to cause can be split into components, somewhat in the
manner of an analysis of variance. For example, the tendency for lung cancer
to be caused by smoking and living in a smoky district, as against not smoking
and living in a clean district, is equal to the tendency through living in a smoky
district, given no smoking, plus the tendency through smoking, given that the

(?(E:F.G/F.G) - <?(E:G|F) + Q(E:F|G),
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district is smoky. It is also equal to the causal tendency through living in a
smoky district, given that one smokes, plus the tendency through smoking, given
that the district is clean. This approach to the analysis of spurious correlation is
entirely different from, and more quantitative than, the approach used by Simon

(1957).

Let

/C(E:F) = -/(E:F),

the intrinsic causal tendency of E by F. It is related to Q in essentially the same

way that / is related to W, since

(?(E:F)=K(E:F)-K(E:F),
(?(E:F/F') = AC'(E:F)-/C'(E:F').

K does not depend on the negation of F, so its use enables us to avoid the
distribution, D, of Section 4. We have

so that K can be split up into contributions from various sources in a simpler
manner than Q. In my opinion both K and Q will probably have useful applica-

tions in statistics and physics.

The remainder of this paper is primarily concerned with the extension of
the explication of causal strength to general nets, in order that degree of caus-

ality should be generally explicated. The next section however contains a for-
mal definition of a causal chain, which strictly was required in what has al-
ready been discussed. I postponed it in order not to interrupt the thread of the
argument.

8. CAUSAL CHAINS

Let F = F0, F!, . . . , Fn _ 1} FA? = E, be n + 1 events such that (for/ = 0, 1,
. . . , /7- l ) :

(/) F/ and F/ +1 are contiguous in space and time, or approximately so.

(/'/') No two of the events overlap much in space and time.

(//'/') All the events occurred or will have occurred, i.e. they "obtain" but I
prefer to write simply "occurred."

(/V) F/ +1 started later than F/ did.
(v) F/ had a positive tendency to cause F/ +1.

(i//) If F/ is given, then the probability of F/ +l is unchanged if one or more of
the earlier events did not occur, i.e. we have a Markov chain.

(i//V) If the chain is embedded in a completely detailed chain containing

intermediate events, then condition (v) will remain true for the more detailed
chain.

Then we say that F0, F t, . . . , Fn or F0 -» F! -> . . . -» Fn is a causal

chain connecting F to E. Perhaps it should be called a "putative causal chain" if

/C(E:F.G) = K(E:F)+/C(E:G|F),
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condition (vii] has not been established. In practice all causal chains are putative,
but there are degrees of putativity.

The failure of condition (v) may be said to "cut the chain."
A causal net will be formally defined in Section 11. A chain is a special case

of a net.
[For more discussion of causal chains see Reichenbach (1956, index reference

under "Causal chain") and (1958 index reference under "Casual chain" [sic]).]

9. INDEPENDENT CAUSAL TENDENCIES

Let GI, G2, . . . , Gm be independent given H, and also independent given
H.E. Then it is easily proved, with the help of T15, that the tendencies to cause
E are additive in the sense of the theorem below. It therefore seems reasonable
to say in these circumstances that the G's have independent tendencies to cause
E given H. The events G t, G2, and G3 of A20 exemplify this definition, with
H = F, and also with H = F; that they are independent given E is trivial since
their probabilities are then all zero.

T18. IfGi, GI, . . . , Gm have independent tendencies to cause E given H,
then

Q(E:G1G2 . . . /GiG2 . . . H) = S/(?(E:G, H).

Note that

(?(E:G1|G2 . . . GOTH) = (?(E:G1|H),

a natural requirement for independent causal tendencies.
The nets of A20 and T10 also exemplify the fol lowing def ini t ion:
A bundle of parallel independent causal chains from F to E is a class of chains

from F to E such that, apart from F and E, each event on each chain is, given F
and given F, probabil is t ical ly independent of any collection of events on other
chains, and also such that the penultimate events have independent tendencies
to cause E, given their pasts.

10. SERIES-PARALLEL NETWORKS

As an extension of T1 1 it is natural to define the strength of a bund le of inde-
pendent causal chains as the sum of the strengths of the ind iv idua l chains.

For a "chain of bundles," in a self-explanatory sense, we can first calculate
the resistance by summing the resistances of the i n d i v i d u a l bundles, and then
obtain the strength from T16. We can extend the process to bundles of chains
of bundles and so on. In other words we can construct natural rules for evaluat-
ing the causal strength of any "series-parallel" net. Topologically these are the
same as the two-terminal series-parallel networks whose enumeration was con-
sidered by MacMahon (1892) or Riordan (1958, pp. 139-143). Not all networks
are of this type.
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11. CAUSAL NETS "HAVING INDEPENDENCE"

Let n be a class of events all of which occurred. For each event, G, in n, there is
a subclass of earlier events, G!, G2, . . . , G&, which so to speak, "lead in" to
G. By "lead in" is meant that the probability of G, given which of G1; G2,
. . . , G/j occurred and which did not, is independent of any further assump-
tions of which other events in n, earlier than G, occurred. (Note that not all the
events in n are regarded as "given" even though they all actually occurred. This
should cause neither surprise nor confusion to those who are familiar with the
idea of a conditional probability.) We may think o f /? oriented links joining
G t , G2, . . . , G& to G. If the whole class, n, is connected together by means
of such links we describe n as a causal net. If E is the latest of the events in the
net, and can be reached from each other event by passing through a succession
of links in the right direction, then the causal net will be said to lead to E. If F
is the earliest of the events in n, and each other event can be reached from F by
passing through a succession of links in the right direction, then the causal net
will be said to lead from F. If both conditions are satisfied, the net will be said
to lead from F to E. For example, a net leading to E could have the form of a
"tree," but a net leading from F to E could be a tree only if it were a chain.

In this definition we may call Gl,G2> . . . , G& the immediate predecessors
of G. A causal net will be said to have independence if, for each G in the net,
the immediate predecessors have independent tendencies to cause G given the
past.

For each link G/ -* G, having a "p" and a "q,"

let the quasiprobability, n, be defined as

in which the "square" brackets indicate that TT = 0 if q >p. The quasiprobability
reduces to p when q - 0. We know from T17 that the quasiprobabilities are
multiplicative for a chain, and the strength of the chain is the same as if the
quasiprobabilities were ordinary probabilities and the g's were all zero. Also,
from Tl 5, we have

S(p,q) = -log(1 -TT),

so that for a bundle of the type occurring in T10 the quasiprobabilities again
behave like probabilities, in view of the additivity of the strengths of the chains.
(The term "pseudoprobabilities" would conveniently refer, by analogy with the
pseudo-random numbers that are often used in Monte Carlo calculations, to the
apparent probabilities that occur in a deterministic, but pseudo-indeterministic,
set-up.)

p=pi = P(G\Gi},q=qi = P(G\Gi),
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Let us now consider an arbitrary finite causal net having independence and
leading from F to E. We should like a general procedure for defining the strength
of such a net that will include the results for the nets already considered, and
which is simple, and which does not lead to a contradiction. I believe that the
procedure illustrated in the following example satisfies these conditions. It
would of course be more satisfactory if some convincing axioms could be laid
down that would uniquely determine the procedure.

In the diagram, the quasiprobabilities T T J , TT2, . . . , rt8 are assigned, and
pertain to the links of the net. It will be easier to appreciate the example if the
TT'S are at first thought of as ordinary probabilities (with all the q's equal to
0).

Figure 2.



214 A CAUSAL CALCULUS (#223B)

The 4>'s may be thought of as quasiprobabilities of the events. They are defined
successively as follows:

The reader should perhaps check that this procedure contains the previous ones
as special cases.

12. CAUSAL NETS IN GENERAL

It will often be possible to divide up a time-slice preceding E into non-overlap-
ping events whose causal influences on E are approximately but not absolutely
independent. Let such a dissection of the time-slice be F1; F2, . . . , Fm. W
need a definition of the strength of the causal link Fj -+ E that will reduce to the
value given previously in the case where F, and F2.F3. . . . Vm are causally
independent with respect to E, in the same sense as that defined above for nets
having independence. A simple definition having the required property is

S(E:F,|F2 . . . Fm) = log

when this is positive; otherwise 5 = 0.

This definition reduces to the previous use of the expression S(E:F) in the
case of causal independence. But the strengths of the lead-ins do not add up to
S(E:F!, F2, . . . , FOT) unless the F's do have independent causal influences on
E. We can cope with this difficulty by the introduction of "interaction terms" in
a sense analogous to the use of this expression in the literature of the design of
statistical experiments. (See, for example, Davies, 1954, index reference under
"Interaction.")

We can think of an extra node in the causal net leading to E corresponding
to every subset of the events F t, F2, . . . , Pm. For example, there will be a
node corresponding to the pair (F!.F2). The strength of the link from the node
(Fi.F-)) to E will then be taken as the "interaction" term

where

/>(E|F,F2F3 . . . FOT)
= (?(E:F_1F2/F1F2JF3 . . . Fm)
= W!FLF2/F1F2:E|F3 . . . Fm)

= / (F1F2 :E|F3 . . . FO T ) - / (F1F2 :E|F3 F™).
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The strength of the link to (Fi F2) from an earlier node (G tG2) is

^(G1G2 /G1G2 :F1F2 /F1F2 |G3G4 . . .),

where G3 ,G4 , . . . are the other immediate predecessors of F! and F2.

The definitions of the s's are forced, if we regard conjunctions of the F's as
single events. An example of a third-order interaction is

^1234 = -$1234 — 5234 — 5 134 — 5J24 — $123 + s 12 + s 13 +

. . . +534 — 5i — S2 — 53 — 54,

where the notation is now self-explanatory. In any piece of causal analysis one
would try to choose the dissection of the time-slice so as to make the high-order
interactions negligible.

Since

our enlarged causal net has the property of additivity of strengths of lead-ins
that we previously had for causally independent lead-ins. It is therefore now
potentially possible to apply the method of Section 1 1 to define the causal
strength of an arbitrary finite net from F to E.

13. DEGREES OF CAUSATION

We may now define x(E:F) as the limit of the strength of the net joining F to E
and containing all intermediate events, when the events are made smaller and
smaller. I have not proved that this limit exists. The proof, if possible, would
depend on a physical theory, and would be mathematically intricate. Note the
implication: whether degrees of causality exist is a matter of physics, even if we
take for granted that physical probabilities exist.

In practice one must always over-simplify or simplify in order to be able to
judge, estimate, or guess, the value of x(E:F). (In the past, x has been given only
a few values, such as "small," "moderate," and "large.") There is always the
possibility that something has been overlooked. Even in a statistical experiment
involving randomization, from which we can apparently deduce that some
x(E:F) is large, in fact E and F may both have been caused by some preceding
event The table of random numbers might have been seen by the famous lady
tea-taster (Fisher, 1949, Chap. 2), or there may have been some psychokinesis.
We are always thrown back on judgment.

14. BIG EVENTS

So far the analysis has assumed F and E to be small events. If F is big we may
imagine it split up into many small events, and imagine all these to be "short-
circuited" from an earlier "input node." By "short-circuited" is meant that the
resistances of all the imaginary links are taken to be zero. We may apply a similar
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process to a big E by short-circuiting its small parts to a future output node. The
previous methods may then be applied even if F does not end before E begins.

[For references to other work on probabilistic causality see the Introduction
of this book.]
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APPENDIX I. CORRECTION OF SOME ERRORS
IN PREVIOUS WORK

Reichenbach (1956, p. 204) says that F is causally relevant to E if P(E|F) >/5(E)
and if there is no set of events earlier than or simultaneous with F that "screens
off E from F. By "screens off" he means that the probability of E given these
other events is unchanged if F is also given. The property is analogous to the
Markov property.

It seems to me that this definition is not acceptable as it stands for much the
same reason that my previous paper is not acceptable. For let G be any set of
events earlier than or simultaneous with F. G might be some exceedingly biased
selection of individual molecules, such as those that are proceeding south at a
thousand miles per hour. Consider the expression P(E\G) — P(E\G.F). Normally
this will be positive for some G, say G t , and negative for some G, say G2. We
now imagine G t to be gradually distorted into G2. The above expression must
change sign at some point during this gradual distortion, at which "time" its
value will be zero. Hence the second part of Reichenbach's definition seems to
be vacuous. In order to patch up the definition it seems to be necessary to take
G as the complete state of the universe at the time F started.

In my previous paper, conditions C7 to C10 were vacuous for much the same
reason, though it may be possible to patch the thing up, as stated therein (in-
serted in proof), by insisting that G should be in some sense a "natural" event.

APPENDIX II. HOLMES, MORIARTY, AND WATSON
(See Section 2)

Sherlock Holmes is at the foot of a cliff. At the top of the cliff, directly over-
head, are Dr Watson, Professor Moriarty, and a loose boulder. Watson, know-
ing Moriarty's intentions, realizes that the best chance of saving Holmes's life
is to push the boulder over the edge of the cliff, doing his best to give it enough
horizontal momentum to miss Holmes. If he does not push the boulder, Mori-
arty will do so in such a way that it will be nearly certain to kill Holmes. Watson
then makes the decision (event F) to push the boulder, but his skill fails him
and the boulder falls on Holmes and kills him (event E).

This example shows that (?(E:F) and x(E;F) cannot be identified, since F had
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a tendency to prevent E and yet caused it. We say that F was a cause of E
because there was a chain of events connecting F to E, each of which was
strongly caused by the preceding one.

APPENDIX III. THE MEANING OF "STATE"
IN QUANTUM MECHANICS (See Section 4)

The seven relevant interpretations of "state" in quantum mechanics are the
first seven on the following list. All seven of these meanings, and perhaps others,
should be taken into account in a comprehensive discussion of the place of
probabilistic causality in quantum mechanics.

(/') The class of all past phenomena, classically describable. (//') The class of
phenomena extending only a short way into the past. (//'/') The wave function of
a physical system, under observation by another physical system. (/V) The joint
wave function of the pair of systems, (v) The wave function of one system con-
ditional on an assumed wave function of another system. This is the "relative
state" of Hugh Everett III (1957). (vi) The wave function of the entire universe
if this has any meaning. See Everett, loc. cit. (vii) The wave function of the
entire universe together with all other past phenomena, (viii] An ensemble of
wave functions. See, for this eighth interpretation, R. C. Tolman (1938, Section
98).



CHAPTER 22

A Simplification
in the "Causal Calculus" (#1336)

A quantitative explication was given in #223B for Q(E:F), defined as the degree
to which an event F tends to cause a later event E. The argument depended on
assigning to a causal network a "resistance" R and a "strength" S. By consider-
ing a parallel network, a functional equation was found for 5 (p. 205). On the
other hand, by considering a special causal Markov chain F -> E t -» E2 , in which
P(F) = x, P(El\f) =Pl, P(El\f) = 0,P(E2\El)=p2l P(E2 E, ) = 0, and then
coalescing E t and E2 into a single event E = E j & E2 , we can obtain the fur ther
funct ional equation

R(p\Pi, 0,PiP2^) = /?(PI, 0,yt?i/72x) + R(p2> 0,pip2x).

Here R(p, q, x0) is supposed to be the resistance of a simple chain F0 -> E0

where P(PQ) = x0, P(E0|F0) = p, ^(EolFo) = q. This functional equation for R
was only implicit in #223B with the result that the arguments in that paper were
somewhat more complicated than necessary. The two functional equations have
solutions of the form

where u and v are non-negative functions of their arguments. Since 5 is assumed
to be a function of R it can be deduced that u and v are constants. By an appro-
priate choice of units it then follows, as in #223B, that
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CHAPTER 23

Explicativity:
A Mathematical
Theory of Explanation with Statistical
Applications (#1000)

By explicativity is meant the extent to which one proposition or event explains why anoth-
er one should be believed. Detailed mathematical and philosophical arguments are given for
accepting a specific formula for explicativity that was previously proposed by the author
with much less complete discussion. Some implications of the formula are discussed, and it
is applied to several problems of statistical estimation and significance testing with intuitive-
ly appealing results. The work is intended to be a contribution to both philosophy and
statistics.

1. INTRODUCTION

By explicativity I mean the extent to which one proposition or event F explains
why another one E should be believed, when some of the evidence for believing
E might be ignored. Both propositions might describe events, hypotheses,
theories, or theorems. For convenience I shall not distinguish between an event
and the proposition that states the event. In practice usually only putative
explanations can be given and this is one reason for writing "should be believed"
instead of "is true," but explanation in the latter sense can be regarded as the
extreme case where belief is knowledge.

The word "explanatoriness" is not used here because it is defined in the
Oxford English Dictionary as a quality, where "explicativity" is intended to be
quantitative as far as possible. Also it has a more euphonic plural.

The concept of explicativity can be thought of as a "quasiutility," which is a
substitute for utility, preferably additive, when ordinary utility is difficult to
judge. The condition of additivity for quasiutilities is necessary to justify the
maximization of their expected values (#618). The need for at least a rough
measure of explicativity arises in pure science more obviously than in commerce
where utilities can often be judged in financial terms. But if a measure of expli-
cativity is proposed in general terms it should make sense whatever the field of
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application. One such field consists of the estimation of statistical parameters
since any such estimate can be regarded as a hypothesis that helps to explain
observations. Examples of statistical estimation and of significance testing w i l l
be given in this paper.

The topic of explicativity belongs to the mathematics of applied philosophy.
The present account is based on (#599, #846, Good, 1976) and goes much
further, though it does not cover everything on the topic in the previous publ i -
cations.

The advantage of the mathematics of philosophy over classical philosophy is
that a formula can be worth many words. The topic is mathematical because it
depends on probability. In this respect explicativity resembles some explications
for information, weight of evidence, and causal propensity, and it wi l l be con-
venient to list these explications first, without details of their derivations.

It may be possible sometimes to invert our approach, and to use explicativity
inequalities to aid us in our probabil i ty judgments.

2. NOTATION

Let A, B, C, E, F, G, H, J, K, sometimes with subscripts or primes, usual ly
denote propositions, or events, or hypotheses, etc. For example, E often denotes
an event and also the proposition that asserts that the event "obtains." Con-
junctions, disjunctions, and negations are denoted by &, v, and a v incu lum
[macron] respectively. I shall not distinguish between hypotheses, theories, and
laws.

Let P(E|H) denote the probability of E given H or assuming H, Simi lar ly let
P(H) denote the in i t ia l probabili ty of H and letP(H E) denote its f inal probabili-
ty. Often />(H)//>(H') is less d i f f icul t to judge than P(H) and />(H') separately. In
practice all probabilities are conditional so that />(EiH), P(H) and / '(HIE) are
abbreviations for P(E\H & G), P(H\G), and P(H\E & G), where G is some propo-
sition, usua l ly complicated, that is taken for granted. It w i l l sometimes be left
to the reader's imagination to decide whether any probability mentioned is
physical, logical, or subjective. We shall assume the usual axioms of probability
whichever of these interpretations of probability is intended.

The information concerning a proposition A provided by another proposition
B, given G throughout, is denoted by /(A:B|G) and is defined by

0)

(We shall not niggle about zero probabilities.) The base of the logarithms exceeds
1 and determines the unit in terms of which information is measured. For
example, if the base is the tenth root of 10, the unit is the deciban, a word
suggested by A. M. Turing in 1941 in connection with "weight of evidence."
With base 2 the unit is the "bit." When G is taken for granted we write /(A:B),
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and a similar abbreviation will be used for other notations. Sometimes/(A: A) is
denoted by /(A) and (1) implies

/(A) = -logA»(A). (2)

For a derivation of these formulae see, for example, p. 75 of #13 and #505.
Mathematical expectations of (1) occur in Shannon's theory of communication
(1948). Information has the additive property

/ (A:B&C) = /(A:B) + /(A:C|B). (3)

The weight of evidence in favour of H1 as compared with H2 provided by E
given G is defined by

= /(H i :E|G)-/(H2:E|G), (4)

where O denotes odds (the ratio of the probabilities of H! and H2). Weight of
evidence, which is the logarithm of a Bayes factor, has the additive property

W(H1 /H2 :E& F)= W(H1/H2:E) + W(HJH2:F E) (5)

and of course we can condition on G throughout. If the disjunction HI v H2 is
also taken for granted, so that H2 becomes HI, the negation of H t, then the
notation W(HifH2 :E) can be abbreviated to W(HV :E).

For some literature on weight of evidence see Peirce (1878), #13, and nu-
merous papers cited in #846.

The causal support for E provided by F, or the propensity of F to cause E,
denoted by Q(E:F), where E and F denote events, is defined (#223B) by the
equation

(?(E:F)= IV(F:E|U & L), (6)

the weight of evidence against F if E did not occur, given the state U of the
universe just before F occurred, and also given all true laws L of nature. This
quantitative explication of causal propensity is basically consistent with the
requirements of Suppes (1970) which, however, are only qualitative. The rela-
tionship between this monograph and #223B is discussed in #754.

The need for mentioning U in (6) is exemplified by the fact that seeing a
flash of lightning is not an important cause of hearing loud thunder soon after-
wards. Both events were caused by a certain electrical discharge. Equally, the
thunder is not explained by the visual experience of lightning. On the other hand
seeing the lightning does explain why one believes that thunder will soon occur;
whereas hearing thunder is a good reason for believing that the lightning flash
previously occurred. The experiences are thus valid reasons for prediction and
retrodiction respectively.

W(H,/H2:E|G) = log
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If F occurs after E, it turns out that Q(E:F) = 0. This is because U "screens
off" E from F under usual assumptions about the nature of time. This notion of
"screening off" is explained in more detail by Reichenbach (1956, pp. 201-205)
and herein, p. 216. It is analogous to a Markov chain property.

One potential value of measuring causal tendency quantitatively is for the
apportioning of credit and blame, as is done, for example by the British Admiral-
ty if two ships collide, though without using (6), and would be done more
generally in the courts of justice if they thoroughly deserved their name.

3. PHILOSOPHICAL ASPECTS

There is a large and interesting literature on the philosophy of explanation (for
example, Mill, 1843/1961; Hempel, 1948/65; Braithwaite, 1953; Popper, 1959;
Nagel, 1961; Scheffler, 1963; Kim, 1967; Rescher, 1970; Salmon, 1971; and
numerous further references in these publications). The present account is
succinct but is intended to be full enough for the reader to see how the statisti
cal examples fit into the philosophical background. Also I believe that the
philosophical discussion contains some new ideas.

The following terminology is fairly standard: what is to be explained or par-
tially explained is called the explanandum, and what explains it the explanans.

There are at least three main categories of explanation, with various subcate
gories. They correspond roughly to the questions "what," "how," and "why."
(1) Explaining "what," or semantic explanation: answering the question "What
do you mean?"

(1.1) Dictionary definition.
(\.2} Philosophical explication: extraction of more consistent and precise

meaning or meanings by analytic consideration of the usage of words by "good"
authors. This definition involves an implicit iterative "calculation" because we
should say what is meant by a good author.
(2) Explaining "how, " or descriptive explanation: answering the question "How
is this object constructed?"

(2.1) in Nature;
(2.2) in manufacture.

(3) Explaining "why, " or causa/ (and probabilistic causal) explanation
(3.1) The explanandum is an event (or the proposition describing an event).
(3.2) The explanandum is a class of events.
(3.3) The explanandum is a scientific law.
(3.4) Explaining why the explanandum should be believed (to some extent),

when some knowledge supporting this belief, apart from the explanans itself,
might be ignored. (For example, we may "know" E is true and still demand an
explanation.) Here the explanans is a (partial) cause of belief in E rather than a
cause of E itself, though it might be both. (Observing the shadow of an elephant
can explain why we believe an elephant is present; whereas observing an elephant
can explain both why the shadow is there and why we believe the shadow should
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be there.) An explanation of this kind might be a prediction or a retrodiction, or
a reasoned argument, or a mixture of two or three of these activities. We might
have called this kind of explanation "diction" if this word had not been pre-
empted, and anyway a "dictionary" deals with category (1.1). A retrodiction is
always a "belief-type" of explanation, rather than a causal type, if it is assumed
that causes always precede their effects. I shall make this assumption in this
paper though I am not dogmatic about it (see ##882, 1322A).

(3.4.1) The explanandum is a mathematical or logical theorem and the
explanans is a proof or heuristic argument. Sometimes an incomplete proof is a
better explanation of why a theorem is true than a complete proof. For exam-
ple, if AOB is a triangle with a right-angle at O, and if a perpendicular is dropped
on AB from O, then the three triangles now present all have the same shape so
that their areas are proportional to the squares of corresponding linear dimen-
sions. This explains why Pythagoras's theorem is true in the sense that the proo
is not artificial.

Sometimes "teleological explanation," in which future goals are mentioned, is
regarded as forming an additional category, but, unless we allow for precogni-
tion, and we shall not do so, this category is not distinct from categories (3.1 )-
(3.3). This fact is well known. For example, a homing missile, though it acts
purposefully, obeys the usual laws of physics. It is its own present prediction of
the future that affects it, not the future itself.

The present work is an exercise in applied philosophical explication (category
1.2) and its subject matter is category (3). Headings (1.1) and (2) are ignored.
The explication of explanation in category (3) often depends on dynamic or
evolving probabilities which can be changed by reasoning alone as in a game of
chess, and not by new empirical observations. This notion may superficially
appear fancy, and is usually overlooked, but I am convinced that it is essential
(see especially #938). This is obvious when the explanation comes under cate-
gory (3.4.1), though the above example concerning Pythagoras's theorem shows
that the notion of mathematical explanation cannot be fully captured in terms
of probabilities alone. We shall soon see that physical explanation also requires
something extra.

Dynamic probabilities are also required for the rest of category (3), as shown
in ##599, 846. For example, to give the argument in outline, the apparent
motions of the planets (event E), as projected upon the celestial sphere, had
their dynamic probabilities enormously increased, in ratio, when it was noticed
that the motions are implied by the inverse square law H of gravitation. This was
because the inverse square law had, for most scientists, a non-negligible prior
probability, owing to its simplicity and to the analogy of light emerging from a
point source, and because it explained why objects like apples fall. That apples
behave in some respects like planets is an example of what William Whewell
called the "consilience of laws": see Kneale (1953, pp. 364-366). Thus y°(E),
which exceeds /3(E|H)/3(H), is much greater than the original value of/3(E). This
would be true even without bringing in "apples" or the consilience of laws, so
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that our argument is distinct from Whewell's and Kneale's, and has a somewhat
clearer need for the notion of dynamic probability.

To explain why a physical event E occurred is to explain what caused it or
tended to cause it, and this requires explicit or implicit reference to a causal
chain or causal network that leads to E over some time interval of appreciable
duration t. The longer the duration t the fuller the explanation. A causal net-
work cannot be described without at least implicit reference to laws of nature.
This shows that probabilities alone, without reference to physical structure,
cannot fully capture the notion of physical explanation. Again, if E is itself a law
of nature, an explanation of it must be in terms of yet other laws of nature.
These will often be more general than E, though explanations by analogy are
also possible, and then the explanans might consist of laws no more general than
E. Thus, whether the explanandum denotes an event (or set of events) or a law
of nature, the explanans will involve laws of nature, and this is a view that has
been adopted by many philosophers of science since Mill (1843) or earlier. An
immediate consequence of this view is that an event E cannot be regarded as an
explanation of itself, since we need t > 0, but if you have knowledge that E is
true, then this of course fully explains your belief in E. Usually in practice our
explanations are only putative and only explain beliefs, for real causal networks
are enormously complex. Accordingly, the explanation of beliefs will be our
main topic.

Sometimes the laws of nature that form part of the explanation of E are
taken for granted because of their familiarity. For example, when we say that a
window-pane broke because Tom threw a stone at it, we are taking for granted
that glass panes are liable to break when hit by fast-moving hard objects that are
not too small. Thus a law of physics is here implicit in the explanation. As
another example, we might say that it is bad for Ming Vases to leave them
unsupported in mid-air.

In deterministic physics a specific event E can sometimes be explained by
some boundary conditions B, including initial conditions, combined with differ-
ential equations that describe a general law, L. Then B & L explains E, but some-
times, as in the example just given, we call B the explanation when L is taken for
granted. The division of an explanation into a contingent part and general laws
is not restricted to physics.

It is difficult to specify sharply whether one law is more general than another.
Nagel (1961, pp. 37-42) makes a valiant attempt which he does not regard as
fully successful, and I shall here merely point out the relevance of the matter to
statistical problems. Suppose that a random scalar or vector x has a probability
density function f(x\d), where 6 is a parameter which is also a scalar or vector.
The distribution determined by f(x\d) is a "law" in the sense that it says some-
thing about a population of values of x, and it is often called a law (see, for
example, Jeffreys, 1939/61). Any proposition of the form 6 e 0 (some set of
possible values of d) is a disjunction of laws, and can again reasonably be called
a law. Note that 9 must be fixed before x can take on a specific value so the time
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direction is appropriate. If 0 itself is regarded as a random scalar or vector
containing hyperparameters, as in hierarchical Bayesian techniques (see, for
example, ##26, 398, 1230), then a specification of a constrained set of values
for these hyperparameters could reasonably be regarded as a law that is more
general than 6 e 0, For it can be regarded as a proposition about a superpopula-
tion. And similarly for hyper-hyperparameters, etc. A law of the form 6 e 0 is a
somewhat primitive form of explanation because it does not give detailed
information about the structure of the (probabilistic) causal network that leads
to an observed value of x, but we cannot usually demand more from statistical
estimation procedures. In this example there is no contingent part in the expla-
nans, whereas in regression problems the value of the concomitant ("indepen-
dent") variable is contingent, when regarded as part of the explanation of a
specific value of the dependent variable, whereas the equation of the regression
line is lawlike.

There is an intimate relationship between explanation and causation. The
broken window was both caused and explained by Tom's naughty behavior. This
relation can be formalized to some extent in probabilistic terms: if P(E\ B & L)>
f(E|L) then B is a probabilistic cause, and a putative partial explanation of E,
when the law L is taken for granted. On the other hand, if P(E\ B & L) > P(E\ B),
then L is a putative partial explanation of E, but hardly a probabilistic cause,
when B is taken for granted. So causation and explanation are related but are
not identical (see also §9).

We shall denote by T?(E:F|G) the explicativity or explanatory power of F with
respect to E, given background information G, and shall arrive at a formula for
it, based on some desiderata. Here F may or may not include general laws. This
notation interchanges the positions of E and F as used in ##599, 846. The
reason for the reversal is that it is more consistent with the notation Q for causal
propensity. For grasping the notation we may read r?(E:F|G) from left to right
as "the explainedness of E provided by F given G," so that the colon can be
pronounced "provided by" whether we are talking about information /, weight
of evidence W, causal support Q, or explicativity 77. (Having two names "explica-
tivity" and "explainedness" for the same thing is analogous to calling P(E|H)
both a probability of E and a likelihood of H.) By calling G "background infor-
mation" we mean that it is assumed to be true and that it has already been taken
into account for helping to explain E. (See Desideratum (iii) in §4.) There may
also be further evidence G', such as direct evidence that E is true, which is
deliberately ignored and is omitted from our notation.

We shall assume that r?(E:F|G) depends only on various probabilities, and we
shall not incorporate those requirements that are necessary for regarding F as a
partial explanation of E and which do not depend on these probabilities. Thus
r?(E:F|G) will denote a putative explicativity when F is a putative explanation of
E (given G) and will otherwise denote something more general. In fact it will be
a measure of the degree to which F explains why you should believe E, given G
all along, and disregarding evidence for E that is not provided by F and G. We
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shall call 17 "explicativity" in all cases although "dictivity" might be preferred.
(See the remark about "diction" under category [3.4].) The name is less impor-
tant than that 17 should measure something of interest.

Some philosophers claim, with some justification, that F cannot be a (proba-
bilistic) explanation of E unless F is true. But in practice F can perhaps never be
known to be true, even in pure mathematics, so that in this paper we shall regard
nearly all explanations as only putative. In practice we talk about "explana-
tions" without saying "putative" each time, and accordingly we sometimes put
"putative" in parentheses or omit it.

We regard explanations as good or bad depending in part on whether the
probability of the explanans is high or low. Let us then allow the explicativity
r?(E:F) to depend on ^(F). When F is assumed to be known to be true let us use
the somewhat hypallagous expression informed explicativity. An informed
explicativity is of course an extreme case of a (putative) explicativity.

As an example of the distinction between (putative) explicativity and in-
formed explicativity let us again consider the broken window (event E). The
hypothesis F that Tom threw a stone at it has more (putative) explicativity than
that the Mother Superior did so (hypothesis FMS). For we believe that Tom is
naughtier than the Mother Superior as well as being a better shot. On the other
hand, if we saw the Mother Superior throw the stone vigorously, FMS would
have very high informed explicativity.

By using the expression "informed explicativity" we do not wish to imply
that the whole causal network preceding E is known; we mean only that F
becomes known to be true, but is not taken for granted in advance. The in-
formed explicativity of F with respect to E might be high and yet it might turn
out that F is not part of the true explanation of E after all.

Both a (putative) explicativity and its extreme case, an informed explicativi-
ty, are intended to be measures of the explanatory power of F with respect to E
relative to the knowledge that we (or "you") have, and that knowledge will
seldom include the certainty of F. We can only hope to measure the extent to
which our beliefs about F explain why we should believe E (imagining E to be
unobserved). Under this interpretation it is not necessary that F should precede
E chronologically; and T?(E:F|G) will sometimes measure the predictivity or
retrodictivity of F with respect to E, or some mixture. Again, if F is a "law," it
need have no position in time, and it might be used for prediction, retrodiction,
or putative explanation of E.

Since we regard informed explicativity as an extreme case of (putative)
explicativity, we do not need a separate notation for it. It will be merely a mat-
ter of putting ^(F|G) = 1 or P(F) = 1 in whatever formula we use for T?(E:F|G)
orr?(E:F).

We conclude this philosophical background with one further property of
explanation. Most philosophers believe that an explanation should be based on
all relevant evidence apart from the evidence G' that is deliberately ignored such
as the direct observation of E. With our notation ?7(E:F|G) this would mean that
F & G must contain all evidence relevant to E, apart from G'. In practice, when
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we are estimating an explicativity, we must make do with the evidence that
appears to us to be sufficiently relevant.

4. THE DESIDERATA AND EXPLICATION
FOR EXPLICATIVITY

As a preliminary to proposing some desiderata for explicativity, let us consider
a naive approach and an early historical approach to explanation.

Perhaps the most naive suggestion is that E is explained by H if H logically
implies E. This is neither a necessary nor a sufficient condition for H to be a
good explanation of E. For example, the hypothesis 0 = 1 logically implies
everything and in particular it implies E, but 0 = 1 is an extremely poor (puta-
tive) explanation of anything! Nor does it help to append some irrelevant laws of
nature so as to make the explanans lawlike. So we need something less naive. Let
us recall a little history.

According to the translation by Charlton (1970, p. 10), Aristotle said " . . .
it is better to make your basic things fewer and limited, like Empedocles." In the
early fourteenth century the "doctor invincibilis," William of the village of
Ockham in Surrey said "plurality is not to be assumed without necessity." This
sentiment had been previously emphasized by John of the village of Duns in
Scotland who has often been thought, apparently incorrectly, to have been
William of Ockham's director of studies (Anon., 1951; Moody, 1967). The
saying that "entities should not be multiplied without necessity," though
apparently never expressed quite that way by William of Ockham, has come to
be known as "Ockham's razor." For a detailed history, but with the Latin
untranslated, see Thorburn (1918).

A more modern interpretation of the Duns-Ockham razor is that, of two
hypotheses H and H', both of which explain E, the simpler is to be preferred
(see, for example, Margenau, 1949). But the hypothesis 0 = 1 is simple, at least
in the sense of brevity, so we need to sharpen the razor some more. The next
improvement is that if H and H' both imply E, then the hypothesis with the
larger initial probability is preferable. In nearly all applications the judgment of
whether /'(H) > ^(H') is subjective or personal, although different people often
agree about a specific judgment. Note that if P(H) > /^(H'), and H and H' each
imply E, then ^(HIE) > ^(H'lE), that is, the final probability of H exceeds that
of H'. One advantage of this way of interpreting Ockham's razor is that it rules
out impossible explanantia such as the hypothesis 0=1.

Whereas the initial probability of a hypothesis has something to do with its
simplicity the relationship is not obvious, and if we express all our formalism in
terms of probabilities we do not need to refer explicitly to simplicity or com-
plexity. In #599 I defined the complexity of a proposition H as — log/^H), but
I retracted this in #876. There is more than can be and has been said on the
relationship between complexity and probability, but to avoid distraction we
discuss this matter in appendix A.
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What if the two hypotheses H and H' do not logically imply E but merely
increase its probability, so that

/>(E|H) > />(E) and P(E|H') > P(E)1

Is H a better explanation of E than H' if P(E|H) > />(E|H')? Not necessarily if
^(H) < P(H'}. Some compromise is required, to be discussed later.

Let us assume the following desiderata, (i) The explicativity of H with respect
to E, denoted by r?(E:H), is a function of at most 52670 variables, namely all
probabilities of the form f(A|B) where A and B run through all the propositions
that can be generated from E and H by conjunctions, disjunctions, and nega-
tions, and where each of these probabilities is not necessarily equal to 0 or 1. It
is not important to check that 52670 is the correct number because an equiva-
lent assumption is that i?(E:H) depends at most on P(E), P(H), and P(E & H).

only on T?(E:H) and T?(F:K). (iii) T?(E:H|H) does not depend on E or H (in fact
you can reasonably call it zero), (iv) r?(E:H) increases with P(E|H) if ^(E) and
^(H) are fixed, (v) r?(H:H) > r?(T:T) where T is a tautology, (vi) r?(T:H) <
T](T:T) (because a tautology needs no explanation).

Then it can be proved [see appendix B] thatr?(E:H) must be some increasing
function of /(E:H) — 7/(H) where 7 does not depend on the probabilities and
where Q <y < ] (see appendix B). Since the main purpose is to put explicativi-
ties in order we may as well take 7?(E:H) = /(E:H) — 7/(H). Moreover this choice
converts (ii) into the strictly additive property

rj(E& F:H& K) = r?(E:H)+T?(F:K) (7)

(when K and F have nothing to do with H and E), and this justifies us in regard-
ing r?(E:H) as a proper quasi-utility. Various forms of i?(E:H) are:

T?(E:H) = /(H:E)-T/(H) (8)

-logP(E|H)-logP(E) + 7logP(H) (9)

= /(E)-/(E|H)-7/(H). (10)

We must adjust equation (9), when dynamic probabilities are relevant, as a
formula for "dynamic explicativity," 170 (E;H), namely

r?D (E:H) = log^ (E|H) - log/>0 (E) + 7logP(H). (9 D)

Here P0(E) is the initial probability of E, judged before H is brought to your
attention, whereas /^(EIH) is the conditional probability of E given H after H
is brought to your attention. When H is a good simple theoretical explanation of
E, as in the example of the inverse square law, it can easily happen that/1! (E|H)
P(H), which is equal to PI (E & H), is much larger than PQ(&). When dynamic
probabilities are relevant it is ambiguous to omit the subscripts 0 and 1 from the
notations, but sometimes it may not be too misleading to write Tj(E:H) instead
of r7o(E:H). For, in ordinary linguistic usage, the inverse square law is called

only on T?(E:H) and T?(F:K). (iii) T?(E:H|H) does not depend on E or H (in fact
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simply an "explanation" of the planetary motions. It happens to be a dynamic
explanation in both senses of "dynamic."

A few exercises, extracted from #846, are:

77(E:0 = 0) = 0, (11)

Tf(E:0=1) = -oo (12)

T ? (E&F:H) = r?(E:H)+T?(F:H|E)+T/(E|H), (13)

a modified additivity property. If H and L are mutually exclusive then H v L has
less explicativity for E than does H if and only if

For example, when P(H) = P(L) and 7 = 1/2, the right side is 0.414.

5. THE CHOICE BETWEEN HYPOTHESES

More important than assigning an explicativity to a single hypothesis, with
respect to E, is deciding which of two hypotheses H and H' has the greater
explicativity and by how much. Then the term log/3(E) in (9) is irrelevant,
because it is mathematically independent of the hypotheses. Let us denote
H v H' by J and take it for granted, as is permissible when we are choosing
between H and H'. Denote by T?(E:H/H'|J) or r?(E:H/H') the amount by which
the explicativity of H exceeds that of H', or 'the explainedness of E provided by
H as against H' (given J)'. Then

r?(E:H/H') = T?(E:H)-T?(E:H') (15)

= W(H/H':E)+7logO(H/H') (16)

= logO(H/H'|E) - (1 - 7)logO(H/H') (17)

= (1 -7)W(H/H':E)+7logO(H/H'|E). (18)

Equation (18) has an interesting interpretation. It exhibits the excess in
explicativity of H over its negation as a compromise between two extremes,
the weight of evidence on the one hand and the final log-odds on the other. The
former of these extremes (7 = 0) corresponds to the philosophy of "letting the
evidence speak for itself" (as advocated by some in the Likelihood Brother-
hood), and the latter (7 = 1) to that of preferring the hypothesis of maximum
final probability. Neither of these two philosophies is tenable as we may see
clearly by an example, although their implications are reasonably judged to be
good enough in some circumstances.

Let E denote the proposition that planets move in ellipses, let H denote the
inverse square law of gravitation, and K that there is an elephant on Mars. If we
took 7 = 0 we'd find thatr?(E:H & K) = 1?(E:H), in other words that the explica-
tivity of H would be unaffected by cluttering it up with an improbable irrelevant

(14)
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elephant. Thus the size of 7 depends on how objectionable we regard it to have
clutter, or to "multiply entities without necessity."

The case 7 = 0 of (8), namely the mutual information between E and H, was
proposed independently as an explication of explanatory power by Good (1955)
and Hamblin (1955), both in relation to Popper's writings. The fact that it did
not allow for clutter was pointed out in #599, and this explication was therefore
called weak explanatory power. In our present terminology it is the "informed
(putative) explicativity" of H. Expected amounts of information of this kind,
and of the effectively more general notion of weight of evidence . . . , were
related to statistical physics by Gibbs (1902, chap. XI) and Jaynes (1957), and
to non-physics statistical practice by, for example, Turing in 1941 (see #13),
Jeffreys (1946), Shannon (1948), Good (1950/53), Kullback & Leibler (1951),
Rothstein (1951), Cronbach (1953), #11, Lindley (1956), Jaynes (1957, 1968),
Kullback (1959), ##322, 524, Tribus (1969), #755, over thirty other publica-
tions by the present writer, and in several publications by Rothstein and by
S. Watanabe.

Next suppose we take 7 = 1 , then 1?(E:H) would reduce to logP(H|E) and there
would be no better hypothesis than a tautology such as 1 = 1. This shows, as in
Bayesian decision theory, that it is inadequate to choose the hypothesis of
maximum final probability as an unqualified principle.

So we must take 0 < 7 < 1. There may not be a clearly best value for the
"explicativity parameter" 7, but 7 = 1 / 2 seems a reasonable value. It exactly
"splits the difference" between the two extreme philosophies just mentioned,
and is also the simplest permitted numerical constant.

The sharpened razor is the recommendation to choose the hypothesis that
maximizes the explicativity with respect to E, or for all known evidence. It
differs from a central theme of Popper's philosophy, namely that a useful
theory is one that is of low (initial) probability and highly testable. Certainly
high checkability is a desirable feature of a theory, and, if a theory turns out to
have a high final probability, then a low initial probability is desirable because it
shows that the theory was informative. But Popper's philosophy does not allow
for final probabilities.

It is of interest to consider how much more explicative E itself is than H,
relative to E,

For r?(E:E/H) we have the following theorem:
When dynamic probabilities are not used, there is no more explicative propo-

sition relative to E than is E itself; in symbols r](E:E/H) > 0, that is,

or, when dynamic probabilities are used,

(19)

(19D)

(20)
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Equality occurs only if P(E\H) = P(H\E) = 1 . The corresponding result for
dynamic explicativities is false.

Proof. The right side of (19) can be written

(1 - T)logP(H) + 7log/>(E) - |0gP(E & H).

which is symmetrical in E and H, just as /(E:H) is, though a closer analogue is
/(E:E) — /(E:H) = /(E|H) which is not symmetrical. (Of course it can be forcibly
symmetrized by writing /(E|H) + /(H|E).) If we accept the value 7 = J/2, (21)
could be called the mutual explicativity "distance" between E and H, by analogy
with the name "mutual information" for /(E:H). It equals 0 if H = E and °° if
H = E, and resembles /(E|H) in this respect. Symmetry in E and H is an elegant
property but it is not a compelling desideratum. The triangle inequality is not
satisfied, but it may be of interest that

r?(E:E/F) + 77(F:F/G) - r?(G:G/E) = /(E|F) + /(F|G) - /(E|G)
= /(G|F) + /(F|E)-/(G|E), (22)

so that the "triangles" for which the triangle inequality is valid are the same for
the functions (XE)(XF)r?(E:E/F) and (XE)(XF)/(E|F)(in Alonzo Church's X
notation).

6. REPEATED TRIALS

Sometimes E can be defined as a compound event, or time series, which de-
scribes the probabilistic outcome E t & E2 & . . . & E/v of an experiment
performed "independently" N times under essentially similar circumstances. If
N is large, the frequencies of the various outcomes settle down, with high
probability, to a distribution. A hypothesis H that predicts this distribution has
an expected explicativity gain per observation, as compared with another hy-
pothesis H', and this gain tends in probability to

(1-7)£{W(H/H':E)|H}, (23)

which is proportional to the expected weight of evidence per observation. The

Since P(E & H) exceeds neither P(E) norP(H), this expression is at least as large
as both (1 - 7)[logP(H) - log/>(E)] and y[\ogP(E) - \ogP(H)] and must ther
fore be non-negative. It vanishes only if P(H) = P(E) = P(E & H), that is, only if
/'(EIH) = /3(H|E) = 1, which for practical purposes means that E and H are
logically equivalent.

That the theorem is false for dynamic explicativities is clear from the example
of the planetary motions and the inverse square law. The dynamic explicativity
Th (E:H) can exceed, equal, or "subceed" r?0(E:E).

When 7 = '/2 we have, when we do not use dynamic probabilities,

(21)
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second term in (18) gets divided by N and so contributes nothing to the limiting
value (23). Thus, for "repeated trials," the application of the notion of explica-
tivity to statistics will lead to the same results as when (expected) weight of
evidence is used as a quasiutility, as in numerous publications cited earlier. In
particular, if H asserts the true physical probability density p(x,y] of two ran-
dom variables, whereas hypothesis H' asserts that the density is p(x)q(y), then
T?(E:H/H')//V tends in probability to

which is 1 — 7 times the "rate of transmission of information" concerning x
provided by y and can of course be expressed in terms of three entropies. This
formula can be used in the choice of an experimental design. The factor 1 — 7
is irrelevant for this purpose: see Cronbach (1953), #11, and especially Lindley
(1956). Thus, in this application, the value of 7 does not matter.

Greeno (1970), unaware of these references, suggested rate of transmission of
information as an explication for explanatory power. We see from the above
argument how this proposal is deducible from the notion of explicativity, and
even from the earlier (Good, 1955; Hamblin, 1955) special case of weak explana-
tory power (informed explicativity), when E denotes an "infinitely repeated
trial."

7. PREDICTIVITY

As we have seen, a probabilistic prediction of the result of an experiment or
observation is a special case of a putative explanation, being made before the
experimental result occurs. In these circumstances it is natural to measure the
predictivity of a hypothesis as the mathematical expectation of the putative
explicativity, the expectation being taken over the population of possible out-
comes. It is appropriate to take expectations of 77 rather than of some mono-
tonic function of T? because of the additive property (7).

The explicativity of H, per trial, with respect to repeated trials, as given by
(23), is formally nearly the same as predictivity, owing to the law of large
numbers.

For a theory with a wide field of possible applications, the notion of pre-
dictivity is necessarily vague; but it might be defined as the expected explica-
tivity over all future observations with discounting of the future at some rate.
The concept is important in spite of its vagueness.

For experimental design, predictivities (expected explicativities) are natural
quasiutilities. This fact can be regarded as an explication in hindsight why
entropies occur in the work of Cronbach (1953) and Lindley (1956). In virtue
of these two publications it is not necessary to consider experimental design
further here. Instead, we work out in detail only examples of estimating param-
eters in a distribution law, after observations are taken. In this estimation

(24)
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problem entropies do not occur because expectations are not taken. Hypothesis
testing can be regarded as a special case of parameter estimation (and vice versa).

8. "COLLATERAL" INFORMATION VERSUS
BACKGROUND INFORMATION

Consider the propositions

E: Jones won the Irish Sweepstake,

H: Jones bought a ticket in this lottery,

and for the sake of simplicity assume that

P(H) = 2~8, />(E|H) = 2~20, and therefore P(E) = P(E & H) = 2~28.

Then, if 7 = !/2, we have r?(E:H) = 8 — 8/2 = 4 bits. If we knew all along that
H was true we would have 77(E:H|H) = 0, meaning that H cannot help to explain
E if we have already taken H into account. But in another sense, if we discover
that H is true we raise the probability of H to 1, and the explicativity of H with
respect to E, which is now "informed" explicativity, is /(E:H) = 8 bits. Thus, for
the sake of completeness, it is convenient to have a notation for the explicativity
of H when its probability is conditional on some collateral information K. Let us
use a semicolon to mean "given the collateral information." Then we have

r?(E:H; K|G) = log/>(E|H) & G) - logP(E|G) + 7log/>(H|K & G) (25)

where we have included G for greater generality. In particular,

T?(E:H;H) = /(E:H). (26)

Background information is taken for granted in computing all the probabili-
ties, whereas collateral information affects only the probability of the explanans
H and is not taken into account when computing the probability of the expla-
nandum E. Of course T?(E:H; H) is the informed explicativity of H. No special
terminology for T?(E:H|H) is proposed because it necessarily vanishes.

The notation T?(E:H; K) or T?(E:H; K|G) helps to formalize the familiar
situation in which an explanans H is strengthened by having its own probability
increased by evidence K. For example, when we discover that Tom was at the
scene of the crime, the probability is increased that he threw a stone at the
window. Explicativity depends on the explanandum, the explanans, the collater-
al information, and the background information. We have

7?(E:H;K) = 7?(E:H& K) if and only if P(E\H & K) = P(E H). (27)

9. THE QUANTITATIVE DISTINCTION BETWEEN
EXPLICATIVITY AND CAUSAL PROPENSITY

In our lottery example the explicativity of the ticket-purchase, with respect to
E, is appreciable (whether the explicativity is "informed" or not), although
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P(E|H) is small. There is a distinction between (putative) explicativity and causal
propensity: the purchase of the ticket did not do much to cause E although it
was a necessary condition for it. If Jones had not won the sweepstake, it would
have been negligible evidence against his having bought a ticket, so, according to
(6), the causal propensity of the purchase is small. Similarly, if Ms Aksed is hit
by a small meteorite when out walking, we would not blame her and accuse her
of suicidal tendencies. Her decision to go for a walk was a necessary condition
for the disaster, but if she had not been hit by a meteorite, it would have been
negligible evidence that she was indoors when the meteorite fell. The insurance
company would call the incident an Act of God.

10. APPLICATIONS TO STATISTICAL ESTIMATION AND
SIGNIFICANCE TESTING

. . . [The eight pages omitted here show that i?(E:H) can be applied to statistics
with entirely sensible results. This confirms the reasonableness of 17 as an expli-
cation of explicativity.]

11. FURTHER COMMENTS CONCERNING THE VALUE OF 7

If no other desiderata can be found for fixing 7, the value 7=1/2 could often
reasonably be adopted on grounds of maximum simplicity. This choice can itself
be regarded as an application of a form of the Duns-Ockham razor (of higher
type so to speak). Moreover there are many scientists who believe that the
notion of simplicity is better replaced by that of elegance, or aesthetic appeal.
For example, Margenau (1949) says "The physicist is impressed not solely by its
[a theory's] far-flung empirical verifications, but above all by the intrinsic
beauty of its conception which predisposes the discriminating mind for accep-
tance even if there were no experimental evidence for the theory at all." Again
Dirac (1963) says " . . . it is more important to have beauty in one's equations
than to have them fit experiment. . . . That is how quantum mechanics was
discovered," and I believe Dirac expressed this view in conversation at least as
early as 1940. From this point of view the value 7=1/2 gains from the elegant
symmetry of equation (21). . . . [As a discussion point, I believe that beauty
is often a matter of simplicity arising out of complexity arising out of simplicity.]

12. SUMMARY

Philosophical aspects of explanation were discussed in §3 leading up to an
informal definition of 7?(E:F|G) and to the desiderata and exact explication of
17 in §4 in terms of probabilities or information. In §5 we showed the relevance
of explicativity for a choice between hypotheses. In §6 we saw that if explicativ-
ity is used in experimental design it reduces in effect to expected weight of evi-
dence or to rate of transmission of information. In §7 an informal quantification
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of predicitivity was suggested. In §8 it is pointed out that a distinction between
background information and "collateral" information is necessary for formaliz-
ing a familiar aspect of explanation, so that 77 depends on four variables (apart
from the evidence G' that is deliberately ignored: see §3). In §9 it is shown
that explicativity and causal propensity can be quantitatively quite different,
both in common parlance and in terms of the formalism. In §10 several exam-
ples of statistical estimation and significance testing are worked out in terms of
explicativity with intuitively appealing results.

APPENDIX A. COMPLEXITY

Although an explication of simplicity or complexity is not required for that
of explicativity, the latter depends on the initial probability of a proposition H
and this probability surely depends to some extent on the complexity of H. For
the complexity of the conjunction H & K of two propositions that are entirely
independent is greater than the complexity of either of them separately, in any
one's book, and is reasonably assumed to be the sum of the two complexities.
If the complexity of H could be defined in terms of P(H) alone then it would
have to be —log^(H) as suggested in #599. But the two propositions 0 = 0 and
0 = 1 are about equally simple in my present judgment, though their probabili-
ties are poles apart. So the complexity of H cannot be defined in terms of P(\-\)
alone. Fortunately this error in #599 did not undermine much else in that work.
The error was admitted in #876, and on pp. 154-56, where attempts were made
to improve the definition. It was proposed that the complexity of a proposition
should be defined as the minimum value of —logp where p - P(S) is the proba-
bility of some statement S of the proposition regarded as a linguistic string and
the minimum is taken over all ways of expressing the proposition as a statement.
Moreover, the language used must be one that is economical for talking about
the topic in question.

A valid objection was raised against this definition by Peter Suzman, as men-
tioned in Good (1976b). Suzman asked whether the proposition that all cater-
pillars have chromosomes is more complex than that all dogs have chromosomes.
My reply was to concede that these propositions are of (nearly?) equal com-
plexity. Nor is it sufficient to modify the proposed definition of complexity,
by definingp(S) as the probability of the syntactic structure of S, nor by making
the definition depend only on the number of dimensionless parameters in a law.
For a parameter equal to 5.4603 is more complex than one that is equal to 2.
Perhaps one cannot do much better than to define the complexity of a propo-
sition as equal to the weighted length of the shortest way of expressing it,
measured in words and symbols, where different weights should be assigned to
different categories of words such as parts of speech. Perhaps the weights should
be minus the logarithms of the frequencies of these categories of words (instead
of using the frequencies of the individual words and symbols as such). This
would reduce the problem to the specification of the categories.
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A somewhat different ideal measure of the complexity of a scientific theory
is the number of independent axioms in it (see, for example, Margenau, 1949),
and I believe this is a useful rule of thumb. But it does not allow for the relative
complexities of the axioms.

In practice, the beauty of a theory, rather than its simplicity, might be more
important when estimating initial probabilities: see the quotations at the end of
the main text. To fall back on beauty as a criterion is presumably to admit that
the left hemispheres of the brains of philosophers of science have not yet formal-
ized the intuitive activities of the right hemispheres.

Measurements of complexity or ugliness might help us to judge prior proba-
bilities, but, if the prior probabilities could be adequately judged, the crutches
of simplicity and beauty could be discarded. These crutches were not much used
in the main text because our aim was to express explicativity in terms of proba-
bility.

APPENDIX B. THE FORM OF THE FUNCTION r?(E:H)

. , . [A proof of (8) was given in this appendix.]



References



This page intentionally left blank 



References

A list of abbreviations for the names of periodicals is provided on p. 251.

Abel, Neils Henrik (1826). "Recherche des fonctions de deux quantites variables indepen-
dantes x et y, telles que f(x, y), qui ont la propriete que f(z, f(x, y)) est une fonction
symetrique de z, x, et y," J. fur die reine und angewandte Mathematik, herausgegeben
von Crelle, band 1. Reprinted in Oevres completes de Neils Henrik Abel, Nouvelle edi-
tion, Christiania: Gr^nduhl & S^ns, 1881, vol. 1,61-65; New York: Johnson Reprint
Corporation, 1975.

Aczel, J. (1948). "Sur les operations definies pour nombres reels," Bull. Soc. Math. France
76, 59-64.

Aczel, J. (1955). "A solution of some problems of K. Borsuk and L. Janossy," Acta. Phys.
Acad. Sci. Hangar. 4, 351-362 (MR 16, 1128).

Anonymous. (1951). Occam, William of. Encyclopaedia Brittannica 16, 678-679.
Anscombe, F. J. (1954). "Fixed sample-size analysis of sequential observations," Biometrics

10, 89-100.
Anscombe, F. J. (1968/69). Discussion of a paper by I. J. Good, April 9, 1968, JASA 64,

50-51.
Ayer, A. J. (1957). "The conception of probability as a logical relation," in Observation and

Interpretation, S. Korner, ed., London: Butterworths, 12-30 (with discussion).
Barnard, G. A. (1951). "The theory of information," JRSS B 73, 46-64 (with discussion),

esp. p. 56.
Barnard, G. A. (1979). "Pivotal inference and the Bayesian controversy," in Bayesian Sta-

tistics (see #1230 in my bibliography), 295-318 (with discussion).
Bartlett, M. S. (c. 1951). Personal communication.
Bartlett, M. S. (1952). "The statistical significance of odd bits of information," Biometrika

39, 228-237.
Bayes, T. (1763/65, 1940/58). An essay toward solving a problem in the doctrine of chan-

ces, Phil. Trans. Roy. Soc. 53, 370-418; 54, 296-325. Reprints: the Graduate School,
U.S. Department of Agriculture, Washington, D.C. (1940); Biometrika 45 (1958), 293-
315.

Bernoulli, D. (1734). "Recherches physiques et astronomique . . . ," Recueil des pieces
qui ont remporte le prix de I'Academie Royal des Sciences 3, 93-122.

Bernoulli, D. (1774/78/1961). The most probable choice between several discrepant obser-

239



240 REFERENCES

vations and the formation therefrom of the most likely induction (in Latin), Acta
Academiae Scientiorum Petropo/itanae 1 (1777), 3-23. English trans, by C. G. Allen in
Biometrika48 (1961), 3-13.

Bernstein, S. (1921/22)."Versuch einer axiomatischen Begrundung der Wahrscheinlichkeits-
rechnung," Mitt. Charkow 15, 209-274. Abstract in Jahrbuch der Math. 48, 596-599.

Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1 975). Discrete Multivariate Analysis,
Cambridge, Mass: M.I.T. Press.

Bochner, S. (1955). Personal communication.
Bohm, David (1952). "A suggested interpretation of the quantum theory in terms of 'hid-

den' variables," Phys. Rev. 85, 166-193.
Borel, E. (1920). Le Hasard, Paris: Hermann.
Box, G. E. P., & Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis, Reading,

Mass.: Addison-Wesley.
Braithwaite, R. B. (1951). A lecture at the 1951 weekend conference of the Royal Statisti-

cal Society in Cambridge, England.
Braithwaite, R. B. (1953). Scientific Explanation, Cambridge: Cambridge University Press.
Brier, G. W. (1950). "Verification of forecasts expressed in terms of probability," Monthly

Weather Review 78, 1-3.
Bunge, M. (1955). "Strife about complementarity," BJPS6, 1-12 and 141-154.
Burkill, J. C. (1951). The Lebesgue Integral, Cambridge: Cambridge University Press.
Carnap, R. (1947). "On the application of inductive logic," Philosophy and Phenomenologi-

cal Research 8, 133-148.
Carnap, R. (1950). Logical Foundations of Probability, Chicago: University of Chicago

Press.
Carnap, Rudolf, & Jeffrey, Richard C. (1971). Studies in Inductive Logic and Probability I,

Berkeley & Los Angeles: University of California Press.
Charlton, W. (1 970). Aristotle's Physics, book I, Oxford: Clarendon Press.
Coolidge, J. L. (1916). A Treatise on the Circle and the Sphere, Oxford: Clarendon Press.
Cornfield, J. (1968/70). Contributions to the discussion, in Bayesian Statistics, D. L. Meyer

& R. O. Collier, Jr., eds., Itasca, III.: Peacock, 108.
Cox, R. T. (1946). "Probability, frequency and reasonable expectation," Amer. J. Physics

14, 1-13.
Cox, R. T. (1961). The Algebra of Probable Inference, Baltimore: Johns Hopkins University

Press.
Cronbach, L. J, (1953). "A consideration of information theory and utility theory as tools

for psychometric problems," Technical Report, College of Education, University of
Illinois, Urbana.

Crook, J. F., & Good, I. J. (1981). "The powers and 'strengths' of tests for multinomials
and contingency tables." In preparation.

Daniels, H. E. (1951). "The theory of position finding," JRSS B 13, 186-207 (with discus-
sion).

Daniels, H. E. (ca. 1956). Personal communication.
David, F. N. (1949). Probability Theory for Statistical Methods, Cambridge: Cambridge

University Press.
Davidson, M. (1943). An Easy Outline of Astronomy, London: Watts.

Davies, O. L. (1954). Design and Analysis of Industrial Experiments, London & Edinburgh:
Oliver <& Boyd.

De Finetti, B. (1937/64). "Foresight: its logical laws, its subjective sources," trans, from the
French of 1937 by H. Kyburg, in Studies in Subjective Probability, H. E. Kyburg & H. E.
Smokier, eds., New York: Wiley, 95-158. Corrected in 2nd ed., 1980, 55-118.

De Finetti, B. (1951). "Recent suggestions for the reconciliation of theories of probability,"
Proc. Second Berkeley Symp. on Math. Stat. and Probability, Berkeley & Los Angeles:
University of California Press, 217-225.



REFERENCES 241

De Finetti, B, (1968/70). "Initial probabilities: A prerequisite for any valid induction," in
Induction, Physics, and Ethics, P. Weingartner and G. Zecha, eds., Dordrecht, Holland:
D. Reidel, 3-17 (with discussion). Also in Synthese 20 (1969).

De Finetti, B. (1 971). "Probabilita di una teoria e probabilita dei fatti," in Studi di probabil-
ita, statistica e ricerca operative in onore di Guiseppe Pompili, Oderisi: Gubbio, 86-101.

De Finetti, B. (1975). Theory of Probability, vol. 2, New York: Wiley.
De Morgan, A. (1837/1853). "Theory of probabilities," in Encyclopedia Metropolitana,

vol. 2, 393-490.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). "Maximum likelihood from incom-

plete data via the EM algorithm," JRSS B 39, 1-38 (with discussion).
Dickey, J. M. (1968). "Estimation of disease probabilities conditioned on symptom varia-

bles," Mathematical Biosciences 3, 249-265.
Dirac, P. A. M. (1963). "The evolution of the physicist's picture of nature," Sci. Am. 208

(5) (May), 45-53.
Dodge, H. F., & Romig, H. G. (1929). "A method for sampling inspection," Be/1 System

Tech. J. 8, 613-631.
Eddington, Sir Arthur (1933/52). The Expanding Universe, Cambridge: Cambridge Univer-

sity Press.
Edgeworth, F. Y. (1910). "Probability," Encyclopaedia Britannica 22, 11th ed., 376-403.
Edgeworth, K. E. (1961). 777<? Earth, the Planets, and the Stars, New York: Macmillan.
Efron, B. (1971). "Does an observed sequence of numbers follow a simple rule?" J ASA 66,

552-568 (with discussion).
Eisenhart, C. (1964). "The meaning of 'least' in Least Squares," /. Washington Acad. Sci.

54, 24-33.
Everett, H. J., Ill (1957). " 'Relative state' formulation of quantum mechanics," Reviews of

Modern Physics 29, 454-462.
Fath, E. A. (1955). Elements of Astronomy, 5th ed., New York: McGraw-Hill.
Feibleman, J. K. (1969). An Introduction to the Philosophy of Charles S. Peirce, Cam-

bridge, Mass.: M.I.T. Press.
Feller, W. (1940). "Statistical aspects of ESP,"/. Parapsychology 4, 271-298.
Feller, W. (1950). An introduction to Probability Theory and Its Applications, vol. 1, New

York: Wiley.
Finney, D. J. (1953). Statistical Science in Agriculture, New York: Wiley; Edinburgh: Oliver

& Boyd.
Fisher, R. A. (1949). 77?e Design of Experiments, 5th ed., Edinburgh & London: Oliver &

Boyd.
Fisher, R, A. (1959). Smoking: The Cancer Controversy, Edinburgh: Oliver & Boyd.
Frazier, K. (1979). "Schmidt's airing at the APS," The Skeptical Inquirer: The Zetetic 3

(4), 2-4.
Friedman, K, S (1973). A measure of statistical simplicity, mimeographed, 32 pp.
Freiman, J. A., Chalmers, T. C., Smith, Harry, Jr. and Kuebler, R. R. (1 978). "The impor-

tance of beta, the type II error and sample size in the design and interpretation of the
randomized control trial," New England/. Medicine 299, 690-694.

Gauss, K. F. (1798/1809/57). Theory of the motion of heavenly bodies moving about the
sun in sections (Latin), in Carl Friedrich Gauss Werke, English trans, by Davis (1857);
reprinted by Dover publications.

Gibbs, J. W. (1902). Elementary Principles in Statistical Mechanics, New York: Scribner;
reprinted by Dover publications.

Godambe, V. P., & Sprott, D. A. (eds.) (1971). Foundations of Statistical Inference, Toron-
to: Holt, Rinehart, & Winston of Canada.

Good, I. J. (1950/53). Contribution to the discussion of papers by E. C. Cherry and by
M. S. Bartlett in Symposium on Information Theory, Report of Proceedings, London:
Ministry of Supply, 167-168, 180-181. Also iri Trans. I. R. E., Feb. 1953.



242 REFERENCES

Good, I. J. (1951). Contribution to the discussion of a paper by H. E. Daniels, JRSS B 13,
203.

Good, I. J. (1952), Review of G. H. von Wright, "A treatise on induction and probability,"
JRSS A 115, 283-285.

Good, I. J. (1953a). Review of M. H. Quenouille, "Design and analysis of experiment,"
Annals of Eugenics 18, 263-266.

Good, I. J. (1953b). Contribution to the discussion of a paper by D. M. McKay, in Com-
munication Theory, Willis Jackson, ed., London: Butterworths, 483-484.

Good, I. J. (1954). Contribution to the discussion of a paper by R. D. Clark, j. Inst. Actuar.
80, 9-20.

Good, I. J. (1955). Review of K. R. Popper, "Degrees of confirmation" [BJPS 5 (1954),
47-48], MR 16, 376.

Good, I. J. (1956). Contribution to the discussion of a paper by G. S. Brown in Informa-
tion Theory: Third London Symposium 1955, Colin Cherry, ed., London: Butterworths,
13-14.

Good, I. J. (1958). Review of R. von Mises, Probability, Statistics, and Truth, 2nd ed.,
JRSS A 121, 238-240.

Good, I. J. (1960). "Gravitational frequency shift," letter in New Scientist (February 25),
483.

Good, I. J. (1962a). Contribution to the discussion in The Foundations of Statistics, opened
by L. J. Savage, London: Methuen; New York: Wiley, esp. pp. 74 & 78.

Good, I. J. (1962b). "Speculations concerning precognition," in #339, 1 51-157.
Good, I. J. (1962c). "Physical numerology," in #339, 315-319.
Good, I. J. (1962d). Review of R. T. Cox, The Algebra of Probable Inference, MR 24, 107.
Good, I. J. (1964). Contribution to the discussion of A. R. Thatcher, "Relationships be-

tween Bayesian and confidence limits for predictions," JRSS B 26, 204-205.
Good, I. J. (1965). Letter concerning Tippett's random numbers, Amer. Stat. 19, 43.
Good, I. J. (1970). Contribution to the discussion of a paper by H. Vetter, in the Salzburg

conference. (See #617.)
Good, I. J. (1971). "The Baker's Oven, XV," Mensa J. & Bulletin, No. 150, 10-15.
Good, I. J. (1976). "Explicativity." A lecture in a seminar on Bayesian Inference in Econo-

metrics at Harvard University.
Good, I. J. (1977). "Rationality, evidence, and induction in scientific inference," in Ma-

chine Intelligence 8, E. W. Elcock and D. Michie, eds., Chichester: Ellis Norwood, Ltd.;
New York: Wiley, 171-174.

Greeno, J. G. (1970). "Explanation of statistical hypotheses using information transmit-
ted," Philosophy ofSci. 37, 279-294. Reprinted in Salmon (1971).

Greenwood, J. A. (1938). "An empirical investigation of some sampling problems," J. Para-
psychology 2, 222-230.

Hamblin, C. L. (1955). An unpublished doctoral thesis submitted to the University of
London and cited by Popper, 1959, p. 403.

Hamel, G, (1905). "Eine basis aller Zahlen und die unstetigen Lbsungen der Funktional-
gleichungen f(x +y) = f(x) +f(y)," Math. Ann a/en 60, 459-462.

Hardy, G. F. (1889). In correspondence in Insurance Record, reprinted in Trans. Fac.
Actuar. S(1920), 174-182.

Hardy, G. H., Polya, G., & Littlewood, J. E. (1934). Inequalities, Cambridge: Cambridge
University Press.

Hartley, R. V. L. (1928). "Transmission of information," Bell System Tech. /. 7, 535-563.
Hempel, C. G. (1948/65), "Studies in the logic of explanation," Philos. of Sci. 15 (1948),

135-175; reprinted with some changes in Aspects of Scientific Explanation, New York:
Free Press (1965).

Hempel, C. G. (1967). "The white shoe: No red herring," BJPS 18, 239-240.



REFERENCES 243

Hendrickson, A., & Buehler, R. J. (1972). "Elicitation of subjective probabilities by sequen-

tial choices," I ASA 67, 880-883.
Horowitz, I. A., & Mott-Smith, G. (1960). Point Count Chess, New York: Simon and

Schuster.

Humphreys, P. (1980). "Cutting the causal chain," Pacific Philosophical Q. 61, 305-316.
Hurwicz, L, (1951). "Some specification problems and applications to econometric mod-

els," Econometrics 19, 343-344 (abstract).
Huzurbazar, V. S. (1955). "On the certainty of an inductive inference," PCPS 51, 761-762.
Janossy, L. (1955). Remarks on the foundations of probability calculus, Acta. Phys. Acad.

Sci. Hungar. 4, 333-349.
Jaynes, E. T. (1957). "Information theory and statistical mechanics," Phys. Rev. 106,

620-630.
Jaynes, E. T. (1968). "Prior probabilities," IEEE Trans. Systems Sc. and Cyb. SSC-4,

227-241.
Jeffreys, H. (1936). "Further significance tests," PCPS 32, 416-445.
Jeffreys, H. (1939/48/61). Theory of Probability, Oxford: Clarendon Press.
Jeffreys, H. (1946). "An invariant form for the prior probability in estimation problems,"

Proc. Roy. Soc. A 186, 453-461.
Johnson, William Ernest (1932). Appendix to "Probability: Deductive and inductive prob-

lems," Mind 41, 421-423. This appendix was edited by R. B. Braithwaite.
Kalbfleisch, J. (1971). Probability and Statistical Inference (Lecture Notes for Mathe-

matics, 233; Department of Statistics, University of Western Ontario).
Kalbfleisch, J. G., & Sprott, D. A. (1976). "On tests of significance," in Foundations of

Probability Theory, Statistical Theory, Statistical Inference, and Statistical Theories of
Science, vol. 2, C. A. Hooker and W. Harper, eds., Dordrecht, Holland: D. Reidel, 259-
272.

Kemble, E. C. (1941). "The probability concept," Philosophy of Science 8, 204-232.
Kemble, Edwin C. (1942). "Is the frequency theory of probability adequate for all scientific

purposes?," Amer. ]. Physics 10, 6-16.
Kemeny, J. G., & Oppenheim, P. (1952). "Degrees of factual support," Philosophy of

Science 19, 307-324.
Kempthorne, O., & Folks, L. (1971). Probability, Statistics, and Data Analysis, Ames, Iowa:

Iowa University Press.
Kendall, M. G. (1941). "A theory of randomness," Biometrika 32, 1-5.
Kendall, M. G. (1949). "On the reconciliation of theories of probability," Biometrika 36,

101-116.
Kendall, M. G., & Stuart, A. (1960). The Advanced Theory of Statistics, vol. 2, London:

Griffin.
Kerridge, D. F. (1961). "Inaccuracy and inference," ]RSS B 23, 184-194.
Keynes, J. M. (1921). A Treatise on Probability, London & New York: Macmillan; New

York: St. Martin's Press, 1952.
Keynes, John Maynard (1933). Essays in Biography, London: Rupert Hart Davis.
Kim, J. (1967). "Explanation in science," in The Encyclopedia of Philosophy 3, 159-163.

New York: Macmillan and Free Press.
Kneale, W. (1953). "Induction, explanation, and transcendental hypotheses," in Readings in

the Philosophy of Science, H. Feigl and M. Brodbeck, eds., New York: Appleton-Cen-

tury-Crofts, 353-367.
Kolmogorov, A. N. (1963). "On tables of random numbers," Sankhya A 25, 369-376.
Koopman, B. O. (1940a). "The axioms and algebra of intuitive probability," Annals of

Math. 41, 269-92.
Koopman, Bernard Osgood (1940b). "The bases of probability," Bull. Amer, Math Soc. 46,

763-774.



244 REFERENCES

Koopman, B. O. (1969). "Relaxed motion in irreversible molecular statistics," Advances in
Chemical Physics 15, 37-63.

Kullback, S. (1959). Information Theory and Statistics, New York: Wiley.
Kullback, S., & Leibler, R. A. (1951). "On information and sufficiency," Ann. Math.

Statist. 22, 79-86.
Laplace, P. S. de (1774). "Memoire sur la probabilite des causes par les evenements,"

Memo/res . . . par divers Sarans 6, 621-656.
Laplace, P. S. de (1878/1912). Oevres Completes, vol. 7, Paris: Gauthiers-Villars.
Lehmann, E. L. (1959). Testing Statistical Hypotheses, New York: Wiley.
Lemoine, Emile (1902). Geometrographie, Paris: C. Naud.
Leonard, T. (1978). "Density estimation, stochastic processes and prior information,"

JRSS B 40, 113-146 (with discussion).
Levi, Isaac (1973). Inductive logic and the improvement of knowledge, Columbia Universi-

ty, mimeographed.
Levin, B., & Reeds, J. (1977). "Compound multinomial likelihood functions: proof of a

conjecture of I. J. Good," Annals of Statistics 5, 79-87.
Lidstone, G. J. (1920). "Note on the general case of the Bayes-Laplace formula for induc-

tive or a posteriori probabilities," Trans. Fac. Actuar. 8, 182-192.
Lindley, D. V. (1947). "Regression lines and the linear functional relationship," Suppl.

JRSS 9, 218-244.
Lindley, D. V. (1953). "Statistical inference," JRSS B 75, 30-76 (with discussion).
Lindley, D. V. (1956). "On a measure of the information provided by an experiment,"

Annals of Math. Statist. 27, 986-1005.
Lindley, D. V. (1957). "A statistical paradox," Biometrika 44, 187-192.
Lindley, D. V. (1965). Introduction to Probability and Statistics, part 2, Cambridge: Cam-

bridge University Press.
Lindley, D. V. (1971). "The estimation of many parameters," in Foundations of Statistical

Inference, V. P. Godambe and D. A. Sprott, eds., Toronto: Holt, Rinehart, and Winston
of Canada, 435-455 (with discussion).

Lindley, D. V., & Smith, A. F. M. (1972). "Bayes estimates for the linear model," JRSS B
34, 1-41 (with discussion).

Loeve, M. (1955). Probability Theory, New York: van Nostrand.
McCarthy, John (1956). "Measures of the value of information," Proc. Nat. Acad. Sci. 42,

654-655.
Mackie, J. L. (1966). "Miller's so-called paradox of information," BJPS 17, 144-147.
MacMahon, P. A. (1892). "The combination of resistances," Electrician 28, 601-602.
Mandelbrot, B. (1953). In Communication Theory, Willis Jackson, ed., London: Butter-

worths, 486.
Margenau, H. (1949). "Einstein's conception of reality," in Albert Einstein: Philosopher-

Scientist, ?. A. Schilp, ed., New York: Tudor Publishing Co., 245-268.
Marschak, J. (1951). "Why 'should' statisticians and businessmen maximise 'moral expecta-

tion'?" Proc. 2nd Berkeley Symp. on Math. Stat. and Probability, Berkeley: University
of California Press, 493-506.

Marschak, Jacob (1959). Remarks on the economics of information, in Contributions to
Scientific Research in Management, Berkeley: University of California Press, 79-98.

Martin-Lbf, P. (1969). "The literature on von Mises' Kollektivs revisited," Theoria 35,
21-37; MR 39, 404.

Mauldon, J. G. (1955). "Pivotal quantities for Wishart's and related distributions, and a
paradox in fiducial theory," JRSS B 77, 79-85.

Mayr, E. (1961). "Cause and effect in biology," Science 134, 1501-1506.
Michie, D. (1977). "A theory of advice," Machine Intelligence 8, E. W. Elcock and D. Mich-

ie, eds., Chichester: Ellis Norwood, Ltd.; New York: Wiley, 151-168.
Mill, J. S. (1843/1961). A System of Logic, Ratiocinactive and Inductive: Being a Connected



REFERENCES 245

View of the Principles of Evidence and the Methods of Scientific Investigation, Book III,
Chapter XII, Section I, London: Longmans.

Miller, D. W. (1970). Personal communication.
Minsky, Marvin, & Selfridge, Oliver G. (1961). "Learning in random nets," in Information

Theory, Colin Cherry, ed., London: Butterworths, 335-347.
Moody, E. A. (1967). "William of Ockham," Encyclopedia of Philosophy 8, 306-317.
Mosteller, F., & Wallace, D. L. (1964). Inference and Disputed Authorship, Reading, Mass.:

Addison-Wesley.
Nagel, E. (1961). The Structure of Science: Problems in the Logic of Scientific Explanation,

New York: Harcourt, Brace & World.
Newcomb, S. (1910). "Bode," in Encyclopedia Britannica 4, 11th ed., 108.
Neyman, J. (1952). Lectures and Conferences on Mathematical Statistics and Probability,

2nd ed., Washington, D.C.: Graduate School, U.S. Department of Agriculture.
Neyman, J. (1977). "Frequentist probability and frequentist statistics," Synthese 36,

97-131.
Neyman, J., & Pearson, E. S. (1933). "On the problem of the most efficient tests of statisti-

cal hypotheses," Philosophical Transactions of the Roy. Soc. of London A 23 J, 289-
337.

Nieto, M. M. (1972). The Titius-Bode Law of Planetary Distances, Oxford & New York:
Pergamon Press.

Orear, J., & Cassel, D. (1971). "Applications of statistical inference to physics," in Founda-
tions of Statistical Inference, V. P. Godambe and D. A. Sprott, eds., Toronto: Holt,
Rinehart, & Winston of Canada, 280-288 (with discussion).

Orwell, George (1949). 1984, New York: Harcourt, Brace and World.
Pascal, B. (1670). "Article II. Qu'il est plus advantageux de croire que de ne pas croire ce

qu-enseigne la religion chretienne," Pensees, Gamier Freres, Paris, after the ed. of 1670.
(Reference given by Marschak [ 1951].)

Patil, G. P. (1960). "On the evaluation of the negative binomial distributions with samples,"
Technometrics 2, 501-505.

Payne-Gaposchkin, C. (1961). Introduction to Astronomy, London: Methuen.
Peirce, Charles Sanders (1878). "The probability of induction," Popular Science Monthly;

reprinted in The World of Mathematics 2, James R. Newman, ed., New York: Simon and
Schuster (1956), 1341-1354.

Pelz, W. (1977). Topics on the estimation of small probabilities, doctoral thesis, Virginia
Polytechnic Institute and State University, 123 pp.

Perks, W. (1947). "Some observations on inverse probability including a new indifference
rule,"/. Inst. Actuar. Students' Soc. 73, 285-334 (with discussion).

Poisson, S. D. (1837). Recherches sur la probabilites des jugements en matiere criminelle
et matiere civile, precedees des regies generates du calcul des probabilites, Paris: Bachelier.

Polya, G. (1 941). "Heuristic reasoning and the theory of probability," Amer. Math. Month-
ly 48, 450-465.

Polya, G. (1950). "On plausible reasoning," Proc. Int. Congress Math. 7, 739-47.
Polya, G. (1954). Mathematics and Plausible Reasoning, 1 vols. Princeton, N.J.: Princeton

University Press.
Popper, K. R. (1954). "Degree of confirmation," B/PS 5, 143-149.
Popper, K. R. (1957a). The Poverty of Historicism, London: Routledge and Kegan Paul;

Boston: Beacon Press.
Popper, K. R. (1957b). "Probability magic or knowledge out of ignorance," Dialectica 11,

354-357.
Popper, K. R. (1959). The Logic of Scientific Discovery, London: Hutchison.
Popper, K. R. (1962). Conjectures and Refutations, New York: Basic Books.
Raiffa, H., & Schlaifer, R. (1961). Applied Statistical Decision Theory, Boston: Graduate

School of Business Administration, Harvard University.



246 REFERENCES

Ramsey, R. P. (1926/31/50/64). "Truth and probability," a 1926 lecture published in The
Foundations of Mathematics and Other Logical Essays, London: Routledge and Kegan
Paul; New York: Humanities Press, 1950. Reprinted In Studies in Subjective Probability,
H. E. Kyburg and H. E. Smokier, eds., New York: Wiley (1964), 63-92; 2nd ed., Hun-
tington, N.Y.: Kriege (1980), 23-52.

Reichenbach, H. (1949). The Theory of Probability, Berkeley & Los Angeles: University of
California Press. (Trans, by E. H. Hutten and Maria Reichenbach from the German of
1934.)

Reichenbach, H. (1956). The Direction of Time, Berkeley & Los Angeles: University of
California Press.

Reichenbach, H. (1958). The Philosophy of Space and Time, New York: Dover Publica-
tions; from the German of 1928.

Reichenbach, H. (1959). Modern Philosophy of Science, London: Routledge & Kegan Paul;
New York: Humanities Press.

Renyi, A. (1961). "On measures of entropy and information," Proc. Fourth Berkeley Sym-
posium Math. Statist, and Prob., vol. 1, Berkeley, University of California Press, 547-
561.

Rescher, N. (1970). Scientific Explanation, New York: Free Press; London: Collier-Macmil-
lan.

Riordan, J. (1958). An Introduction to Combinatorial Analysis, New York: Wiley.
Robbins, H. E. (1952). "Some aspects of the sequential design of experiments," Bull. Amer.

Math. Soc. 58, 527-535.
Robbins, Herbert E. (1968). "Estimating the total probability of the unobserved outcomes

of an experiment," Ann. Math. Statistics 39, 256-257.
Rogers, John Marvin (1974). Some examples of compromises between Bayesian and non-

Bayesian statistical methods, doctoral dissertation, Virginia Polytechnic Institute and
State University, 125 pp.

Rosen, D. A. (1978). "Discussion: In defense of a probabilistic theory of causality," Phil.
Sc. 45, 604-613.

Rothstein, J. (1951). "Information, measurement, and quantum mechanics," Science,
N.Y. 114, 171-175.

Russell, B. (1948). Human Knowledge, Its Scope and Limits, New York: Simon & Schuster,
part V.

Salmon, W. C. (1971). Statistical Explanation and Statistical Relevance (with contributions
by R. C. Jeffrey and J. C. Greeno), Pittsburgh: University of Pittsburgh Press.

Salmon, W. C. (1980). "Probabilistic causality," Pacific Philosophical Q. 61, 50-74.
Samuelson, P. A. Measurement of utility reformulated, unpublished paper. (Reference given

by Marschak [1951, p. 495], who calls the article "recent.")
Savage, L. j. (1951). Notes on the foundation of statistics, privately circulated paper.
Savage, L. j. (1954). Foundations of Statistics, New York: Wiley.
Savage, L. J. (1959). Personal communication, July.
Savage, L. J. (1959/62). "Subjective probability and statistical practice," in 77?e Founda-

tions of Statistical Inference, G. A. Barnard and D. R. Cox, eds., London: Methuen; New
York: Wiley, 9-35.

Savage, L. J. (1971). "Elicitation of personal probabilities and expectations," {ASA 66,
783-801.

Sayre, K. M. (1977). "Statistical models of causal relations,"/3/?//, of Sci. 44, 203-214.
Scheffler, I. (1963). The Anatomy of Inquiry, New York: Alfred A. Knopf, part I, Explana-

tion.
Schrbdinger, E. (1947). "The foundation of probability," Proc. Roy. Irish Acad. 51 A, 51-66

and 141-146.
Scott, Christopher (1958). "A review of a book by G. S. Brown," in /. of the Soc. of

Psychical Res. 39, 217-234.
Shackle, G. L. S. (1949). Expectation in Economics, Cambridge: Cambridge University Press.



REFERENCES 247

Shannon, C. E. (1948). "A mathematical theory of communication," Bell System Technical
]. 27, 379-423, 623-656. (Reprinted in C. E. Shannon & W. Weaver, The Mathematical
Theory of Communication, Urbana: University of Illinois Press.)

Simon, Herbert A. (1957). Models of Man, New York: Wiley.
Simon, H. A. (1978). "Causation," in International Encyclopedia of Statistics, W. H. Krus-

kal and J. M. Tanur, eds., New York: Free Press; London: Collier-Macmillan, 35-41.
Smith, C. A. B. (1961). "Consistency in statistical inference and decision," /RSS B 23,

1-25 (with discussion).
Smith, C. A. B. (1965). "Personal probability and statistical analysis," JRSS A 128, 469-

499 (with discussion).
Stone, M. H. (1948). Notes on integration, I, II, III, IV, Proc. Nat. Acad. Sci. 34 & 35.
Sunnucks, Anne (1970). The Encyclopedia of Chess, New York: St. Martin's Press.
Suppes, P. (1970). A Probabilistic Theory of Causality, Amsterdam: North-Holland Pub-

lishing Co.
Thorburn, W. M. (1918). "The myth of Occam's razor," Mind 27, 345-353.
Todhunter, I. (1865). A History of the Mathematical Theory of Probability. (Reprint,

New York: Chelsea Publishing Co., 1949 and 1965.)
Tolman, R. C. (1938). The Principles of Statistical Mechanics, Oxford: Clarendon Press.
Tribus, M. (1969). Rational Descriptions, Decisions, and Designs, New York: Pergamon

Press.
Tullock, G. (1979). Personal communication.
Turing, A. M. (1937). "On computable numbers, with an application to the Entscheidungs-

problem," Proc. London Math. Soc., ser. 2, 42, 230-265; 43, 544.
Turing, A. M. (1941). Personal communication.
Vajda, S. (1959). Personal communication.
Valery, P. A. (1921). "Eupalinos ou d'architecte-dialogue des morts," La Nouvelle Revue

Francaise 16 (90), 257-285. (Kraus reprint; Nendeln/Leichtenstein, 1968.)
Van de Kamp, Peter (1965). "The Galactocentric revolution, a reminiscent narrative,"

Publications of the Astronomical Soc. Pacific 77, 325-335.
von Mises, R. (1942). "On the correct use of Bayes's formula," A nnals of Math. Statist. 13,

156-165.
von Mises, R. (1957). Probability, Statistics and Truth, 2nd rev. ed., prepared by Hilda

Geiringer, London: Allen and Unwin; New York: Macmillan.
Von Neumann, J., & Morgenstern, O. (1947). Theory of Games and Economic Behavior,

2nd ed., Princeton, N.J.: Princeton University Press.
Wald, A. (1950). Statistical Decision Functions, New York: Wiley.
Weaver, W. (1948). "Probability, rarity, interest and surprise," Scientific Monthly 67,

390-392.
Weizel, W. (1953). "Ableitung der Quantentheorie aus klassischem, kausal determiniertem

Modell," Zeit. Phys. 134, 264-285.
Wiener, N. (1956). "The theory of prediction," in Modern Mathematics for the Engineer,

E. F. Beckenbach, ed., New York: McGraw-Hill, 165-190.
Wigner, Eugene P. (1962). "Remarks on the mind-body question," in #339, 284-302.
Wilks, S. S. (1963). Personal communication.
Wilson, E. B. (1927). "Probable inference, the law of succession, and statistical inference,"

I AS A 27, 209-212.
Wrinch, Dorothy, & Jeffreys, Harold (1921). "On certain fundamental principles of scienti-

fic discovery," Philos. Mag. ser. 6, 42, 369-390.
Young, Charles (1902). Manual of Astronomy, New York: Ginn.
Zellner, A. (ed.) (1980). Bayesian Analysis in Econometrics and Statistics: Essays in Honor

of Harold Jeffreys, Amsterdam: North Holland Publishing Co.



This page intentionally left blank 



Bibliography: Main Publications

by the Author



This page intentionally left blank 



Bibliography: Main Publications
by the Author

The numbering of these publications agrees with that on my private list and is used to
avoid errors. A few selected contributions to discussions have been included. There is an
index to this bibliography on pp. 269-332.

Abbreviations

AMS- Annals of Mathematical Statistics
Biom-Biometrika (Biometrics is spelled out)
BJ PS-British J. Philosophy of Science
CSSC— Communications in Statistics: Simula. Comput.
I ASA-1. American Statistical Association
JLMS—J. London Mathematical Society
/ RNSS—/. Royal Naval Science Service
IRSS-J. Royal Statistical Society
ISCS-/. Statist. Comput. & Simul.
MR —Mathematical Reviews
MTAC— Mathematical Tables and Other Aids to Computation
PCPS— Proc. Cambridge Philosophical Society
Q/M - Quarterly /. Mathematics, Oxford
*—Book
§ — A paper whose merit is its brevity
C— Contribution
P- Paper
R— Review
BR —Book review
IP— Informal paper
JP—Join t paper
I —Very informal

P 1. "The approximate local monotony of measurable functions," PCPS 36 (1940),
9-13.

P 2. "The fractional dimensional theory of continued fractions," PCPS 37 (1941),
199-228. (Smith's Prize Essay.)

P 3. "Some relations between certain methods of summation," PCPS 38 (1942), 144-
165.

251



252 BIBLIOGRAPHY

P 4. "Note on the summation of a classical divergent series," JLMS 76 (1941), 180-
182.

P 5. "On the regularity of moment methods of summation," JLMS 19 (1944), 141-
143.

P 6. "On the regularity of a general method of summation," JLMS 21 (1946), 110-
118.

P 7. "Normal recurring decimals," JLMS 21 (1946), 167-169. (The "teleprinter
problem"; solved in 1941 but not then submitted for publication.)

P 8. "A note on positive determinants," JLMS 22 (1947), 92-95.
JP 8A. IJG and G. E. H. Reuter. "Bounded integral transforms," QJM 19 (1948), 224-

234. (See #18.)
P 12. "The number of individuals in a cascade process," PCPS 45 (1949), 360-363. (See

#55.)
* 13. Probability and the Weighing of Evidence (London, Charles Griffin; New York,

Hafners; 1950, 119 pp.).
P 14. "A proof of Liapounoffs inequality," PCPS 46 (1950), 353.
P 17. "On the inversion of circulant matrices," Biom. 37 (1950), 185-186.
P 18. "Bounded integral transforms, II," QJM (2), 7 (1 950), 1 85-190. (See #8A.)
P 20. "Random motion on a finite Abelian group," PCPS 47 (1951), 756-762; 48

(1952), 368.
P 26. "Rational decisions," y/?55 5 14 (1952), 107-114. (See #43.)
P 29. "A generalization of Dirichlet's multiple integral," Edin. Math. Notes 38 (1952),

7-8.
P 33 and 33A. "Skin banks," The Lancet (August 9, 1952, and February 7, 1953), 289

and 293-294. (Corrects a broadcast by P. B. Medawar.)
P 36. "The serial test for sampling numbers and other tests for randomness," PCPS 49

(1953), 276-284. (See #123.)
JP 37. F. G. Foster and IJG. "On a generalization of Polya's random-walk problem,"

QJM 4 (1953), 120-126.
P 38. "The population frequencies of species and the estimation of population param-

eters," Biom. 40 (1953), 237-264. (See #86.)
P 43. "The appropriate mathematical tools for describing and measuring uncertainty,"

Chapter 3 of Uncertainty and Business Decisions (Liverpool: Liverpool Uni-
versity Press, 2nd ed., 1957 [based on a symp. in the Economics section of the
British Association, 1953]), 20-36. (Similar to #26 but includes material on
"surprise.")

P 50. "On the marking [grading] of chess players," Math. Gaz. 39 (1955), 292-296.
P 52. "On the substantialization of sign sequences," Acta. Cryst. 7 (1954), 603. (See

#186.)
P 55. "The joint distribution for the sizes of the generations in a cascade process,"

PCPS 51 (1955), 240-242. (See ##12, 200, 337, 413.) (Reprinted in Proc.
Roy. Soc. A, C68 [1962], 256-259.)

P 56. "A new finite series for Legendre polynomials," PCPS 51 (1955), 385-388. (See
#972.)

P 62. "Conjectures concerning the Mersenne numbers," MTAC 9 (1955), 1 20-1 21.
BR 75. Review of L. J. Savage, "The Foundations of Statistics," /RSS A 118 (1955),

245-246.
P 77. "Some terminology and notation in information theory," Proc. Institution E/ec.

Engrs., Part C (3), 103 (1956), 200-204; and Monograph 155R (1955).
P 78. "On the weighted combination of significance tests," I RSS B 17 (1955), 264-

265. (See #174.)
C 80. Contribution to the discussion in a symposium on linear programming, /RSS B

77(1955), 194-196.



BIBLIOGRAPHY 253

P 82. "The surprise index for the multivariate normal distribution," AMS 27 (1956),
1130-1135;25 (1957), 1055.

P 83. "On the estimation of small frequencies in contingency tables," /RSS B 18
(1956), 113-124.

P 84. "The likelihood ratio test for Markoff chains," Biom. 42 (1955), 531-533; 44
(1957), 301.

P 85A."Which comes first, probability or statistics?" /. Inst. Actuaries 82 (1956), 249-
255.

JP 86. IJG and G. H. Toulmin. "The number of new species, and the increase of popula-
tion coverage, when a sample is increased," Biom. 43 (1956), 45-63. (See
#38.)

P 110. "A classification of rules for writing informative English," Methodos 7 (1955),
193-200. (Reprinted in #339.)

BR 112. Review of M. Allais, "Foundements d'un theorie positive des choix comportant
un risque et critique des postulats et axiomesde I'ecole Americaine," JRSS A
779(1956) , 213-214.

BR 115. Review of D. Blackwell and M. A. Girschick, "Theory of Games and Statistical
Decisions," I ASA 57 (1956), 388-390.

P 123. "On the serial test for random sequences," AMS 28 (1957), 262-264. (See #36.)
I 125. "Variable-length multiplication," Computers and Automation 6 (1 957), 54.
P 127. "Saddle-point methods for the multinomial distribution," AMS 28 (1957), 861-

881. (See #238.)
IP 130. "Distribution of word frequencies," Nature 179 (1957), 595.
JP 136. R. B:-Dawson and IJG. "Exact Markov probabilities from oriented linear graphs,"

AMS 28 (1957), 946-956.
P 140. "Legendre polynomials and trinomial random walks," PCPS 54 (1958), 39-42.
P 141. " Random motion and analytic continued fractions," PCPS 54 (1958), 43-47.
P 142. IJG and K. Caj. Doog. "A paradox concerning rate of information," Information

and Control 1 (1958), 113-126. (See ##192 and 210.) (K. Caj. Doog is a
pseudonym.)

P 146. "The interaction algorithm and practical Fourier analysis," J RSS B 20 (1958),
361-372. (See #209.) (A Fast Fourier Transform.)

C 153. Contribution to the discussion of a paper by J. Neyman and Elizabeth L. Scott,
"Statistical approach to problems of cosmology," JRSS B 20 (1958), 35.

BR 156. Review of L. Hogben, "The Relationship of Probability, Credibility, and Error,"
Nature 181 (1958), 1687. (Review entitled "Sociology of statistics.")

BR 162. Review of G. S. Brown, "Probability and Scientific Inference," BJPS 9 (1958),
251-255.

P 169. "How much science can you have at your fingertips?" IBM j. Res. Dev. 2 (1958) ,
282-288. (Invited lecture at opening of IBM San Jose Laboratories.)

P 174. "Significance tests in parallel and in series," JASA 53 (1958), 799-813. (See
#78.)

P 180. "A theory of causality," B/PS 9 (1959), 307-310. (See #223B.)
P 181. "Lattice structure of space-time," BJPS 9 (1959), 317-319.
P 182. "Kinds of probability," Science 129 (1959), 443-447. (Italian translation by Ful-

via de Finetti in L'lndustria, 1959.) (Reprinted in Readings in Applied Statis-
tics, William S. Peters, ed. [New York, Prentice-Hall, 1969], 28-37.)

P 183. "Could a machine make probability judgments?" Computers and Automation 8
(1959), 14-16 and 24-26.

P 185. "Speculations on perceptrons and other automata," IBM Research Report, RC
115, 2 vi 59, 19 pp.

IP 1 86. "Randomized and pseudo-randomized substantialization of sign sequences," Acta.
Cryst. 12 (1959), 824-825. (See #52.)



254 BIBLIOGRAPHY

BR 191. Review of K. R. Popper, "The Logic of Scientific Discovery," MR 21 (1960),
1171-1173.

P 192. "A paradox concerning rate of information: Corrections and additions," Infor-
mation and Control 2 (1959), 195-197. (See #142.)

P § 195. "Monte Carlo method," McGraw-Hill Enc. of Sc. and Tech. 8 (1960), 586-587.
P 196. "A classification of fallacious arguments and interpretations," Methodos 11

(1959), 147-159. (Reprinted, with minor modifications, in Technometrics 4
[1962], 125-132.) (Spanish translation by D. J. B. Monistrol in Cuadernos de
Estadistica Apt. e Inv. Op, 2 [1963], 41-51.) (See #520.)

C 198. Contribution to the discussion of a paper by E. M. L. Beale, "Confidence regions
in non-linear estimation," JRSS B 22 (1960), 79-82. (See #622.)

P 199. "The paradox of confirmation," fi//>5 77 (1960), 145-148. (See #245.)
P 200. "Generalizations to several variables of Lagrange's expansion, with applications to

stochastic processes," PCPS 56 (1960), 367-380. (See ##413, 857, & 899.)
C 203. Contribution to the discussion of a paper by W. E. Thomson, "ERNIE — a mathe-

matical and statistical analysis," JRSS A 122 (1959), 326-328.
C 207. Contribution to the discussion of a paper by W. F. Bodmer, "Discrete stochastic

processes in population genetics," /RSS B 22 (1960), 240-242.
P 209. "The interaction algorithm and practical Fourier analysis: An addendum,"JRSS

B 22 (1960), 372-375. (See #146.)
P 21 0. "Effective sampling rates for signal detection: Or can the Gaussian model be

salvaged?" Information and Control 3 (1960), 116-140. (See ##142 and
192.)

P 211. "Weight of evidence, corroboration, explanatory power, information, and the
utility of experiments," J RSS B 22 (1960), 319-331)30(1968), 203.

P 217. "Speculations concerning information retrieval," Res. Rep. RC-78, December 10,
1958, IBM Research Center, Yorktown Heights, N.Y., 14 pp.

P 218. "Some numerology concerning the elementary particles or things," /RNSS 15
(1960), 213. (See #339.)

P 221. "Weight of evidence, causality, and false-alarm probabilities," Fourth London
Symp. on Information Theory (London, Butterworths, 1961), 125-136.

P 222. "A comparison of some methods of calculating covariance functions on an
electronic computer," Computer J. 3 (1960), 262-265.

P 223B. "A causal calculus," BJPS 11 (1961), 305'-318; 72 (1961), 43-51; 13 (1962),
88. (See ##754 & 1263.)

P § 224. "The real stable characteristic functions and chaotic acceleration," JRSS B 23
(1961), 180-183.

P 225. "An asymptotic formula for the differences of the powers at zero," AMS 32
( 1 961), 249-256. (A corollary of #1 27.)

C 228. Contribution to the discussion of a paper by C. A. B. Smith, "Consistency in
statistical inference and decision," JRSS B 23 (1961), 28-29. (See #230.)

P 230. "Subjective probability as the measure of a non-measurable set," Logic, Method-
ology, and Philosophy of Science: Proc. of the 1960 International Congress
(Stanford, Stanford University Press, 1962), 319-329.

P 235. "The colleague matrix, a Chebyshev analogue of the companion matrix," QJM
12, 115-122; 13 (1962), 61-68.

P 236. "Analysis of cumulative sums by multiple contour integration," QJM 12 (1961),
115-122; 13 (1960), 80.

P 237. "The frequency count of a Markov chain and the transition to continuous time,"
AMS 32 (1961), 41-48.

P 238. "The multivariate saddlepoint method and chi-squared for the multinomial
distribution," AMS 32 (1961), 535-548. (See #127.)

P 243. "The mind-body problem or could an android feel pain?" (March, 1960). Theories



BIBLIOGRAPHY 255

of the Mind, }. Scher, ed. (New York, Glencoe Free Press, 1962), 490-518.
(Corrected reprint, 1966.)

P 245. "The paradox of confirmation, II," BJPS 12 (1961), 63-64. (See ##199 & 518.)
P § 263. "A short proof of Mac Marion's 'master theorem,' " PCPS 58 (1962), 160.
P § 264. "Proofs of some binomial identities by means of MacMahon's 'master theorem,' "

PCPS 58 (1962), 161-162.
P 290. "How rational should a manager be?" Management Science 8 (1962), 383-393.

(Reprinted with numerous minor imporvements in Executive Readings in
Management Science, Martin K. Starr, ed. [New York, Macmillan; and London
& Toronto, Collier-Macmillan; 1965], 89-98.)

C 293. Contribution to the discussion of a paper by Charles Stein, /RSS B 24 (1962),
289-291.

BR 294 and 294A. Review of H. Jeffreys, "Theory of Probability" [3rd ed.] Geophysical
}. of the Roy. Astr. Soc. 6 (1961), 555-558; and /RSS A 125 (1962), 487-
489.

P 315. "Measurements of decisions," in New Perspectives in Organization Research,
W. W. Cooper, H. J. Leavitt, and M. W. Shelly II, eds. (New York, London,
Sydney, Wiley, 1964), 391-404.

P 316. "Analogues of Poisson's summation formula," Amer. Math. Monthly 69 (1962),
259-266.

P 322. "Maximum entropy for hypothesis formulation, especially for multidimensional
contingency tables," AMS34 (1963), 911-934.

P 323. "Weighted covariance for estimating the direction of a Gaussian source," Proc.
Symp. on Time Series Analysis, Brown University, June, 1962, Murray Rosen-
blatt, ed. New York, Wiley, 1963), 447-470.

P 337. "Cascade Theory and the molecular weight averages of the sol fraction," Proc.
Roy. Soc. A 272 (1963), 54-59. (See #55.)

* 339. Edited, with the help of A. J. Mayne (associate editor) and John Maynard Smith
(biology editor). The Scientist Speculates: An Anthology of Partly-Baked
Ideas (London, Heinemann, 1962; New York, Basic Books, 1963; German
trans.: Dusseldorf, Econ. Verlag, 1965; French trans.: Paris, Dunod, 1967;
paperback: New York, Capricorn Books, 1965).

P 368. "The relevance of semantics to the economical construction of an artificial intel-
ligence," IEEE Special Publication S142, 157-168. (For a much expanded
version, see #397.)

P 374. "On the independence of quadratic expressions," (with an appendix by L. R.
Welch), /RSS B 25 (1963), 377-382;25 (1966), 584.

P 375. "Quadratics in Markov-chain frequencies, and the binary chain of order 2,"
/RSS B 25 (1963), 383-391.

IP 376. "Information theory: Survey," CRD-IDA Working Paper #83, April, 1963, 33 pp.
P 385. "Quantum mechanics and Yoga," Res. ]. Philosophy and Social Sc. 1 (1963),

84-91.
P 391. "The human preserve," /RNSS (1964), 370-373; and Spaceflight 7 (1965), 167-

170& 180. (See #476.)
P 397. "Speculations concerning the first ultraintelligent machine," Advances in Com-

puters 6 (1965), 31-88.
* 398. The Estimation of Probabilities: An Essay on Modern Bayesian Methods (Cam-

bridge, Mass., M.I.T. Press, 1965), xii & 109. (Paperback, 1968.) (Out of
print.) (See ##522 & 547.)

IP 400 "A note on Richard's paradox," October, 1963, Mind 75 (1966), 431.
IP 409. "The loss of information due to clipping a wave-form," ARL/GAMMA 50/R1,

August 1964. 409A: Information and Control 10 (1967), 220-222.
P 411. "Categorization of classification," Proc. of a Conference on Mathematics and



256 B I B L I O G R A P H Y

Computer Science in Biology and Medicine, Oxford (London, HMSO, 1965),
115-128.

P 413. "The generalization of Lagrange's expansion, and the enumeration of trees,"
PCPS 61 (1965), 499-517; 64 (1968), 489. (See ##12, 55, & 200.) (Contains
a conjecture about the frequencies of polymers in nature. The conjecture was
correct, according to Manfred Gordon.)

C 416. Contr ibut ion to the discussion of J. W. Pratt, "Bayesian interpretation of standard
inference statements," JRSS B 27 (1965), 196-197.

C 418. Seconding of vote of thanks for A. Q. Morton's "The authorship of the Pauline
epistles: A scientific approach," JRSS A 725(1965), 225-227 & 623.

JP 425. Bernard Meltzer & I J G . "Two forms of the prediction paradox," BJPS 16 (1965),
50-51.

P 426. "Logic of man and machine," New Scientist 26 (1965), 182-183; 27 (1965), 606;
27 (1965), 518. (See also #540.)

P § 476. "Life outside the earth," The Listener 73 ( J u n e , 1965), 815-817. (See ##391 &
644.)

IP 486. "Regression of a phenotypic value on the values for the parents and grandpar-
ents," Nature 208 (October, 1965), 203-204.

P 498. "The probabil i ty of war," /RSS A 129 (1 966), 268-269.
BR 499. Review of H. A. Bethe, "Intermediate Quantum Mechanics," Math. Gaz. 50

(1966), 359-360.
P 505. "A derivation of the probabilistic explication of information," JRSS B 28 (1966),

578-581.
P 508. "On the pr inc ip le of total evidence," BJPS 77 (1967), 319-321. (See #855.)
BR 516. Review of R. von Mises, "Mathematical Theory of Probability and Statistics,"

JRSS A 725(1966), 289-291.
P 518. "The white shoe is a red herring," BJPS 7 7 (1967), 322. (See ##245 & 600.)
P 520. "Fallacies, statistical," Internationa/ Enc. Social Sc. 5 (New York, Macmi l l an and

Free Press, 1968), 292-301. (See ##196 & 928.)
P 521. "A five-year plan for automatic chess," in Machine Intelligence 2 E. Dale and

D. Michie, eds. (London, Oliver and Boyd, 1968), 89-118. (Paraphrased by
Baruch Wood, ed., in Chess 34 [1969], 245-250, who says" . . . a look into
the future with, en passant, a masterly guide to positional judgment.")

P 522. "How to estimate probabilities," ]. Inst. Maths. Applies. 2 (1966), 364-383. (See
##398 & 547.)

P 523. "The decision-theory approach to the evaluation of information-retrieval sys-
tems," Information Storage and Retrieval 3 (1967), 31-34.

P 524. "Statistics of language," in Encyclopedia of Linguistics, Information and Control,
A. R. Meetham, ed. (New York, Pergamon Press, 1969), 567-581.

P 525. "The funct ion of speculation in science exempli f ied by the subassembly theory of
mind," Theoria to Theory 1 (1966), 28-43. (See ##339 <& 397.)

JP 526. I J G & T. N. Grover. "The generalized serial test and the binary expansion of
•s/2," JRSS A 730(1967), 102-107; 13 (1968), 434. (See ##36 & 123.)

IP 533. "Square-root law for solving two-ended problems," Nature 212 (December,
1966), 1280.

P § 540. "Human and machine logic," BJPS 18 (1967), 144-147. (See ##426 & 626.)
BR 541 A. Review of I. Hacking, "Logic of Statistical Inference," Nature 213 (1967),

233-234.
P 547. "A Bayesian significance test for mult inomial distributions," JRSS B 29 (1967),

399-431 (with discussion); 36 (1974), 109. (See ##398 & 522.)
C 565. (Analys is of log- l ikel ihood ratios, "ANOA.") Contr ibut ion to the discussion of a

paperon least squares by F. J. Anscombe,//?5S B 29 (1967), 39-42.
C 570. Contribution to discussion on a paper by S. F. Buck and A. J. Wicken on the risk



BIBLIOGRAPHY 257

of mortality from lung cancer and bronchitis, ]RSS C, Applied Statistics 16
(1967), 206-208.

JP 574. IJG & G. H. Toulmin, "Coding theorems and weight of evidence," J. Inst. Math.
Applies. 4 (1968), 94-105.

P 592. "Some statistical methods in machine-intelligence research," Virginia j. Sc. 19
(1968), 101-110. (A slightly improved version appeared in Math. Biosc. 6
[1970], 185-208.)

P 598. "Science in the flesh," in Cybernetics, Art and Ideas, Jasia Reichart of the In-
stitute of Contemporary Arts, ed. (London, Studio Vistas, 1971), 100-110.

P 599. "Corroboration, explanation, evolving probability, simplicity, and a sharpened
razor," BJPS 79(1968), 123-143. (See #876.)

P § 600. "The white shoe qua herring is pink," BJPS 79 (1968), 156-157. (See #518.)
P 603B. "A subjective evaluation of Bode's Law and an 'objective' test for approxi-

mate numerical rationality," JASA 64 (1969), 23-66 (with discussion). See
#705.)

P 604. "The characteristic functions of functions," Proc. Roy. Soc. (London) A 307
(1968), 317-334. (See also Nature 218 [1 968], 603-604.)

P 606. "A generalization of the Bernouilli-Euler partition formula," Scripta Math. 28
(1970), 319-320.

P 607. "Some applications of the singular decomposition of a matrix," Technometrics
11 (1969), 823-831; 12 (1970), 722.

JP 610. IJG and R. F. Churchhouse, "The Riemann hypothesis and pseudorandom
features of the Mobius function," Mathematics of Computation 22 (1968),
857-861.

IP § 612. "The number of possible strategies when writing compilers," Comm. ACM 11
(1968), 474.

P 615. "Creativity and duality in perception and recall," in Pattern Recognition I.E.E./
N.P.L. (London, Institution of Electrical Engineers, July 1968), 228-237.

P § 617. Discussion of Bruno de Finetti's paper, "Initial probabilities: A prerequisite for
any valid induction," Synthese 20 (1969), 17-24. (Also in Induction, Physics,
and Ethics: Proceedings and Discussions of the 1968 Salzburg Colloquium in
the Philosophy of Science, P. Weingartner and G. Zecha, eds., [Dordrecht,
Holland, Synthese Library, D. Reidel, 1970], 18-25.)

P 618. "What is the use of a distribution?" in Multivariate Analysis-ll, P. R. Krishnaiah,
ed. (New York, Academic Press, 1969), 183-203. (See #622.)

P 621. "Conditions for a quadratic form to have a chi-squared distribution," Biom. 56
(1969), 215-216;57(1970), 225.

IP § 622. "Utility of a distribution," Nature 219 (1968), 1392. (See #618.)
P § 626. "Godel's theorem is a red herring," BJPS 19 (1969), 357-358. (See #540.)
IP 629. "A proposal for an eye-brain experiment," Nature 220 (1968), 1127.
C 631. Contribution to the discussion of a paper by M. R. Novick, "Multiparameter

Bayesian indifference procedures," JRSS B 31 (1969), 59-61.
JP 636. W. I. Card and IJG. "The estimation of the implicit utilities of medical con-

sultants," Mathematical Biosciences 6 (1970), 45-54.
IJP§ 637. IJG & R. A. Gaskins. "The centroid method of integration," Nature 222 (May,

1969), 697-698. (See #696.)
P 643. "How random are random numbers?" American Statistician 23 (October, 1969),

42-45.
P 644. "The chief entities," Theoria to Theory 3 (April, 1969), 71-82. (See ##391 &

476.)
P 645. "Polynomial algebra: An application of the fast Fourier transform," Nature 222

(1969), 1302.
P 646. "The factorization of a sum of matrices and the multivariate cumulants of a set



258 BIBLIOGRAPHY

of quadratic expressions," /. Combinatorial Theory Ser. All (1971), 27-37;
72(1972), 309.

P 659. "The probabilistic explication of information, evidence, surprise, causality, expla-
nation, and utility," in Foundations of Statistical Inference, V. P. Godambe
and D. A. Sprott, eds. (Toronto, Holt, Rinehart, and Winston of Canada,
1971) 108-141 (with appendix, discussion, and replies). (See #679.)

JP 660. IJG & R. A. Gaskins. "Some relationships satisfied by additive and multiplicative
congruential sequences, with implications for pseudorandom number genera-
tion," in Computers in Number Theory: Proc. Sc. Res. Council At/as Symp. at
Oxford, 18-23 Aug. 1969, A. O. L. Atkin and B. J. Birch, eds. (New York,
Academic Press, 1971) 125-136.

JP 662. John A. Cornell & IJG. "The mixture problem for categorized components,"
I ASA 65(1970), 339-355.

JP 665. IJG, T. N. Cover, & G. J. Mitchell, "Exact distributions for X2 and for the like-
lihood-ratio statistic for the equiprobable multinomial distribution," JASA 65
(1970), 267-283; 66 (1971), 229. 665B: Second Corrigenda (by IJG and
J. F. Crook) JASA 73 (1978), 900.

P 666. "Some future social implications of computers," in Cybernetics, Simulation and
Conflict Resolution, Douglas Knight, ed. (New York, Spartan Books, 1971),
221-249; and in Intern, j. Envir. Studies 1 (1970), 67-79;3 (1972), 331.

P § 668. "A short proof of a conjecture by Dyson," /. Math. Physics 11 (June 1970),
1884.

P § 670. "The interpretation of X-ray shadowgraphs," Physics Letters A 31A (3) (Feb-
ruary 9, 1970), 155. (Tomography.)

P 672. "A suggested resolution of Miller's paradox," BJPS 21 (1970), 288-289.
P 673. "The inverse of a centrosymmetric matrix," Technometrics 12 (1970), 925-928.
P 679. "Twenty-seven principles of rationality," Appendix to #659; pp. 1 24-1 27.
IP 686. "Words, diagrams and numbers in the communication of science," Times Literary

Supplement, No. 3558 (May 7, 1970), 513.
P 688. "An analogy between sunspots, the planets and satellites," JRNSS 25 (July,

1970), 211-213.
P 690A. "Information, rewards, and quasi-utilities," in Science, Decision, and Value,

}. J. Leach, R. Butts, and G. Pearce, eds. (Dordrecht, Holland, D. Reidel,
1973), 115-127. (Based on an invited lecture at the Second World Conference
of the Economic Society, Cambridge, England, September, 1 970.)

JP 696. IJG & R. A. Gaskins. "The centroid method of numerical integration," Numer-
ische Mathematik 16 (1971), 343-359. (See #637.)

BR 697. Review of Philip McShane, "Randomness, Statistics, and Emergence" [Gill and
Macmillan, 1971, p. 268], Times Literary Supplement (September 18, 1 971),
1043.

IP 699. "Non-parametric roughness penalty for probability densities," Nature Physical
Science 229 (1971), 29-30. (Owing partly to the British postal strike, this
contains 21 misprints.) (See #701.)

JP 700. IJG «& W. I. Card, "The application of rationality to medical records," Math.
Biosc. 70(1971) , 157-176.

JP 701. IJG and R. A. Gaskins. "Nonparametric roughness penalties for probability den-
sities," Biometrika 58 (1971), 255-277. (See ##699 & 810.)

P 705. "The evolving explanation of a numerological 'law,' " an invited "rebuttal" to
Bradley Efron's paper "Does an observed sequence of numbers follow a simple
rule? (Another look at Bode's law)," JASA 66(1971), 559-562. (See ##603B
& 764.)

P § 707. "Free will and speed of computation," BJPS 22 (1971), 48-50.
P 708. "The relationship between two fast Fourier transforms," IEEE Trans, on Com-



BIBLIOGRAPHY 259

puters, C20 (March 1971), 310-317. (Reprinted in Number Theory in Digital
Signal Processing, J. H. McClellan and C. M Rader, eds. [Englewood Cliffs,
N.J.: Prentice-Hall, 1969], 150-157.)

P 709. "The proton and neutron masses and a conjecture for the gravitational constant,"
Physics Letters A 33 (November, 1970), 383-384.

C 719-738. Contribution to the discussion of twenty papers in the Proceedings of the
Symposium on the Foundations of Statistical Inference held at the University
of Waterloo, Ontario, Canada, 1970. (See #659.)

750. "The Bayesian influence," mimeographed notes of lectures at VPI&SU, April 2 to
June 4, 1971, 123 pp.

IP 751. "Speculation-how to save democracy," Futures 3 (1), (March, 1971), 77-79.
P 753. "Statistics and today's problems," American Statistician (3), (June, 1972), 11-

19.
BR 754. Review of Patrick Suppes, "A Probabilistic Theory of Causality," [Acta Philo-

sophica Fennica, Fasc. XX IV ] , JASA 67 (March, 1972), 245-246.
JP 755. IJG & W. I. Card. "The diagnostic process with special reference to errors,"

Methods of Information in Medicine 10 (1 971), 1 76-188.
P 758. "The average on a sphere of the exponential of a homogeneous function," Iran-

ian. J. Sci. and Technology, 1 (1971), 11-20. (A slight revision of an unpub-
lished report of 1963.)

BR 761. Review of J. R. Lucas, "Freedom of the Will" [Oxford, 1 970], BJPS 22 (1 971),
382-387.

IP 762. "The optimal size of an organization," Eureka 34 (October, 1971), 28-30.
IP 764. "Christian Wolff, Titius, Bode, and Fibonacci," letter in American Statistician 26

(February, 1972), 48-49.
IP 765. "46656 varieties of Bayesians," letter in American Statistic/an 25 (December,

1971), 62-63.
I 771. Letter in Scientific American 225 (October, 1971), 8, concerning an article, "Eye

movements and visual perception," by D. Noton and L. Stark.
P 777. "Human and machine intelligence: Comparisons and contrasts," Impact of

Science on Society 27 (1971), 305-322. (Also in French in Impact: Science et
Societe, 21 [1971 ], 343-362.)

P 788A. "Chinese universes," Physics Today (July, 1972), 15. (See #999.)
P 792. "Correlation for power functions," Biometrics 28 (1972), 1127-1 129; 29 (1973),

829. (See #1477.)
IP 793. "Scientific induction and exponential-entropy distributions," American Statisti-

cian 26 (April, 1972), 45.
JP 795. IJG & Lawrence S. Mayer, "On surfaces of constant societal loss in a model of

social choice,"/. Mathematical Sociology 2 (1972), 209-219.
P 796. "Food for thought," in Interdisciplinary Investigation of the Brain, J. P. Nichol-

son, ed. (New York, Plenum Press, 1972), 213-228.
JP 798. W. I. Card & IJG, "A logical analysis of medicine," in A Companion to Medical

Studies, 3, R. Passmore and T. S. Robson, eds. (Oxford, Blackwell's, 1974),
Chapter 60.

JP 810. IJG & R. A. Gaskins, "Global nonparametric estimation of probability densities,"
Virginia J. of Science 23 (December, 1972), 171-193. (This paper was invited
by the editor after #701 D was awarded the Horsley Prize. It is a much ex-
panded form of #701.)

P 814. "Is the size of our galaxy surprising?" American Statistician 27 (February, 1973),
42-43.

P 815. "Random thoughts about randomness," in PSA 1972 (Boston Studies in the
Philosophy of Science; Dordrecht, Holland, D. Reidel, 1 974), 117-1 35.

P 81 7. Reprinting of #777 in RUR: Journal of Cybernation and Public Affairs (Summer,



260 BIBLIOGRAPHY

1972) (issue on intelligence, machine and human), 4-12. (Journal edited by
T. D. C. Kuch.)

P 822. "The joint probability generating function for run-lengths in regenerative binary
Markov chains, with applications," Annals of Statistics 1 (1973), 933-939.

IP 827. Continued fractions for the exponential function, Amer. Math. Monthly 80
(February, 1973), 209; 81 (1975), 532-533.

P 829. "A reciprocal series of Fibonacci numbers," Fibonacci Quarterly 12 (1974), 346.
I 837. "Bode, von Weizacker, and Fibonacci," American Statistician 27 (June, 1973),

127.
P 838. "The Bayesian influence, or how to sweep subjectivism under the carpet," Foun-

dations of Probability Theory, Statistical Inference, and Statistical Theories of
Science, Proc. of a Conference in May, 1973, C. A. Hooker and W. Harper,
eds., vol. 2 (Dordrecht, Holland, D. Reidel, 1976), 125-174.

I 839. "Larsen unnecessarily bent," CHESS 37 (October, 1 971), 10. (Analysis of a posi-
tion, Bent Larsen vs. Bobby Fischer.)

BR 844. Review of Terrence L. Fine, "Theories of Probability: An Examination of Foun-
dations" [Academic Press, 1973], IEEE Trans. Infn. Th. IT-20 (1974), 298-
300.

P 846. "Explicativity, corroboration, and the relative odds of hypotheses," Synthese 30
(1975), 39-73. (See #890.)

* 854. D. B. Osteyee and IJG, Information, Weight of Evidence, the Singularity between
Probability Measures and Signal Detection (Berlin, Heidelberg, New York,
Springer Verlag, 1974).

P 855. "A little learning can be dangerous," BJPS 25 (1974), 340-342. (See #508.)
P 857. "The Lagrange distribution and branching processes," SIAM j. Appl. Math. 28

(1975), 270-275.
P 858. "The number of orderings of n candidates when ties are permitted," Fibonacci

Quarterly 13 (1975), 11-18.
P 860. "The Bayes factor against equiprobability of a multinomial population assuming

asymmetric Dirichlet prior," Annals of Statistics 3 (1975), 246-250.
I 861. Cassette recording, interviewed by Christopher Evans, 1973, in the series "Brain

Science Briefings"; Ferranti Ltd., transferred to Ars Magna Ltd., April, 1974.
JP 862. IJG & J. F. Crook, "The Bayes/non-Bayes compromise and the multinomial

distribution," ]ASA 69(1974), 711-720.
JP 871. IJG and T. N. Tideman, "From individual to collective ordering through multi-

dimensional attribute space," Proc. Roy. Soc. London A 347 (1976), 371-
385. (See #1014.)

BR 875. Review of Arnold Zellner, "An Introduction to Bayesian Inference in Econo-
metrics" [Wiley, 1971], Technometrics 17 (1975), 137-138; 18 (1976), 123.

IP 876. "A correction concerning complexity," BJPS 25 (1974), 289. (See #599.)
P 882. "And Good say that it was God(d)," Parascience Research J. 1 (February, 1975),

3-13. (See #1322A.) (Reprinted with minor changes, Parasc. Proc. [1973/77],
55-56.)

JP 883. I)G and L. S. Mayer, "Estimating the efficacy of a vote," Behavioral Science 20
(1975), 25-33. (Errata mimeographed in 1975.) (See #901.)

P 890. Reply to the discussion at the Conference on "Methodologies: Bayesian vs.
Popperian," Synthese 30 (1975), 83-93. (See #846.)

P 895. "A new formula for cumulants," Mathematical Proceedings of the Cambridge
Philosophical Society 78 (1975), 333-337. (See #871.)

IP 898. "The infinite speed of propagation of gravitation in Newtonian physics," Ameri-
can journal of Physics 43 (1975), 640.

P 899. "The relationship of a formula of Carlitz to the generalized Lagrange expansion,"
SIAM Journal on Applied Mathematics 30 (1 976), 1 03.



BIBLIOGRAPHY 261

JP 900. P. S. Bruckman and IJG, "A generalization of a series of de Morgan, with applica-
tions of Fibonacci type," Fibonacci Quarterly 14 (1976), 193-196.

P 928. "Statistical fallacies," for The International Encyclopedia of Statistics, William
Kruskal and Judith Tanur, eds. (New York, Free Press, 1978, [issued January,
1979]), 337-349. (An expanded version of #520.)

P 929. "On the application of symmetric Dirichlet distributions and their mixtures to
contingency tables," Annals of Statistics 4 (1976), 1159-1189. (See #974.)

JP 937. Wolfgang Pelz and IJG, "Approximating the lower tail-areas of the Kolmogorov-
Smirnov one-sample statistic," ]RSS B 38 (1976), 152-156.

P 938. "Dynamic probability, computer chess, and the measurement of knowledge," in
Machine Intelligence 8, E. W. Elcock and D. Michie, eds. (Chichester: Ellis
Horwood Ltd.; New York: Wiley, 1977), 139-150.

JP 939. D. B. Osteyee and IJG, "Regeneration of a binary signal in a uniform transmission
line," IEEE Communications Society Transactions (1 976), 1 054-1 057.

BR 956. Review of Bruno de Finetti, "Theory of Probability" [Wiley, 1974 & 1975],
Bull. Amer. Math. Soc. 83 (January, 1977), 94-97.

BR 957. Review of Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland, with the collabora-
tion of R. J. Light and F. Mosteller, "Discrete Multivariate Analysis: Theory
and Practice" [M.I.T. Press], MR 52 (1976), 286.

BR 958. Review of Richard Swinburne, "An Introduction to Confirmation Theory"
[Methuen, 1973], BJPS 27 (1976), 289-292.

JP 960. L. V. Holdeman, IJG, and W. E. C. Moore, "Human fecal flora: Variation in
bacterial composition within individuals and a possible effect of emotional
stress," Applied & Environmental Microbiology 31 (1976), 359-375.

JP 966. IJG <& T. N. Tideman, "Stirling numbers and a geometric structure from voting
theory,"/. Combinatorial Theory A 23 (1977), 34-45.

IP 970. Discussion of "On rereading R. A. Fisher" (by L. J. Savage, edited by John W.
Pratt), Annals of Statistics 4 (1976), 492-495.

C 972. Contribution (formula 7.249.2) to Gradshteyn and Ryzhik, Tables of Integrals,
Series, and Products, reprint of the English trans, of the 4th Russian ed.
(inscribed 1965 but issued in 1966), 825. (Acknowledgement on p. 6.) (See
#56.)

JP 974. IJG and J. F. Crook, "The enumeration of arrays and a generalization related to
contingency tables," Discrete Mathematics 19 (1977), 23-45. (See #929.)
(Imprinted July but issued in December.)

P 980. "The Botryology of Botryology," in Classification and Clustering, \. van Ryzin,
ed. (New York, Academic Press, 1977), 73-94.

P 981. "A new formula for k-statistics," Annals of Statistics 5 (1977), 224-228. (See
#895.)

I 986-992. "Minicommunications," C55C B5 (1976), 81-82.
P 999. "Black and white hole hierarchical universes: A synthesis of the steady state and

big bang theories," Theoria to Theory, 10 (1976), 191-201. (See #788A.)
P 1000. "Explicativity: A mathematical theory of explanation with statistical applica-

tions," Proc. Roy. Soc. (London) A 354 (1977), 303-330. (See #1161 f o r a
reprinting.)

P 1001. "Justice in voting by demand revelation," Public Choice XXIX-2 (special sup-
plement to Spring, 1977; July, 1977), 65-70.

JIP 1014. IJG and T. N. Tideman, Letter regarding voting in Scientific American 235
(October, 1976), 10 & 12.

P 1015. "Early work on computers at Bletchley," Number 1 in a series of special lectures
on "The pioneers of computing," National Physical Laboratory Report. Com.
Sci. 82 (September, 1976), Department of Industry, 16 pp. (See ##1178,
1218, & 1299.)



262 BIBLIOGRAPHY

I 1016-1027. "Minicommunications," CSSC B5 (1976), 141-144.
IP 1033. "A simple cure for grade inflation," Journal of Educational Data Processing 13

(1976), 29-32.
JP 1034. A. I. Khuri and IJG, "The distribution of quadratic forms in nonnormal variables

and an application to the variance ratio," JRSS B 39 (1977), 217-221.
JP 1035. IJG and A. I. Khuri, "Forms for the distribution of a ratio in terms of character-

istic functions," Minicommunication M24, in C5SC B5 (1976), 209-211.
JP 1036. Brian Conolly and IJG, "A table of discrete Fourier transform pairs," SIAM J.

Appl. Math. 32(1977), 810-822; 33 (1977), 534.
R 1060. Review of Thomas S. Ferguson, "Prior distributions on spaces of probability

measures" [Ann. Statist. 2(1974), 615-629], MR 55 (1978), 1546-1547.
IP 1065. "Adenine arabinoside therapy," item C7 in CCC in JSCS 6 (1978), 314-315.
R 1068. Review of Bruno de Finetti, "La probabilita: Guardarsi dalle contraffazioni!"

(with an English translation) [Scientia (Milano) 777 (1976), 255-303], MR 56
(1978), 1302.

BR 1075. Review of Benoit B. Mandelbrot, "Fractals: Form, Chance, and Dimension"
(W. H. Freeman, 1977), JASA 73 (1978), 438.

I 1078. "Are maximum-likelihood estimates invariant?" C10 in CCC in /5CS 7 (1978),
80-81.

C 1080. Contribution to the discussion of T. Leonard, "Density estimation, stochastic
processes and prior information," JRSS B 40 (1 978), 1 38-1 39.

JP 1100. IJG and T. N. Tideman, "Integration over a simplex, truncated cubes, and Euler-
ian numbers," Numerische Mathematik 30 (1 978), 355-367.

P 1111. "The inversion of the discrete Gauss transform," Applicable Analysis 9 (1979),
205-218.

IP 1137. "Alleged objectivity: A threat to the human spirit?" Internationa/ Statistical
Institute Review 46 (1978), 65-66.

IP 1146. "Ethical treatments," C16 in CCC in/5CS 7 (1978), 292-295.
IP 1148. "A fuzzy Bayesian method for estimating probabilities given two related multi-

nomial distributions," C18 in CCC in JSCS 7(1978), 296-299.
IP 1157. "Path analysis and correlation for power functions," C22 in CCC in JSCS 8

(1978), 80.
J IP 1159. IJG and D. Michie, "Improved resolution of a form of Mackie's paradox," Fir-

bush News 8 (April, 1978), 22-24.
P 1160. "The contributions of Jeffreys to Bayesian statistics," Chapter 3 in Bayesian

Analysis in Econometrics and Statistics: Essays in Honor of Harold Jeffreys,
Arnold Zellner, ed. (Amsterdam, North Holland Publishing Co., 1980), 21-34.

P 1161. Reprint of #1000 in Bayesian Analysis . . . (1980), 397-426.
IP 1166. "Monozygotic criminals," C23 in CCC in JSCS 8 (1978), 161-162.
IP 1173. "A comparison of some statistical estimates for the numbers of contingency

tables," C26 in CCC in /5C5 8 (1979), 312-314.
P 1178. Updated version of #1015 for the Annals of the History of Computing 7 (1)

(1979), 38-48. (See #1218.)
IP 1181. "Proper fees in multiple-choice examinations," C38 in CCC in JSCS 9 (1979),

73-74.
IP 1186. "On the combination of judgements concerning quantiles of a distribution with

potential application to the estimation of mineral resources," C41 in CCC
/5C5 9 (1979), 77-79 & 159.

JP 1199. J. F. Crook and IJG, "On the application of symmetric Dirichlet distributions
and their mixtures to contingency tables, Part II," Annals of Statistics 8
(1980), 1198-1218. (See #929.)

JP 1200. IJG & R. A. Gaskins, "Density estimation and bump-hunting by the penalized
likelihood method exemplified by scattering and meteorite data," I ASA 75



BIBLIOGRAPHY 263

(1980), 42-73 (with discussion). (The invi ted paper for the Appl ica t ions
Section of the A n n u a l meetings of ASA in August, 1979, in Washington,
D.C.)

P 1 201. "Turing's statistical work in World War II" [Studies in the history of probabil i ty
and statistics, X X X V I I ] , fl/o/n. 66 (1979), 393-396. (See #1361.)

1212. Interview by C. R. Evans, with a photo by Pat Hill, in OMNI (January, 1979),
70-73 & 117-121. (My corrections to the transcript, submit ted in Apr i l , 1978,
were omitted in error.) (See also Apri l , 1979, 10; August, 1979, 10 & 28.)

BR 1217. Review of "Logic, Laws, and Life: Some Philosophical Complications," Rob-
ert G. Colodny, ed. (Un ive r s i t y of Pit tsburgh Press, 1 9 7 7 ) , JASA 74 (1979),
501-502.

P 1218. Version of #1015 for Crypto/ogia 3, (2) (1979), 67-77, and photograph on front
cover.

BR 1221. Review of Ar thu r W. Burks, "Chance, Cause, Reason: An I n q u i r y into the
Nature of Scientific Evidence" (University of Chicago Press, 1977), JASA 74
(1979), 502-503.

P 1222. "The impossibility of complete mutual observation," Physics Letters A70 (Feb-
ruary, 1970), 81-82.

IP 1227. "The Bayesian meaning of invariant estimation," C43 in CCC in JSCS 9 (1979),
160-161.

IP 1228. "Bayes's bill iard-table argument extended to mult inomials," C44 in CCC in
/SCS 9 (1979), 161-163.

P 1230. "Some history of the hierarchical Bayesian methodology," Internat ional Meeting
on Bayesian Statistics, May 28-June 2, 1979, Valencia, Spain. In Bayesian
Statistics, Bernardo, J. M. et al, eds. (Valencia, Spain: Universi ty of Valencia
Press), 489-519, with discussion.

P 1234. "Some logic and history of hypothesis testing," in Philosophical Foundations of
Economics, Joseph C. Pitt, ed. (Unive r s i ty of Western Ontario series on the
Philosophy of Science, Dordrecht, Ho l l and , D. Re ide l , 1 981), 1 49-1 74.

BR 1235. Review of P. Hajek and T. Havranek, "Mechanizing Hypothesis Formulation"
[Springer-Verlag, 1978], Bull. Amer. Math. Soc. (New Series) 7 (1979), 650-
654.

C 1238. Cont r ibut ion to the discussion of D. V. L ind ley , A. Tversky, and R. V. Brown,
"On the reconciliation of probability assessments," JRSS A 142 (1979), 173-
174.

R 1241. Review of Henry Kyburg, "Subjective probability: Criticisms, reflections, and
problems," /. Philos. Logic 7 (1 978), 1 57-1 80; MR 58 (1 979), 3642.

IP 1245. "Predictive sample re-use and the estimation of probabilities," C50 in CCC in
/SCS 9 (1979), 238-239.

IP 1246. Demonstration that Levy could have won the historic fourth game versus Chess
4.7 in Toronto, 1978, Personal Computing (May , 1979), 50.

IP 1248. "The clustering of random variables," C52 in CCC in JSCS 9 (1979), 241-243.
IP 1249. "Partial correlation and spherical tr igonometry," C53 in CCC in JSCS 9 (1979),

243-245.
JP 1250. I J G , Byron C. Lewis, Raymond A. Gaskins, & L. W. Howell , J r . , "Populat ion

estimation by the removal method assuming proport ional trapping," Biom. 66
(1979), 485-494.

P 1263. "Some comments on probabi l i s t ic causality," Pacific Philosophical Q. ( fo rmer ly
The Personalist) 61 (1980), 301-304.

1266. "Key words for Bayesian publ ica t ions by I. J. Good," J u n e 28, 1979 ( f rom
papers #750 to #1238), mimeographed, 5 pp.

C 1267-1 278. Discussion of papers at the Valencia conference. (See #1230.)
BR 1290. Review of collected papers of R. A. Fisher (vols. Ill to V), [ University of Ade-

laide Press, 1974],//1S/4 75 (1980), 239.



264 BIBLIOGRAPHY

1297. "Partly-baked ideas, 28 columns edited by IJG, Mensa /. (1 968-1 980), pbi's up
to number 767.

P 1298. "The chief entities," a shortening of #644 for Cosmic Search 2 (Spring, 1980),
13-17.

P 1299. An updated version of #1015 in A History of Computing in the Twentieth
Century, N. Metropolis, ed. (New York, Academic Press, 1980), 31-45. (See
##1178 & 1218.)

P 1300. "The axioms of probability," Encyclopedia of Statistical Sciences, Vol. 1,
N. L. Johnson & S. Kotz, eds. (New York, Wiley, 1982), 169-176.

IP 1303. "Another relationship between weight of evidence and errors of the first and
second kinds," C67 in CCCin75C5 70(1980), 315-316.

P 1313. "Degrees of belief," Encyclopedia of Statistical Sciences, Vol. 2, N. L. Johnson
& S. Kotz, eds. (New York, Wiley, 1982, 287-293.

P 1317. "Degrees of causation in regression analysis," C71 in CCC in /5C5 7 7 (1980),
153-155.

IP 1320. "The diminishing significance of a P-value as the sample size increases," C73 in
CCC in JSCS 77(1980), 307-309.

P 1322A. "Scientific speculations on the paranormal and the parasciences," The Zetetic
Scholar, No. 7 (December, 1980), 9-29.

P 1330. "The philosophy of exploratory datum analysis," ASA annual meetings at
Houston, August, 1980, Proc. Bus. & Econ. Stat. Section (1981), 1-7.

P 1331. "A further comment on probabilistic causality: Mending the chain," Pacific
Phi/os. Q. 61 (1980), 452-454.

IP 1332. "On Godambe's paradox," C78 in CCCin/SC5 72(1980), 70-72.
IP 1333. "Feynman's path integrals and Sewall Wright's path analysis," C80 in CCC in

JSCS 72(1980), 74-77.
IP 1334. "Functions of distinct random variables having identical distributions," C77 in

CCC In JSCS 72 (1980), 68-70.
IP 1335. "Vinograde's lemma, singular decompositions, and k-frames," C79 in CCC in

/5C5 72(1980), 72-74.
IP 1 336. "A simplification in the 'causal calculus,' " C81 in CCC In JSCS 72 (1 980), 77-78.
P 1338. "Vigor, variety and vision—The vitality of statistics and probability" (title

chosen by Jim Swift), keynote speech for the sessions on the teaching of
statistics and probability at the school level in Proc. Fourth International
Congress on Mathematical Education, Berkeley, California, August 10-26,
1980. In press.

IP 1341. "Roughness penalties, invariant under rotation, for multidimensional probability
density estimation," C87 in CCC in/5C5 72 (1981), 142-144.

IP 1343. "The autocorrelation function p\r\c," C90 in CCC in JSCS 72(1981), 148-152.
IP 1345. A problem concerning regular polygons. Elementary Problem #E2889. Amer.

Math. Monthly 88 (1981), 349.
P 1350. "Ethical machines," Machine Intelligence 10, D. Michie, ed. (Chichester: Ellis

Norwood, 1982), 555-560.
I 1351. Opening of the after-dinner discussion on October 31, 1981 at the 21st SREB-

NSF meeting on Bayesian Inference in Econometrics, University of Chicago.
In the Report of the Meeting, edited by A. Zellner (1981), 13-15.

P 1354. "Generalized determinants and generalized generalized variance," C91 in CCC
in/5C5 72(1981), 311-313.

JIP 1357. IJG & T. N. Tideman, "The relevance of imaginary alternatives," C93 in CCC in
/SC5 72(1981), 313-315.

IP 1358. "An approximation of value in the Bayesian analysis of contingency tables,"
C88 in CCC in /SCS 72 (1981), 145-147.

P 1361. Reprinting of #1201 in Machine Intelligence and Perception: A Turing Com-
memorative, Judith M. S. Prewitt, ed. In process.



BIBLIOGRAPHY 265

P 1365. "When is G positive in the mixed Dirichlet approach to contingency tables?"
C94 in CCC in/SCS 13 (1981), 49-52.

P 1366. "The Monte Carlo computation of Bayes factors for contingency tables," C95
in CCC in/SCS 13 (1981), 52-56.

P 1367. Reprint of #777 in Machine Intelligence and Perception: A Turing Commemora-
tive, Judith M. S. Prewitt, ed. In process.

IP 1369. "The weight of evidence provided by uncertain testimony or from an uncertain
event," C96 in CCCinySCS 13 (1981), 56-60.

IP 1371. "Generalized determinants and generalized Jacobians/' C97 in CCC in JSCS 13
(1981), 60-62.

IP 1382. "An error by Peirce concerning weight of evidence," C102 in CCC in /5CS 13
(1981), 155-57.

JP 1383. IJG and Michael L. Deaton, "Recent advances in bump-hunting," in Computer
Science and Statistics: Proceedings of the 13th Symposium on the Interface,
William F. Eddy, ed. (Springer, 1981), 92-104 (with discussion).

P 1386. "Some comments on Rejewski's paper on the Polish decipherment of the Enig-
ma," Annals of the History of Computing 3 (1981), 232-234.

IP 1389. "The effect of permutations of rows and columns on measures of association,"
C103 in CCC in/SCS 13 (1981), 309-312.

IP 1396. Comment on a paper by Glen Shafer.//IS/4 77 (1982), 342-344.
P 1397. "Quadratic and logarithmic indexes of diversity and surprise," a discussion note

on a paper by Patil and Taillie, JASA 77(1982), 561-563.
P 1399. "An analogue of chi-squared that is powerful against bumpy alternatives," C108

in CCC inySCS 13 (1981), 319-323.
P 1401. "Randomly connected genetic nets," C110 in/SCS 13 (1981), 324-327.
JP 1402. IJG & Byron C. Lewis, "Probability estimation for 2 x s contingency tables and

predictive criteria," for the meetings of the International Statistical Institute,
Buenos Aires, 1981 December.

P 1404. "The cumulants of an analogue of Pearson's chi-squared," JSCS 75 (1982), 1 71-
181.

P 1408. "The fast calculation of the exact distribution of Pearson's chi-squared and of
the number of repeats within the cells of a multinomial by using a Fast Four-
ier Transform," C119 in CCC in JSCS 14 (1981), 71-78; addendum C138 in
press. (See also #1500.)

P 1414. "Is the Mars effect an artifact?" Zetetic Scholar #9 (1982), 65-69.
P 1419. A report on a lecture by Tom Flowers on the design of Colossus. Annals of the

History of Computing 4 (1982), 53-59.
P 1420. "The robustness of a hierarchical model for multinomials and contingency

tables," in Scientific Inference, Data Analysis, and Robustness. G. E. P. Box,
T. Leonard and Chien-Fu Wu, eds. (New York: Academic Press, 1983), 191-
211.

P 1421. "A good explanation of an event is not necessarily corroborated by the event,"
Philosophy of Science 49 (1982), 251-253.

IP 1430. "When is maximum-likelihood estimation O.K. for a Bayesian?", C127 in CCC
in/SCS 75 (1982), 75-77.

P 1432. "An index of separateness of clusters and a permutation test for its statistical
significance," C129 in CCC in/SCS 75 (1982), 81-84.

JP 1434. IJG & D. R. Jensen, "Determining the noncentral Wishart distribution via
quadratic expressions," C 131 in CCC in/SCS 75 (1982), 85-87.

P 1436. "Some applications of Poisson's work," for the Poisson Bicentennial Com-
memoration at George Washington University, 1982 March 15.

JP 1444. J. F. Crook and IJG, "The powers and 'strengths' of tests for multinomials and
contingency tables," JASA 77(1982), 793-802.

P 1445. "Succinct speculations," Speculations in Science & Technology 5 (1 982), 363-373.



266 BIBLIOGRAPHY

P 1450. "The irregular shapes of polypeptide chains," C136 in CCC in JSCS 75(1982),
243-247.

P 1451. Foreword to Against the Odds: Mathematical Challenges to the Neo-Darwinian
Interpretation of Evolution, 2nd edn. Santa Barbara: Ross-Erikson. In press.

JP 1453. W. E. C. Moore, L. V. Holdeman, R. M. Smibert, IJG, J. A. Burmeister, K. G.
Palcani & R. R. Ranney, "Bacteriology of experimental gingivitis in young
adult humans," Infection and Immunity 38 (1982), 651-667; 39 (1983), 1495.

JP 1457. D. R. Jensen & IJG, "A representation for ellipsoidal distributions," SI AM ].
Appl. Math. In press.

IP 1458. "The calculation of X2 for two-rowed contingency tables," The American
Statistician 37(1 983), 94.

IP 1462. "The standard error of the estimated 'coverage' of a sample of species or vocabu-
lary," C139 in 75C5 75 (1982), 337.

P 1468. IJG & Golde Holtzman, "On s-fold repeats and their additive and multiplicative
properties," C141 in 75C5 76 (1982), 66-69.

P 1469. IJG & Golde Holtzman, "The moments of the number of s-fold repeats," C142
in/SC5 16 (1982), 69-75.

BR 1471. Review of Gordon Welchman, "The Hut Six Story," New Scientist 96 (1982
October 7), 42.

I 1472. "Who is a Bayesian?," letter in The American Statistician 37 (1983), 95.
IP 1474. "Scientific induction: universal and predictive," C143 in /5C5 16 (1983), 311-

312.
IP 1475. "The diminishing significance of a fixed P-value as the sample size increases: a

discrete model," C144 in /5C5 76 (1983), 312-314.
IP 1476. "A measure of adhockery," C145 in 7SC5 76 (1983), 314.
IP 1477. "Correlation between power functions," C146 in /5CS 76 (1983), 314-316. (See

#792.)
IP 1481. "Probability estimation by Maximum Penalized Likelihood for large contingency

tables and for other categorical data," CMS in /5C5 7 7 (1 983), 66-67.
IP 1482. "A simple consequence of Daniel Bernoulli's logarithmic formula for utility,"

C149 in/SC5 77 (1983) , 67-68.
IP 1484. "Antisurprise,"C151 in 7SCS 7 7 (1983), 69-71.
IP 1485. "On the number of duplicated fingerprints," C152 in JSCS 77 (1983 ) , 71-73.
P 1492. "The philosophy of exploratory data analysis," Philosophy of Science 50

(1983), 283-295. (See #1330.)
I 1499. "Where have all the residents gone? Gone to infinity every one," Amer. Math.

Monthly. In press.
P 1500. "An improved algorithm for the fast calculation of the exact distribution of

Pearson's chi-squared," C157 in /5C5 77. In press. (See #1408.)
JIP 1503. IJG & Eric Smith, "The early history of the quadratic index of diversity or

repeat rate", C155 in /5C5 7 7. In press.
P 1504. "A note on the extraction of coefficients from power series", C158 in JSCS 77.

In press.
BR 1505. Review of "The Maximum Entropy Formalism", Raphael D. Levine & Myron

Tribus, eds. (1979); JASA. In press.
JP 1512. IJG & G. Tullock, "Judicial errors and a proposal for reform,"/. Legal Studies.

In press.
P 1515. "Weight of evidence: a brief survey," Second Valencia International Meeting on

Bayesian Statistics, 1983.
P 1517. "A correction concerning my interpretation of Peirce, and the Bayesian inter-

pretation of Neyman-Pearson 'hypothesis determination'," C165 in CCC in
75CS 18. In press.



Indexes



This page intentionally left blank 



Subject Index of the Bibliography

This index covers only those items listed in the author's bibliography that are not reprinted
in this book. The references are to publication numbers. Occasionally, there are numbers in paren-
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A. P. Dempster, on p. 81 of the 1970 Waterloo conference proceedings (see #659), com-
mented that an information retrieval system for my work would be helpful. The following index,
combined with that for the book, should go a long way in that direction, although the bibliography
is not comprehensive.

AB- BC = cl, 610
Abbreviations, overused, 844
Abel summation, discovered by Poisson,

1436
Abelian groups: finite, fundamental theorem

for, 316; random motion on, 20
Absolute continuity between probability

measures, 854
Absolute pitch, 796
Abstract art, 1075
Abstract theory (or black box, q.v.}, 1 3
Abstracts, for information retrieval, 169,

398
Acceptance of a hypothesis, 13
Accident proneness, 398
Accidents, 753
Accuracy inventives for probability estimators,

690A. See also Fees, fair
ACE (Automatic Computing Engine), 666
Aciniformics, 980
Acoustics, 1 3
"Action" and path integrals, 1333
Activity, disorganized, definition of, 243

(507)

Actuar ia l science, 398
Ad hoc, defined, 890 (For a quantitative

definition, see Adhockery)
Adam Smith's "hidden hand," 1350
Adaptive behavior, 1235
Adaptive control, 592
Addition law, generalized, 1 3
Additivity, complete, 13, 398, 956, 1300
Additivity for corroboration, generalized

("functionality"), 21 1
Adenine arabinoside therapy, 1065, 1148,

1402
Adhockery, 398, 61 7, 890, 956 (If H is patched

up to H & ) to account for E, the adhockery
is r j (E:H&J) - T}(E:H);see Explicativity)

Administration, and Hugh Alexander, 1015,
1178, 1218

Adultery, 13
Advertising, misleading, 1445
Aesthetics, 861. See also Beauty
After-effect function, 83
Aggressiveness, as the best defense mechanism,

243(514)
Agminatics, 980

269
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Al. See Artificial intelligence
ALGOL and the Burroughs 5000, 666
Algorithms and genetics, 666
Algorithms versus heuristics, 777, 1 367
Allergies: origin of, 1445; and restaurants,

1445
Almost certain, 13
Almost impossible, 1 3
Almost mutually exclusive, 13
Alonzo Church's lambda calculus, 701
Alpha rhythm, 397 (65), 629
Alphabet: design of, 592; generalized, 398;

increased size, 169; learning of, 339 (63);
optimal design of, 524

Alternative hypotheses or theories, deciding
between, 13

Amanthanism, 761
Amin, Idi, potential contribution to science

of, 13 22 A
Amino acids, 398, 1450, 1451
Amnesty movement, 1 01 5, 11 78, 1 21 8
Anaerobics, 960
Analysis of log-likelihood ratio, 565
Analysis of variance, as a special case of analysis

of log-likelihood ratio, 565
Analytic engine (Babbage), 666
Android, 243, 339, 397 (41); sensation of

pain in, 243; structure of, 243 (499)
Angels fear to tread, I rush in, 1 330
Anglo-Russian Loglan, 339 (56)
Angular momentum, 1445; and the speed

of gravitation, 898
Anti-Bayesian forcing himself to be a naive

Bayesian, 1160
Antigens, 33
Approximation, 1 3
Arbitrariness, 631; minimization of, 398
Arc-sine law, 520, 928
Arctic trees (Bennett J. Woll), 1445
Argand diagram in radio astronomy, 323 (453,

459)
Armchair physics, 761
Array of antennae: optimal, 323 (461); re-

solving power, 323 (463); rotatable, 323
(451)

Arrays, enumeration of, 974; by the branching
algorithm, 974; a generalization of, related
to the Bayesian analysis of contingency tables,
929, 974, 1199; number-theoretic properties
of, 974; by a statistical argument, 929, 1173,
1199; in three dimensions, 929, 974

Arrays, "magical," 974
Arrow's impossibility theorem for voting sys-

tems (involving one unreasonable assump-
tion), 871

Art: computer transformations of, 1445;
Dioximoirekinetic, 598; immortal, 339 (65);
mathematical, 598; and surprise, 598

Artificial insemination, 1445
Artificial intelligence (Al), 169, 183, 243

(502), 276, 391 (31), 476; achievement
of, possible by synergy between computer
and partly random networks, 185; compari-
son of with human intelligence, 777, 817;
and creativity and "duality," 615; and hypo-
thesis formulation, 1235; and semantics,
368, 397; social implications of, 339 (192-
98), 666, 1350; square-root law for, in
searching techniques, 533; and statistics,
592; two possible approaches to, 185; as
the ultimate test for the philosophy of
science, 890. See also Chess; Probability,
dynamic; Subassembly theory

Artificial selection regarded as natural selec-
tion by a Martian, 1451

Arts, nature of, 796
Asimov's rules for robotics, 861
Assemblies, groups of, 243 (511,512)
Assembly sequences, 615
Assembly theory, 185, 397, 777, 1367. See

also Cell assemblies; Subassemblies
Association: between assemblies, 397 (57,

66); in contingency tables, 929, 11 99, 1420;
measures of, 524, 957; measures of and ef-
fect of permuting rows and columns, 1389;
measures of in information retrieval, 217;
measures of in two and three dimensions,
929, 1199; between words, 397 (54, 55,
70)

Association bonds, 397 (50)
Association factor, 77, 142, 397 (48, 70),

727 (312); and amount of information,
221; and its lognormal distribution, 83,
322,398

Associative memories, artificial, 397 (55)
Associative thinking and the subassembly

theory, 861
Astrology, 861; and "cosmic influences,"

1414; and Jung, 882, 1322A
Astronomy, 323, 688. See also Bode-Titius

law; Cosmology; Galaxy
Astronomy and tail-area probabilities, 1269
Asymptotic expansions of integrals and mul-

tiple integrals, 127, 225, 238
Athletes, and the position of Mars, 1414
Atlas computer, 526
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Atom bomb, 1015, 1178, 1218
Attention span, 397 (63)
Attribute space and voting, 875
Audiovisual reading, 339
Ausgezeichnet hypothesis, 322
Authority, 1 3
Authorship, and statistical inference, 418,

524
Autocorrelation functions resembling stable

characteristic functions, 1343
Autocovariance. See Covariance
Automata, 1 85; main difficulty of in expressing

the unconscious in conscious terms, 185
Automatic writing, 861
Automation of science, 398
Automicroprogramming, 980
Automorphic functions, 1075
Autosuggestion, 243 (512)
Average on a sphere of the exponential of a

quadratic, 1 250
Averages of exponentials on spheres and

ellipsoids, 758
Axiom: A4' (for dynamic probability), 13,

183, 958; of complete additivity, contro-
versiality of, 13, 398, 956, 1300; linguistic,
398

Axiomatic method, 1 3; and the "use" of theory
of meaning, 1 300

Axioms: alternative set of, 13, 1300; as com-
bined with rules and suggestions, 13, 183,
729 (492-94), 1313; "obvious," 13; origin
of, 13; of probability, 1300; for proposi-
tions and sets, 1300; of utility, 13

Baby: easier to sit on than to baby-sit, 191;
education of, 397 (45, 46, 65, 66); train-
ing of, 1445

Backtracking in a diagnostic search tree, 755,
798

Backward time, 339, 882, 1322A, 1445. See
also Universe, conjugate

Bacon's merit, in emphasizing obvious im-
portant facts, 1330

Bacteria: anaerobic, 960; luminescent, 1451
Balancing of a matrix, 397 (52)
Ban, 1386. See also Bel
Banburismus, 1 386
Banbury, 1386
Band-limited white noise, 854
Bang-bang universes, 999
Barnard's star, 705
Bayes: empirical, in relation to contingency

tables, 1389; empirical, smoothing in, 38,

86; empirical, and species sampling, 38,
86; empirical, Turing's contribution, 1386;
as the first shrink, 1420; hierarchical: see
Hierarchical Bayes; and maximum likeli-
hood, 1430; versus Popper, 890; postulate,
multidimensional, 929, 1199; and "struc-
tural inference," 725 (52)

Bayes factor, 1 3, 398, 755, 860, 1 201, 1320,
1361; approximate relationship to tail-area
probabilities, 174; bounds for, 13; and chi-
squared, 1444; as close to a function of its
tail-area probability, 862; in communication
theory, 210; against equiprobability, 547,
862, 1420; expected, 13, 1201, 1361; and
false-alarm probabilities, 221; in favor of
a hypothesis, 13, 398; importance of oc-
casionally apart from the initial probability,
13; against independence, in contingency
tables, 929, 1199, 1420; against indepen-
dence, unimodality of as a function of the
flattening constant, 1420; and independent
witnesses, 1436; infinite, 13; large, 1 3; maxi-
mum, 13; and maximum Bayes factor,
approximate functional relationship, 862;
moments of, 13; for multinomials and con-
tingency tables, 1444; not as a likelihood
ratio in general, 1160; and the paradox
of confirmation, 199; partial, 13; versus
"posterior odds ratio," 1277; relationship
to likelihood ratio, 21 1, 221; relative, 13;
and tail-area probabilities, 416, 547, 862,
1278, 1320, 1420; and type-ll likelihood
ratio, approximately equivalent, 862; uses
of as a statistic, 13; see also Sequential
analysis; weighted average of, 13, 1201,
I 361. See also Weight of evidence

Bayes/Fisher compromise, 862, 970; robust-
ness of, 862

Bayes/Fisher discrepancy, 1396
Bayesian: all things are Bayesian to a, 724

(77-80); definition of, 398, 731 (449),
750 (1) ; gives advice rather than decides,
I1 37; many varieties of, 1137; 93312 varie-
ties of, 1420; as a statistician who uses a
Bayesian approach on some occasions (a mis-
leading but convenient term), 1430; as unable
to finish introspection, 522; versus non-
Bayesian, an unnecessary polarization, 750

(D
Bayesian argument, informal, for justifying

the harmonic-mean rule of thumb, 174
Bayesian computer packages, 1 351
Bayesian decision theory, 1313
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Bayesian estimation: feedback to from con-
sidering hypothesis testing, 750 (97); a
fuzzy variant of, 1148; "in mufti," 810

Bayesian estimation interval (not "Bayesian
confidence interval"), 956

Bayesian and Fisherian methods, incompatible
in principle, 1 396

Bayesian inference, 416, 574, 750, 875, 890,
1148, 1160, 1227, 1238, 1266, 1268 to
1 278; and econometrics, 875. See a/so Deci-
sion; Foundations of probability and statis-
tics; Rationality

Bayesian influence, 750
Bayesian log-likelihood ratio, 565
Bayesian methods: as capable of confirming

approximate truth of null hypotheses, 398;
"empirical," 398; immunity of to "sampling
to a foregone conclusion," 1396; Jeffreys's
contributions to, 1160; modern, not en-
visaged by Bayes, 398; as more robust for
estimation than for hypothesis testing,
750 (72); for nonparametric problems,
844; not people, 750 (1); quasi-, pseudo-,
or semi-, 547, 862, 929, 1420; sensitivity
and robustness of, 1160

Bayesian models, multistage, 547, 862, 929,
1420

Bayesian philosophy, absurd criticism of,
398

Bayesian robustness, 729 (492-94). See also
Initial distribution

Bayesian statistics, varieties of, 1420
Bayesian test for equiprobability, free from

asymptotic theory, 547
Bayesianism, a defense of, 11 37
Bayesians, scarcity of in 1946 (because of

Fisher's dominance), 1351
Bayesians all, 738 (326-27), 750 (1), 796,

1420
Bayes-Jeffreys-Turing factor, 755
Bayes-Laplace postulate, 398; generalization

of to multinomial sampling, 398
Bayes/Neyman-Pearson compromise, 398, 862,

1444. See also Compromises
Bayes/non-Bayes compromise, 174, 416, 547,

81 0, 862, 970, 1420, 1444; and contingency
tables, 929, 1199, 1420; in density estima-
tion, 699, 701, 810; and interval-valued
subjective probability, 1267; and the multi-
nomial distribution, 547, 862; and the phi-
losophy of the future, 1160; and L. J. Savage's
views, 1 21 7; or synthesis, 1 27, 1 98; and tail-
area probabilities used by a Bayesian, 1420;

and tail-area probability, 127 (862-63),
1269; and type II ML, 1420; and use of non-
Bayesian test of a hyperparameter, etc.,
1273. See also Bayes/Fisher compromise;
Bayes/Neyman-Pearson compromise

Bayes/non-Bayes synthesis. See Bayes/non-
Bayes compromise

Bayes/Popper synthesis, 890
Bayes's billiard-table argument, generalized to

multinomials, 1228, 1420
Bayes's postulate, 13. See also Principle of

indifference
Bayes's postulate "covered up" by invariance

arguments, 1 227
Bayes's postulate used by a non-Bayesian,

198
Bayes's theorem, 13. See also Probability,

inverse
Bayes's theorem in reverse, 13, 398. See also

Device of Imaginary Results
Beauty, as simplicity arising out of complexity

arising out of simplicity, 861, 1445
Beer and spherical trigonometry, 1 249
Behavior, 243 (491)
Behavior of computers, not always predictable,

1212
Behavioral interpretation of meaning, 397

(41)
Behaviorism applied to robots, 397 (41)
Bel, 13. See also Ban
Belief: by computer, 761; degree of, 13,

398, 1313; versus disbelief, 1313, 1338;
more dangerous than disbelief (Shaw), 1313;
systems, collective, worse than crime, 1338.
See also Degrees of belief

Beliefs, body of. See Body of beliefs
Bell numbers, 929
Belonogov's law, 524
Benefit (expected). See Utility
Bernoulli trials, run length, 822
Bessel functions: and fundamental particles,

21 8; in Markov processes, 237
BEST theorem, 136
"Best" value of a parameter, 13
Beta distribution, 398; linear combination

of, 398; parameters inferred from its mean
and variance, 883; in voting theory, 883

Beta-endorphin, 1322A
Betting, 398. See also Gambling
Bias, 13
Big bang, 882, 1322A
"Big bang" and "steady state" synthesis,

788A.999
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Big bangs, possible plurality of, 1445
Bin of a histogram, 810
Bilinear forms, 398
Binary Markov process of order 2, 374
Binary notation, 524
Binary signals, regeneration of, 939
Binomial estimation, and the efficacy of

a vote, 883
Binomial identity: and DFT, 645; Dixon's,

short proof of, 264; Fjeldstad's, short proof
of, 264

Binomial populations, discriminating between,
and Poisson, 1436

Binomial sample, 398
Binomial terms, sum of squares, 56
Biological clocks, 882, 1322A
Biological engineering, 339
Biological induction (so-called), 666
Biology: as the study of all possible life-forms,

697. See also Genetics
Birthday problem (with unequal probabili-

ties), 13
Bishop-pair, advantage of, 777, 1235, 1367
Bismark, sinking of, 1 01 5, 11 78, 1 21 8, 1 299,

1386
"Bisociation" and an evolution analogy, 1451
"Bit" of information, 13
Bits, tits, dits, and nits, 142
Black box theory, applies to many theories,

183, 228, 958, 1300, 1313
Black holes, 788A, 882, 1212, 1322A; and

hierarchical universes, 999; singularity of,
999; Steamroller surface and Abandon
Hope surface of, 999

Bletchley Park, 1015, 1178, 1201, 1218,
1299, 141 9. See also GC & CS

Blood-groups, 1 3
Blood, tears, and sweat, 1015, 1178, 1218,

1299
Bochner-Kaczmarz theorem, 8a
Bochner's theorem, 1 343
Bode-Titius law, 638, 705, 1 330; and Fibonac-

ci numbers, 764, 837
Body of beliefs: alternative, 13; augmentation

of, 13; definition of, 13; empty, 13; gen-
eralization of, 13; taken for granted, 13;
transitive, 1 3

Boltzmann's constant, 1 3
Bombe (electromagnetic cryptanalytic ma-

chine), 1015, 1178, 1218, 1299, 1386
Bond's constant, 709
Book reviews, xii, 75, 112, 115, 156, 162,

191, 294, 499, 516, 541A, 697, 754, 761,

844, 875, 956, 957, 958, 1060, 1068, 1075,
1217, 1221, 1235, 1290

Books, reviews attached to in libraries, 169
Books on thinner paper or with thinner bind-

ings to save library space, 169
Boole-Poincare' theorem, 397 (69, 81)
Boolean machine, 1015, 1178, 1218
Boolean operations in Colossus, 1419
Borda's voting system, 871
Boredom, reason it is painful, 243 (510)
Borel summation, 3, 4, 5
Borel's theorem (or Borel-Cantelli theorem),

13
Bortkiewicz effect, 398
Bortkiewicz's disease, always fatal, 1436
Botryological speculations, 339 (120-32)
"Botryologist, clump thyself," 980
Botryology, 169, 243, 397 (72, 79), 398,

411, 592, 753, 980; of botryology, 980;
and hypothesis formulation, 980; and
pattern recognition, 980. See a/so Clumps,
theory of; Cluster analysis; Clustering

Bovine chymotrypsinogen A, 1451
Boyer's law of eponymy, 1436
Bracketing a sequence, enumeration of, 200
Braille, 524
Brain: capacity of, 861; as good food for the

brain, 796; information processing in,
serial and parallel, 771; and the joke "I
think therefore I am Brain," 185; paral-
lel operation in, 185; as partly systematic,
partly random, 861; science briefings on,
861; ultraparallel activity in, 771, 777,
796; use of both hemispheres in, 1338

Branching processes, 337; distribution of
tree size in, 55; and galactic clusters, 153;
generation sizes in, joint distribution of,
55; and Lagrange distributions, 857; and
Lagrange's expansion, 200; and literature
search, 1018; in the nervous system, 243
(508); number of individuals in, 12, 55;
theory of often rediscovered, 970; and
tree enumeration, 413. See a/so Cascade
processes

Branching universe theory, 243 (492), 882,
1322A; and determinism, 882, 1322A;
as distinct from theory of hierarchical uni-
verses, 999; history of, 882, 1322A; and
longevity, 882, 1322A; and quantum me-
chanics, 882, 1322A; and science fiction,
882, 1322A

Breast tumors, 991
Broken-stick model: for amino acid frequencies,
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1450; for letter and phoneme frequencies,
524

Brownian motion and fractional dimensions,
1075

Buddhism, 243 (497)
Buffon's needle problem, 195
Bumble, Mr., 1396
Bump evaluation, Bayesian, 810, 1200
Bump hunting, 699, 701, 733 (284-86), 810,

991, 1080, 1200, 1383; in breasts, 991.
See also Probability density estimation

Bumps, 13; and babies, not to be thrown out
with the bathwater, 1330; and dips (not
grinds), 1 080, 1 383; in more than one dimen-
sion, defined, 810; shaved by Ockham's
razor, 1200

Bumpy alternatives, 1399, 1404
Bush's Memex machine, 169

C. A. B. Smith's statistic, 11 99
Caesar substitution, 643
Calvinism arid free will, 761
Can, as kicked, instead of bucket, 1445
Cancer and elephants, 1445
Cancer cells, acoustic destruction of (alterna-

tive to lasers) (Pamela Boal), 144
Cans, labeling of, 1445
Cantor's middle-third set, 1075
Capital and consumer's goods, distinction

between possibly misconceived, 989
Capitalism and socialism: made possible by

computers, 690A; tending to identity, 666
Cardinal numbers, definition of, 397 (40,

41)
Cards, perfect, perfectly shuffled, as prob-

ability landmarks, 1 3
Carpets, sweeping subjectivity under, 1137
Cascade processes, 55, 337; number of in-

dividuals in, 12, 55; and polymers, 337.
See also Branching processes

Cashless society, 666
Catastrophe theory and evolution(?), 1025
Categorical data, 957. See a/so Contingency

tables; Multinomial distribution
Categorization: adaptive, 980; of classification,

411; of phonemes, 524
Cauchy's formula for enumerating permuta-

tions with a given cycle pattern, 974
Causal ca lculus , 397 (67), 928, 1336
Causal chains, 1 331
Causal "force," 397 (68, 69)
Causal independence, and the firing squad,

397 (67, 68)

Causal interaction, 397 (65, 79-83)
Causal networks, 221
Causal tendencies, 397 (54, 55, 67, 75, 76);

additivity of, 397 (67); intrinsic, 397 (79)
Causality, 928, 1157, 1221; computers and

time-direction, 339 (326-29); probabilistic,
180, 221; probabilistic, answer to Salmon's
criticism of, 1263; probabilistic, comparison
of Suppes's and Good's work on, 754; prob-
abilistic, mending of the chain in, 1331;
probabilistic, and regression, 1317; and
time direction, 754

Causation, degrees of tendency to cause,
1389

Cause precedes effect, a logical necessity(?),
882, 1322A

Cell assemblies, 185, 368, 397 (54-74), 525,
615, 771, 861; activity of, 397 (57); associa-
tion between, 397 (57, 66); clumps of,
397 (71); connectivity in, 397 (62); hierarchy
of, 397 (66); intersection of, 397 (69, 70);
mechanism of firing of, 397 (65); priming
of, 397 (72); reactivation of, 397 (58);
reverberation of, 777, 1367; selection of
next to fire, 397 (66); sequences of, 397
(58, 60, 70); sequences of, half-life of, 397
(63); sequences of, replaying of, 397 (80);
size of, 397 (69); theories of, 397 (31, 56-
74); as three-dimensional fishing nets, 397
(62,64)

Cell-assembly theory, 243 (503-11)
Cells, binary notation for, 243 (503)
Cellular control systems, 1401
Centiban, 1386
Central limit theorem, as asserting approximate

normality near the mean, 221
Centrencephalic system, 397 (44, 64, 67, 68),

796. See also Feedback
Centroid method of integration, 637, 696,

1100; and approximate Bayesian methods,
1270

Cerebral "atomic reactor," 397 (64)
Cerebral cortex, 243 (503), 397 (62-64);

histology of, 397 (73); onionlike structure
of, and levels of procedures and learning,
1 85; parameters of, 397 (35, 63, 64); thick-
ness of measured in neurons, 185; thinness
of, 861

Cesaro summation, 6
Chain of witnesses, 1263; and Markov chains,

1331
Chance, 1 3, 398, 1313; and cause and reason,

1221
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Change of mind: by four statisticians, 719
(302); with respect to a class of acts, 315

Channel capacity, 854
Chaos, acceleration in, 224
Character recognition, 398. See also Pattern

recognition
Characteristic function: discrete, 13; of func-

tions, 604, 1034; multivariate, 1334; of
powers, 604; of products and quotients,
604; of a quadratic form in nonnormal
variables, 1034; of quadratic forms, 374,

604; and ratios, 1 035; stable, 224, 604
Characteristic functional, 237, 516
Charity, all or nothing (Dan Herrell), 1445
Cheating, unconscious (wishful thinking), 13,

398
Chebyshev polynomials: as applied to charac-

teristic functions, 1399; and the colleague
matrix, 235; and cumulants, 1404

Checkers program, 1 85, 521
Cheek, bulgy (in a probability density), 1080
Chemical combination in a near vacuum,

1250

Chemical research by intersteller communica-

tion, 339 (239-40)
Chess, 13, 397 (34, 50); analysis of, automatic,

397 (49), 592, 1212, 1235; analysis of,
effective depth of, 521; analysis of, of the
first victory by computer versus master,
1246; analysis of, five-year plan for, 521;
on computers, 1212; control of squares
in, a hypothesis concerning, 1235; number
of possible games and positions in, 521;
openings in, statistics of, 38, 86, 398; players
of, grading of, based on an economic principle
(better than Elo's system), 50; players of
at Bletchley, 1015, 1178, 1218; programs
for, 183, 185, 796; programs for, as en-
couraging Al, 521; programs for, history
of, 521; programs for, tactics and strategy
in, 183; quiescence, turbulence, and agita-
tion in, 521; randomized, 397 (35), 521;
relevance of to the philosophy of probability,
844; strategy of, 521; values of pieces and
squares in, 521; White's advantage in as
half a move, 1 83

Chief entities. See Cosmic Club
Chimpanzees: as all Bayesians, but not con-

versely, 750 (6); gambling by, 243 (506)
Chinese remainder theorem, 146, 209, 708
"Chinese" universes (universes within uni-

verses), 788A, 882, 999, 1323A

Chi-squared: analogue of, for bumpy alterna-

tives, 1399, 1404; analogy of, with con-
fidence intervals, 13; asymptotic distribution
of, 127; and contingency tables, 13; as
distribution of quadratic form, 621; formula
for distribution of, 13; generalization of,
992; interpretation of, 13; and log-factor,
relationships between, 398; for multinomials,
127, 238, 665, 1408; Pearson's, exact dis-
tribution of obtained by a Fast Fourier
Transform, 1408; for rank of population con-
tingency table, 398; supplementation of,

1 74. See also X2

Chomskyism, an alternative to, 1445

Chondrites, at least three kinds of, 1080,
1200

Chords: detection of, and logarithm of acoustic
frequencies, 796; pleasant and unpleasant,
796; and whether their recognition is innate,
796

Christoffel-Darboux formula, 701
Christoffel three-index symbol, 699, 701,

810
Chromocriminology, 1445

Chromosomes. See Genetic(s)
Chronon, 181

Church's (Alonzo) lambda calculus, 701
Chymotrypsinogen A, 1450
Cicero versus Cicero, 1338
Circuits, reverberating, 243 (506)
Circulant matrices. See Circulices; Circulix

inversion
Circularity in definitions, 397 (42, 75); in-

evitability of, 980
Circularization, 36, 84, 136; in communica-

tion theory, 142; in density estimation,
1383; in signal detection, 210; of signals,
323

Circularized multinomial, 1404
Circulices (circulant matrices), 17, 1399;

recursively blocked, 708; in signal detec-
tion, 210

Circulix inversion, 708
Circumcircle of spherical triangle, statistical

application of, 1 249
Classification, 397 (71), 398; arboresque (or

dendroidal), 397 (53), 398; categorization of,
411; one-way, 398; see a/so Multinomial
distribution; recognition that it is improved,
as requiring a measure of simplicity, 185;
as regeneration, 397 (46); two-way, 398.
See also Botryology

Clifford matrices, and fundamental particles,

218
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Clinical information, 700. See a/so Medical
records

Clinical medicine, 798, 1272. See also Diag-
nosis

Clipping of a waveform, 409
Clones and spare parts, 1445
dumpiness, 397 (71)
Clumps: of assemblies, 397 (71); conjugate,

397 (52, 53), 411; and definitions of dumpi-
ness, 217; hierarchies of, 217; partially
ordered, 397 (53); theory of, 397 (51-53),
398; of words, 397 (71). See also Botryology;
Clusters

Cluster analysis, 169, 339 (120-32), 980;
as bump-hunting, 1383; in medicine, 798.
See a/so Botryology; Clustering

"Cluster" versus "clump," 980
Clustering: and information retrieval, 980;

and machine intelligence, 666; medical
applications of, 980; of random variables,
1248; a significance test for (contains an
error), 411, 980; techniques for, classifica-
tion of, 980. See a/so Botryology; Cluster
analysis

Clusters, 397 (51); of clusters, 398; conjugate,
980; hierarchies of, 21 7; separateness of,
an index for, 1 432

Coastline length and fractals, 1075
Codification, informal, 1 21 7
Coding: superimposed, 185; theorems and

weight of evidence, 574, 1 201, 1 361; theory
and X-ray crystallography, 52, 186

Codons (triples of nucleotides), 1451
Cogent reason, 1 3
Cogito ergo cogito, 796
Cognitive psychology, and grantsmanship, 1330
Coincidences, in my experience, 1322A
Coin-spinning, 13, 398
Collagen, 1451
Collation, 397 (55)
Colleague matrix, 235
Collective ranking, 871
Collectives, 13. See also Irregular collectives
Colon, meaning "provided by," 398
Colossus (electronic cryptanalytic machine),

666, 1015, 1178, 1218, 1299, 1386, 1419
Combination of judgments of distributions,

1271
Combination of significance tests. See Sig-

nificance tests
Combinatorial formulae related to the multi-

nomial, 127
Combinatorics, 225, 263, 264, 646, 829,

900, 966, 974, 1100. See also Arrays;
Lagrange's expansion; Trees

Common sense, 1 3
Communication, 398; channel for in diagnosis,

755; via power supply (David Hughes),
1445; as random transformation, 397 (37);
as regeneration, 376, 397 (37-40); and seman-
tics, 397 (38); system of in a man (block
diagram), 243 (500); systems of, 243 (503);
theory of, 142, 929: see also Information;
Regeneration; theory of, history of, 367

Compact operator, 854
Comparable degrees of belief, 1 3
Comparison between beliefs. See Degrees of

belief, partially ordered
Compilers, number of possible writing strate-

gies for, 612
Complete additivity, 13, 398, 1300
Complete Hilbert space, 854
Complete mutual observation impossible, 1222
Complete orthogonal system, 854
Complete a-field, 854
Completely continuous operator, 854
Completely deterministic process, 854
Complex integration, multidimensional, 200
Complex systems, 753, 796
Complexity, 13, 599; and brief linguistic

texts, 876; of a computer defined, 666;
of geometric constructions, 876; law of
increasing, 666; of an organism defined,
666; a recantation regarding, 876; and rough-
ness penalty, 701; theory of and kinkosity,
1 330. See also Simplicity

Component analysis and the singular decom-
position, 607

Composite hypothesis, converted to a simple
one, 929

Compromises, between Bayesian and non-
Bayesian methods, 398; see also Bayes/non-
Bayes compromise; between philosophy and
politics, 398; between subjectivism and
credibilism, 398,631

Computable numbers in Turing's sense, 13,
398,1160

Computation speed, and free will, 707
Computer art, 598
Computer chess. See Chess
Computer circuits, 7
Computer graphics, 1444
Computer-aided instruction, 666, 686, 1338
Computers, 125, 146, 169, 183, 222, 339,

397, 426, 612, 666, 667, 707, 753, 777,
994; "alarm clocks" in (DO loops), 222;
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applications of, 666; as controlling their
own evolution, 861; encipherment in for
privacy, 666; ethical: see Ethical machines;
future social repercussions of, 666; for
game playing, correct prediction concerning,
666; history of, 1015: see also Bletchley
Park; for international cooperation, 666;
as making capitalism and socialism possible,
666, 690A; as the next species in control,
861; in orbit, 1445; with parallel operation,
183; with partly random networks, 183;
personal, 666; and the philosophy of mathe-
matics (Turing), 666; pioneering work on,
1 015, 11 78, 1 21 8, 1 299; for police records,
666; prehistory of, 1 01 5, 11 78, 1 21 8, 1 299,
1419; thirteen generations of, 666; ultra-
parallel, 666

Computing, 18, 125, 222, 235, 707, 1111.
See also Centroid method of integration;
DFT

Concept formation, 980; by machines, 185;
in machines, a matter of using nonlinear
functions, 183

Conceptor, 1 85
Concepts: hierarchy of, and the layers of the

cortex, 1 85; an inefficiency of "one concept,
one neuron," 185; in mind, one at a time,
861

Conceptual process, 397 (60)
Conditioned reflexes, 13
Condorcet-Borda paradox of voting, 871
Confidence intervals, 13, 198; how used,

618, 753; as perhaps usually given a Bayesian
interpretation by clients, 198, 1271, 1313

"Confirmation": Carnap's bad usage of, 541,
958, 1160; not used to mean logical prob-
ability, 1421; paradox of: see Paradox, of
confirmation

Conjecture: re Bayes factors for contingency
tables, 929, 11 99; re Bayes factors for multi-
nomials, 398 (37), 860; re the characteristic
polynomial of a simple matrix, 1404; re the
frequency of polymers in nature: see Poly-
mers; re the future of type II maximum
likelihood in multivariate problems, 875;
re the Golgi apparatus, 796; for the gravi-
tational constant, 709; re pain and panic,
796; re prime words, 646; re RNA and
turkey's performance, 796. See also Dar-
roch's conjecture; Dyson's conjecture; Mer-
senne primes; Riemann hypothesis

Conjugate priors, 522; historical comment
concerning, 631, 1420

Conjunction, 1 3
Connectivity, 397 (57, 62). See also Cell

assemblies; Subassemblies
Consciousness, 397 (64, 65), 499, 777, 1367;

in animals, 861; biological mechanism of,
243 (495-99); and cosmology, 339 (330-
36); habituation of, 397 (65); and highly
complex information-processing systems, 243
(496); levels of, 243 (497); in machines,
666; in machines, a test for, 1445; in or-
ganic matter, 243 (495); whether possible
in a machine, Turing's reply to, 243 (494);
quantities of, 243 (497); and quantum
mechanics, 861; in the Schrodinger wave
function(?), 243 (496, 513, 515); single
element of, 397 (57); of a society, its dy-
namic topology, 243 (497); speculations
concerning, 243 (495); universal, people
as sense organs of, 243 (497); and vibra-
tions of DNA, 796

Consensus of judgments, 636, 11 86
Consistency, 290, 398; of the abstract theory,

13; of formal systems, 626
Constraints, rth-order, 398
Constructibility, 1 3
Consultants, medical, implicit utilities of, and

relationship to ethical machines, 1350
Contingency tables: analogue of chi-squared

for, 1404; and arrays, 974; Bayesian tests
for independence in, 13, 398, 929, 1199;
Bayesian tests for independence in and
an approximation to G, 1358; Bayesian
tests for independence in and a condition
for G > 0, 1 365; Bayesian tests for indepen-
dence in and enumeration of arrays, 974;
Bayesian tests for independence in and
Monte Carlo calculation of Bayes factors,
1366; Bayesian tests for independence in,
a preliminary form of, 13; contraction of,
398; correlated rows or columns in, 398;
cubical "folded," 398; enumeration of, by a
statistical argument, 11 73; estimation of small
probabilities in, 83; evidence in row and
column totals in, 1358; factor in favor of
independence in, 398, 547, 862; folded,
expected number of repeats in, 398; and G,
929, 1199, 1420; hierarchical Bayesian
test for no association in, 929, 1199, 1420;
independence in, 398, 547, 862; initial
distribution of probabilities in rows of
not independent, 398, 547; large pure,
398; and likelihood ratio, 929, 1199, 1420;
marginal totals of, convey little information
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about "independence" of rows and columns,
1199, 1420; mentioned, 13, 84, 397, 411,
524, 570; models for sampling of, 929,
1199, 1420; multidimensional, 397 (50),
398, 522, 957; multidimensional, interac-
tions in, 970; multidimensional, and mixed
Dirichlet priors, 929, 1199, 1420; multi-
dimensional, number of independent hypo-
theses in, 929; multidimensional, smoothing
of, 322; population, 398; probability of,
given the marginal totals (Fisher-Yates),
398; related to random numbers, 36; singular
decomposition of, 398, 607; sparse, 398;
tests for no association ("independence")
in, 398, 929, 1160, 1199, 1420, 1444;
three sampling methods for production of,
929, 11 99, 1 420; three-dimensional, sampling
models for, 929; two-by-two, 398, 1166,
1199, 1420; two-by-two, and the paradox
of confirmation, 1 99, 245; two-rowed, 1 065,
1402; and type II likelihood ratio, 929,
1199, 1420; used by philosophers without
knowing it, 1 221; weighted lumping of rows
of, 83, 398; and x2, 929, 11 99, 1420

Continual creation and destruction, 788A;
and the need for new particles to have the
velocity of light, 728 (355-56)

Continually branching universes, 999
Continued fraction: for the exponential func-

tion, 827, 1250; Laplace's, 1401
Continued fractions, 1075; analytic, and

random walks, 141; measure theory of, 2
Continuity. See Mathematical convenience
Continuity correction for multinomial chi-

squared, 398
Continuous data, how discretely should it

be treated, 1383
Continuum of inductive methods (W. E.

Johnson and Carnap), 398, 547. See a/so
Multinomial distribution

Control, remote, by dentists, 339
Controversies, resolved by the distinction

between rationality of two types, 290
Controversy in statistics: avoidable up to a

point, 398; the main one, 1313; unavoidable
in applications, 398

Contour integration, multiple, 200, 238,
263; and cumulative sums, 236; and Markov
chains, 237

Contradiction, 1 3
Conventions, 13
Convex functions, and fair fees, 690A
Conviction, intensity of, 398. See a/so Degrees

of belief
Convolution, 1 3
Conway'sgame Life, 1451
Cornish-Fisher expansion, not necessarily ro-

bust, 1034
Corpus callosum, 1322A
Correlation coefficient: geometrical representa-

tion, 398; informational, 1390; joint prior
via uniform distribution on a sphere, 293;
matching, 397 (66); for monotonic functions,
792; for monotonic functions, and path
analysis, 1157; partial, 1249; partial, and
canonical correlation, 1249; partial, geo-
metrical representation of, 398, 1249; partial,
and spherical trigonometry, 1 249; for power
functions, 792; for power functions, and
path analysis, 1157

Corroboration, 599, 958, 1160, 1421; degree
of, not a probability, 191; explicata for,
191, 211; as not enough, 1451; possible
multiattribute (or vector) interpretation of,
211; as a quasiutility, 211; relationship of,
to explanation, 1421. See a/so Weight of
evidence

Cortex. See Cerebral cortex
Cosmic Club, 391, 476, 644, 1212, 1298
Cosmic rays and mutations, 13
Cosmology, 153, 339 (330-36), 788A, 999;

and Go, 181
Counterfactual, 245
Courses: about courses, 1338; about "labor

markets," 1338
Covariance (and autocovariance): and block

matrices, 210; calculation of (not the best
method), 222; function of, 854; lagged,
323, 323A; matrices, complex, 323; matrices,
ranks of, 142, 192; matrices, and spectral
densities, 210; of stationary process, 854;
weighted, for estimating the direction of
a signal, 323

Coverage of a sample, 38, 86, 398, 524
Cow (Wisdom's), probabilistic, 397 (42, 74)
Craps for icosahedral dice, 643
Creativity, 598, 666; automatic, the central

problem concerning stated, 1235; in a com-
puter, 777, 1212, 1367; definition of, 615;
and duality in perception and recall, 615,
771; in good puzzles, 615; importance of
free time for, 169; "open-ended," 615;
simulation of by speed of operation, 777,
1367

Credibility, 13, 397 (42); distributions of,
impossible to reach agreement concerning,
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398; and mental health, 398. See also Prob-
ability, logical

Cretan liar paradox. See Paradox
Crime: deterrents of, 1024; optimal amount

of, 753; records of, can be misleading, 520,
928; spatial analysis of, and regression,
1024. See also Law

Criminals, twins of, 398, 1166
Crohn's disease, 700
Cross-covariance function, 854
Cross-entropy, 77, 398; invariantized, 618,

622. See also Dinegentropy; Weight of evi-
dence, expected

Cross-ratio in two-by-two contingency tables,
1389

Cross-spectral densities, 323 (451, 457)
Cross-validation. See Predictive sample reuse
Cryogenics, 397 (33)
Cryptanalysis, 1160, 1386; in a dream, 1178,

1299; and the logic of randomness, 643.
See also Colossus; Cryptology

Cryptanalytic technique related to polypep-
tides, 1450

Cryptology, 524; cryptanalysis, and crypto-
graphy, 1015, 1178. 1218. See also Crypt-
analysis

Crystallography, X-ray, and coding theory,
52, 186

Crystals, centrosymmetric, 52, 186
Cubes, truncated, and integration, 11 00
Culture, and guns, 339
Cumulants: of an analogue of chi-squared,

1 399, 1404; bivariate, in terms of moments,
238; expressed as moments, 895, 981; joint,
of chi-squared and an analogue, 1404; multi-
variate, of quadratic expression, 646; and
a new formula for involving roots of unity,
895, 981; and the saddlepoint method,
238

Cumulative sums, 236
Curvature, 701; measures for and roughness

penalties, 1 341
Curve-fitting, 13. See also Probability density

estimation
CYBERSEX, for stimulation simulation, 666

Dabbler's law, 705
Danielewsky's method, analogue of, 235
Daniel's adjustment of sums of squares, 11 75
Darroch's conjecture, proved, 322
Data, 1330; processing of, 169, 217: see

also EDA; if you torture them they will
confess (Coase), 753, 1330

Day of the Jackal, 1350
db, 1 3. See also Decibel; Deciban
Deadlines, dreaded, 957
De-astrologization, 1414
Deciban, 221, 690A, 732 (14-15), 1201,

1361, 1386; in diagnosis, 700. See also
Decibel

Decibel (or deciban), 13
Decimals: accurate to only a million places,

323 (461); generalized (and entropy), 2;
and randomness, 2, 13

Decision, definition of, 315, 761
Decision theory: and information retrieval,

523; and the theory of rationality, 115,
290. See also Rationality; Utility

Decision trees, 592; and cryptanalysis, 796;
historical, 796

Decisions: versus conclusions, 290; when to
make, 290

Defect, expected, 80
de Finetti's theorem, 398, 617, 956, 1068,

1436
de Finetti's views and mine compared, 617
Definition: circularity in, 397 (42, 75), 615;

of concepts and indicants, 798; of "defini-
tion," 162, 217, 397 (42); of "definition,"
and neurophysiology, 980; operational, 243
(495)

De Good, 1436
Degrees of belief, 13, 1313; belief in, 228;

concerning mathematical theorems, 13: see
also Probability, dynamic; interval-valued,
1313: see also Degrees of belief, partially
ordered; partially ordered, repeated em-
phasis by Good, 1313; sharp landmarks
in, 1313; sometimes meaningless, 13; upper
and lower, not necessarily reduced from sharp
values, 1313. See also Probability, subjective

Degrees of belonging, 1148
Degrees of meaning, 13. See also Fuzziness

of language; Fuzzy sets
Deimos and Phobos, 688
Deja vu, 243 (517)
Delta rhythm, 397 (65)
Demarcation, no line of between science and

metaphysics, 243 (492)
Demiurge, 690A; of Laplace, 956; in simula-

tion experiments, 1402; thinking by, 796
Democracy, how to save, 751
De Morgan's probability estimate (really

Laplace's), 1402, 1420
Dendroidal categorization of classification,

411
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Denjoy-Khintchine theorem, 1
Density estimation. See MPL; Probability

density estimation
Dentistry, remote-control, 339 (139-40), 1212
Dependence, 13. See also Independence
Depository of unpublished literature, 1276
Depth hypothesis, 397 (70)
Depth perception, stereoscopic diagrams of

Julesz, 1450
Design of experiments: and expected weight

of evidence, 1201, 1361; and the mixture
problem, 662. See also Factorial experi-
ments

Detection of signals in noise, 221. See also
Signal detection

Determinant: centrosymmetric, 1404; of a
"Gaussian" matrix, 1111; generalized, and
generalized generalized variance, 1354; gen-
eralized, and generalized Jacobians, 1371;
Gram, 192; higher order, 322; and Markov
chains, 1 36; of an operator, 854; positive, 8

Determinism, 13, 153, 499, 956, 1221; and
free will, 761, 882, 1322A; and Laplace,
1322A; as more relevant to theology than
to science, 761; two-way, 339 (314-15)

Deusex machina, 243 (514), 397 (32)
Device of Imaginary Results, 290, 398, 618;

for avoiding unconscious cheating, 398; •
and binomial estimation, 883; for choice
of priors, 547, 862, 1313, 1420; essential
for many dimensions, 729 (492-94); and
Perks's capitulation, 1420; praised by Turing,
1238; as probably revolutionizing multi-
variate statistics, 1277; and robustness,
1420; and scientific induction, 793; for
selection of hyperparameters (and hyper-
hyperparameters), 398, 547, 862, 929.
See also Bayes's theorem in reverse

DFT (Discrete Fourier Transform), 17, 20,
36, 645, 1036, 1408; and the discrete Gauss
transform, 1111; and Fourier series, 1036;
and integration, 1100; multidimensional,
316, 397 (81); multidimensional, and fac-
torial interactions, 146, 209, 398, 708;
multidimensional, and multidimensional con-
tingency tables, 322; multidimensional, and
random numbers, 203; and Poisson's summa-
tion formula, 316; table of pairs of, 1036;
two-dimensional, applied to the chi-squared
distribution, 1408. See also Fourier-Galois
transform

Diabolus ex machina, 520, 525, 777, 928,
1367

Diagnosis, 398, 570, 592, 636, 666, 755,
798, 1 397; the Bayesian approach to, 1 338;
and communication theory, 755; with fallible
doctor, 1369; four meanings of, 755; of
Heath Robinson fault by smell, 1015, 11 78,
1218; and implicit utilities, 636; logic of,
755; loss due to error in, 755; as a path down
a diagnostic tree, 798; probabilistic, 755,
798; restricted, 798; the "right-hemispherical
school" for, 1338

Diagnostic search trees, 755, 798
Diagnostic tree, probabilistic, 798
Dialleles, 33
Dialysis machines, 1350
Dice: icosahedral, 643; loaded, 13
Dictators, benevolent and beneficient, 795
Dictionaries: statistical theory for, 38, 86;

technical, and abstracting journals, 169
Dictionary, statistical, 397 (46, 47)
Dictionary making, sample of text required,

86,398
Diencephalon, 397 (64)
Dientropy, 618
Differences of powers at zero, asymptotic

formula, 225
Diffusion and Gauss transform, 1111
Digamma function and DFT's, 1036
Digraph frequencies, 36
Digraphs (bigrams), joint probability of, in

a Markov chain, 1 36
Dilute solutions, 1250
Dimension rate, in communication theory

(Shannon), 142
Dimensionality, 1075: of space, why 3, 181;

of space-time, 339 (330-36)
Dimensions: fractional, 13; seven or eight

representable by colored graphics, 1330,
1492

Dinegentropy, 618, 755, 854. See a/so Cross-
entropy; Weight of evidence, expected

Dinge an sich, 61 7
Dirac catastrophe, 699, 701, 81 0
Dirac delta function, 398; "sliced," 398
Dirac electron a black hole(?), 999
Direction finding and the consilience of judg-

ments, 1186
Dirichlet distribution: equivalent to use of

flattening constant, 398; lumping property
of, 929, 1199, 1420; symmetrical, better
than Bayes postulate, 398

Direchlet priors, 38, 86, 127, 398, 860; mix-
tures of, 398, 522, 547, 724 (77-80), 729
(492-94), 793, 862, 929, 1060, 1160, 1199,
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1313, 1358, 1365, 1420, 1444; mixtures
of, for continuous data, 1 275; symmetric, as
being rejectable, 1420; testing of, 1420

"Dirichlet" probability estimation, 1402
Dirichlet processes, 1060; and Dirichlet mix-

tures, 1420
Dirichlet-multinomial distribution. See Multi-

nomial-Dirichlet probability
Dirichlet's multiple integral, 13, 29, 398,

696, 929; generalized, 29
Discernibility without perceptibility, 1357
Disciplines, distances between, 1217
Discrete distributions made continuous, 398
Discrete Fourier Transform. See DFT
Discrete multivariate analysis, 957
Discreteness and continuity, relationship be-

tween, 237
Discrete-to-continuous transition, 237
Discriminant functions and probability den-

sity estimation, 701, 810
Discriminants, linear and nonlinear, 397 (49,

50), 1019
Discrimination: between distributions, 957;

between hypotheses, 398; information, 1160;
nonlinear, 1019

Disease: concept of, reason for using, 700;
definition of, 798; as a probabilistic cluster,
798; probabilities for, estimation of, 1148;
as two diseases, condition for, 1017

Dishonest man as a noisy transducer, 77
Dismissal of philosophies owing to semantic

confusion, 958
Dissimulation, experimental (lying), 1322A
Distance between distributions, 198. See

also Divergence
Distinctions, partly in the eye of the beholder,

755
Distribution: bimodal, 398; of a chance, 13;

of a distribution, 13; rectangular (or uni-
form), 13; rectangular, and contingency
tables, 13; rectangular, and Laplace's law
of succession, 13; rectangular, and maximum
likelihood, 13; semiinitial, 83, 398

Distributions: ellipsoidal, a representation for,
1457; improper, 631; improper, Jeffreys's
axioms for, 1160; improper, in quantum
mechanics, 1160; linear combination of,
13; primary, secondary, tertiary (types I,
II, III), 729 (492-94); of types II and III,
398; "ungentlemanly," 565; utility of, 198,
618,622

Divergence, 315, 854; between all pairs of
diseases, 755; and diagnosis, 755; between

distributions, historical comment concerning,
1 160. See also Weight of evidence, expected

Divergent series: of factorials, 4; summation of,
3,4, 5,6, 86

Diversity, 38, 86, 1397; and DMA homology,
1397; indexes, history of, 1397; indexes,
quadratic, logarithmic, and generalized, 1397;
indexes, weighted, 1397; and the parameters
in a law, 1 397; relative to an initial distribu-
tion, 755. See also Heterogeneity; Population,
composition of; Repeat rate; Surprise index

DNA, 397 (33); composition of, 1451; ho-
mology of, 1397; molecules of and Slinky,
1445

Doctor-in-house principle, 397 (43)
Doctor's objective, maximizing expected util-

ity, 798
Doctor's scale factor 7 for estimating weight

of evidence, 755
Document retrieval, operational research on,

397 (50)
Dogs, conditioning of, 1 3
Dolphin, bulgy cheeked, 701
Dons, as also human, 1015, 11 78, 1 21 8
Doog, K. Caj: introduced as a joint author

to justify the use of "we" in a publication,
142; Lord, 210, 243 (492)

Doogian, all things are Doogian to a, 724
(77-80)

Doogian theory, 1267
Doog's conjecture, 21 0
Draft lottery, 753
Draughts, 185. See also Checkers program
Dream recall difficulty, and the subassembly

theory, 777, 1367
Dreamless sleep, 397 (57, 65)
Drosophila, 1 3
Drunken-sailor problem, 1268
Dualism, 13, 398, 1068; and machines, 243;

between maximum-likelihood estimation and
maximum entropy, 398; of mind and body,
861; in perception and recall, 615; in the
subassembly theory, 796

Duodenal ulcer, 636
Dutch book, 398, 1241
Dynamic probability. See also Probability,

dynamic
Dynamical analysis, 777, 1367
Dyson's conjecture, 668

Eagles on Mars, as layers of square eggs, 890
Econometrics: and Bayesian inference, 875;

defined by saying that "independent variables
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occur on both sides of the equations,"
875

Economics: of information, 1313; problems
of, 1351

Economists, laid end to end (Shaw), 1221,
1351

EDA (exploratory datum [or data] analysis),
1330, 1492; aims of, 1330, 1492; and the
automatic formulation of hypotheses, 1330,
1492; and CDA (confirmatory data analysis),
distinction not sharp, 1330, 1492; and CDA,
and the two hemispheres of the brain, 1 330,
1492; and colored graphics, 1330, 1492;
as dating back billions of years, 1 330, 1492;
versus descriptive statistics, 1330, 1492;
and divergent thinking, 1330, 1492; and
encouragement of hypothesis formulation,
1330, 1492; first rule of, "look at the data,"
1330, 1492; as a fishing expedition, 1330,
1492; and Francis Bacon's philosophy of
science, 1330, 1492; and hypotheses of
improved explicativity, 1330, 1492; and
hypothesis formulation, 1330, 1492; as
more Bayesian than orthodox CDA, 1330,
1492; and neurophysiology, 1330, 1492;
and partially ordered subjective probability,
1330, 1492; and pattern recognition, 1330,
1492; philosophy of, 1330, 1492; and pre-
sentation of data, 1330, 1492; and probabili-
ties of hypotheses, 1330, 1492; and reduction
of data, 1330, 1492; and successive deepen-
ing of hypotheses, 1330, 1492; theory of,
1330, 1492; theory of depends more on
prior probabilities than on simplicity, 1330,
1492; and type II rationality, 1330, 1492

Eddington's fundamental theory, 709
Edge worth series: bivariate, 1404; and Poisson,

1 436; in signal detection, 21 0
Editors, as responsible for protecting the

language, 844
EDSAC, 666
Education, 397, 753; as a capital asset, 80;

personal, vocational, and social, 1338. See
also Baby

Educational theories, 1338
EDVAC, 666
EEC (electroencephalogram), 243 (509), 796;

and ESP (and LSD, too, perhaps), 339 (168-
69); explanation of, 243 (509), 397; as a
three-dimensional process, 629

Effective number of states, 169
Efficacy of a vote, definition and estimation

of, 883

Eigenvalues, inequalities for, 398
Eigenvectors, 397 (53)
Elasticity theory and roughness penalties,

1341
Election, influenced by polls, 13 (41 n)
Electoral behavior, 883
Electron, Dirac's theory of, 882, 1322A
Electronic computing at Manchester, my notes

of, 1015, 1178, 1218
Electronic reasoning, and credibilities, 13
Electronic units, prediction of small inexpen-

sive ones, 1 85
Elementary particles as black holes, 788A
Elementary symmetric function, 13
Elephants and cancer, 1445
EM algorithm used (not named), 83
Emerald paradox, 875. See also "Gruesome"

paradox
Emergence and randomness, 697
Emperor not naked, 722 (513-14)
Empirical Bayes, 38, 86; ambiguity of the

expression, 1351; history of, 1201, 1361;
implied by Bayesian ideas, 522; recovery of
Poisson prior in, 750 (1 00); smoothing in, 38,
724 (77-80). See also Bayes

"Encephalohologram," 796
English: informative, classification of rules of,

11 0; language too often murdered by techni-
cal writers, 844; vocabulary in, 398

Engram, 185
ENIAC, 666, 1 221; preceded by Colossus in

some respects, 1 419
Enigma, 1015, 1178, 1218, 1299, 1397, 1419;

cryptanalysis of by Poles, 1386
"Entrenchment," 958
Entropy, 524, 1 201, 1361; and consciousness,

243 (498); constrained, local maximum of,
398; of cortical activity, 397 (58); in diagno-
sis, 755, 798; differential, 854; and expected
weight of evidence, 13, 522; exponential of,
as a prior density, 322; and fractional dimen-
sions, 2, 1 075; gain of painful, 243 (507); of
Gaussian vector process, 210; generalized, 82,
142, 1 274; and induction, 793; invariantized,
618, 622, 1160; and inverse probability, 77;
and log-likelihood, maximizing linear combi-
nation of, 398; maximum, 322, 397 (51, 82),
398, 522; maximum, iterative scaling pro-
cedure for, 398; of multivariate normal
distribution, 142; and other measures of
diversity, 38, 86; proportional to logarithm of
initial density, 398; and time direction, 339;
unbiased estimate of, approximate, 38, 86;



INDEXES 283

at various levels, 243 (497). See also Weight
of evidence, expected

Enumerability, constructive and nonconstruc-
tive, 626

Enumeration of a kind of partitioning of a set
of various kinds of objects, 895, 981

Envelope, back of, sometimes the best method,
1383

Epistemic utility, 121 7. See also Quasiutility
Eponymy, often historically misleading, 1397
EPR (Einstein-Podolsky-Rosen) paradox, 385;

and ESP, 1322A
Equally probable cases, 13
Equicorrelation, test for, 1457
Equiprobability of partitions, 398
Equivalent (or parallel) probability measures,

854
Equivalent propositions, 13
Equivalent sequence, 398. See also

Permutability
Ergodic process, 854
ERNIE, 203,643
Error: by almost all the statisticians sampled by

Godambe, 1332; by B. Babington Smith, 36;
by Bertrand Russell, 796, 1330; by C. R.
Hewitt, 520, 928; correction of, 397 (37); by
D. O. Moberg, 520, 928; by Eddington, 814,
999; as encouraged by P. B. Medawar, 520,
928; by the First National Bank of Boston,
520, 928; by Fisher (in the fiducial argu-
ment), 520, 659 (139), 928, 970; by Francis
Bacon, 1330; by Gail and Mantel, 1173; by
Good, 2 (201, 215), 84, 127 (see #238), 236
(121), 374, 398 (17, 19), 547 (equation 32),
672, 11 59; by Hempel, 958; by high authori-
ties, 520, 928; by Lord Rutherford, 520, 928;
by M. J. Moroney, 520, 928; by Meduna, 520,
928; by Nelson D. Rockefeller, 520, 928;
probabilities of, estimation of, 755; by
referee, 643; by Rutherford, 666; by Sir
Maurice Kendall, 36; by Sir Robert Arm-
strong-Jones, 520, 928; by Sir Stuart Milner-
Barry, 520, 928; by Sydney J. Harris, 928; by
Willard Wirtz, 520, 928; by Zia ud-Din
(disastrous misprint), 981

Error-correcting codes and X-ray crystallogra-
phy, 52,186

Error matrix, 755
Errors: in diagnosis, loss of expected weight of

evidence due to, 755, 798, 1303; in diagnosis,
loss of information transfer due to, 755, 798;
of the first and second kind, 13; of the first
and second kind, and weight of evidence,

1 303; of the first and second kind in diagno-
sis, 755, 798; by the great, 520, 928; of
observation in diagnosis, 798; by R. Swin-
burne, 958

Escherichia coli (bacterium) and natural selec-
tion, 1451

ESP (extrasensory perception), 13, 339, 1212;
and fraud, 1322A; and natural selection,
1322A; paucity of successful results concern-
ing, 861; probability of as not zero, 1 322A;
and quantum mechanics, 1322A; repeatable
experiments in by independent experimenters
essential, 162; speed of, if possible, 861; and a
split-brain experiment, 1322A; spontaneous
and nonspontaneous, 861, 882, 1322A;
"through a glass darkly" (shy)(?), 1 21 2. See
also Parapsychology; Precognition; Telepathy

Estimates exist even if vague, 890
Estimation, 13; of binomial chance, 398; by

maximum entropy, and neural circuits, 398;
by maximum explicativity, 1161; of proba-
bilities, fundamental in scientific inference,
398; of small probabilities, 398

"Ether," 788A
Ethical machines: as perhaps Bayesian, 1350;

possible interpretations of, 1350
Ethical principles, clarification of, now urgent,

for UIM design (or ask the UIM after it is
built), 1350

Ethical problems, 397 (34), 1 350; definition of,
1350

Ethical treatments, 1146
Ethics, 13; in clinical trials, 1146; in medical

trials, and simultaneous trials, 1 272; pro-
gramming of, initiated by Socrates, 1350;
and sequential trials, 201

Ettinghausen's formula for Stirling numbers,
966

EUI (French for U1P, ultraintelligent people),
777, 1367

Euler summation, 6, 86
Eulerian numbers, geometrical interpretation,

1100
Euler's partition formula, 981
Euler's unicursal theorem, analogue of, 7
Evaluation functions in chess: automatic

improvement of, 777, 1 367; quadratic,
1235; related to probability of winning, 777,
1367

Eve and Adam, 1445
"Event space" (in medicine), 798
Evidence: as always containing conflicting

pieces, 1396; circumstantial, 13; ignoring of,
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13; principle of total, 730 (104-5), 1221.
See a/so Weight of evidence

Evolution, 339, 697; and catastrophe theory(?),
1025; neo-Darwinism theory of, 1451;
obvious to the scientific methodist, 243
(494); and spatial models, 1025; why rapid
(Bruce Penham), 1445

Evolutionary operation, 1235
Evolving probability, 599. See also Probability,

dynamic
Examinations: multiple-choice, 1181; multiple

thresholds in, 753
Exchangeability. See Permutability
Expected information, 854. See a/so Entropy
Expected mutual information, rate of, 854
Expected weight of evidence. See Weight of

evidence, expected
Experimental design, 13, 618, 622; expected

information in, 323 (464); and expected
weight of evidence, 1160; optimization of,
618; utilities in, 211; with mixtures, 662

Experimental dissimulation (lying), 1137, 1445
Explanation, 599, 844, 1420; of the Bode-

Titius law, 705; "evolving," 705; good,
1330, 1451; good, not necessarily corroborat-
ed, 1421

Explanatory power: strong (explicativity),
599, 844; weak, 599; weak, and amount
of information, 211

Explicable pattern, definition of, 1330
Explicativity, 599, 705, 890, 958, 1161; and

corroboration, 1421; and EDA, 1330; for-
mula for not yet refuted, 890; and natural
selection, 1451. See a/so Explanation; Ex-
planatory power

Exploratory data analysis. See EDA
Exploratory investigations, justified without

clear objective, 520, 928
Explosions, ignorance, intelligence, and hydro-

gen, 666
Exponential: continued fractions for, 827,

1250; of a homogeneous function, averaged
on a sphere, 758; of a quadratic, averaged
on a sphere, 758

Exponential function, continued fraction for,
827

Exponential numbers (Bell numbers), 929
Exponential-entropy distributions, 793
Exposition, classification of rules for, 110
Extrasensory perception. See ESP
Extraterrestrial life, 339, 391,476,644, 1212,

1298, 1445
Extraterrestrials, as possibly UIM's, 1212

Extraterrestrial's genetic code (Gordon Serjak),
1445

Eye movements and perception, 771
Eye-brain experiment, 629, 771

Faa de Bruno's formula, multivariate form of,
238

Facet, in clinical medicine (value of), 700,
755,798

Facilitation, 397 (55, 58, 59)
Factor, Bayes. See Bayes factor
Factor analysis, 398
Factorial experiments, 397 (70); and FFT,

146, 209, 708; smoothing of observations
in, 146, 209, 708

Factorization of kernel, approximate, 398
"Failsafe," 498
Fair fees. See Fees, fair
"Faith without works is dead," as a threat

to confidence intervals, 1313
Fallacies: classification of, 196; statistical,

520, 928
Fallacy of typicalness, 221
False-alarm probabilities, 221
Falsifiability, importance of, as flowing from

a subjectivistic theory, 191
Fast Fourier Transform. See FFT
Fathers and grandfathers of statistics, 1436
Fecal flora, bacterial composition of, 960
Feedback: control of by centrencephalic sys-

tem, 397 (64, 65); to head of state (Dan
Herrell), 1445; negative, in the brain, 243
(508); positive, for sleep, 243 (509)

Fees, fair ("proper" fees, "incentive" fees),
for-probability estimates, 690A, 723 (337-
39), 1181, 1274, 1313; logarithmic, 690A,
1238; logarithmic, their history ignored,
844; a mathematical problem concern-
ing, 690A; and multiple-choice examina-
tions, 1181; pseudospherical, 723 (337-39);
splitative, 690A; and the utility of a dis-
tribution, 690A; and weight of evidence,
690A

Feet on ground and head in clouds, 243 (492)
Fenny Stratford, 1015,11 78, 1 21 8
Feynman's path integrals: and Huygen's prin-

ciple, 1333; and Wright's path analysis, 1333
FFT (Fast Fourier Transform), 146, 209,

645, 708, 974, 1408; applied to enumeration
of arrays, 974; in an EEC, 796; and poly-
nomial algebra, 645; relation of between
two methods, 708; and smoothing, 1330;
used to compute the exact distribution of
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chi-squared, 1408; used for maximizing
penalized likelihood, 1383

FFTMPL (FFT for maximum penalized like-
lihood), 1383

Fibonacci numbers: and the Bode-Titius law,
764, 837; and Lucas series, 900; and pseudo-
random numbers, 660; reciprocal series of,
829

Fiducial argument: and Bayesian methods,
970; faith in, 228; fallacy as pinpointed,
659 (139), 970; inconsistent with Bayesian
philosophy, 398; and initial distributions,
228; "permutative," whether worth sal-
vaging, 398; and probabilities out of nothing,
970

Fingerprints: duplicated(?), 1485; and heredity,
1445; of identical twins, 1 83, 1 85

Finite additivity and laws of zero probability,
956

Finite element method, 11 00
Finite fields, 708
Finite-frequency theory, 13
Finite Gauss transforms, 1111
Fish, a teleprinter cryptographic system,

1419
Fisher: biographical comments concerning,

970; and branching processes, 970; versus
Karl Pearson, 722 (513-14); partly antici-
pated, 970; as perhaps a Bayesian, 970;
and the Wishart distribution, 970

Fisherian criterion, 862
Fisher's exact test of two-by-two contingency

tables, 929, 1199
Fisher's information (matrix), invariant gen-

eralization, 699, 701, 733 (284-86), 810,
970, 1160

Fisher's self-citations, distribution of, 1290
Fisher's temper, loss of, 970
Five-billion times table, 644
Flamboyance, 701, 810
"Flannel-Foot," 761
Flat-random sequence, 643
Flattening constant, 398, 547, 862, 1080,

1199, 1420; credibilists', 398; as depending
on the frequency count, 398

Flea, as an unbreakable cipher machine, 761
Flexibility in Colossus, 1419
Flowers, T. H., his lecture on Colossus, 1419
Flying saucers, surreptitious, 243 (493)
Fonts, according to part of speech, 1445
Food for thought, 796
Football: probability of a win in by r goals, 201;

and whether the better team often loses, 201

Forcing cycles in genetic nets, 1401
Forecaster and valuer, kept separate, 690A
Forecasting, meteorological, 13
Forensic science, 1396
Forgetting, advantages of, 1445
Fossils, and the tree of life, 1 451
Foundations of probability and statistics.

See Causality; Confirmation; Explicativity;
Fees, fair; Induction; Information; Philoso-
phy; Probability; Rationality; Statistics;
Weight of evidence

Four-color theorem, 1221
Fourier series: band-limited, 56; and the DFT,

1 036; and Hermite series related, 1 200
Fourier transforms: discrete: see DFT; in

Euclidean geometry, 11 00; number-theoretic,
708; of retinal image, 629; and tomography,
670

Fourier-Galois transform, 708
FRACT (factor against independence in a con-

tingency table from row and column totals),
929, 1199, 1358, 1420

Fractals, 1075
Fractional dimensions, 2, 13, 956, 1075; and

"levels" of zero probability, 956
Free will, 761; and determinism, 882, 1322A;

and speed of computation, 707
Freedom: and complexity, 761; price of,

761; relativity of, 761
Frequencies: of anaerobic bacteria, 960; of

frequencies, 38, 86, 398; of frequencies,
sometimes proportional to xrlr(r+\), 960;
of frequencies, their relevance inconsis-
tent with Johnson's sufficientness postulate,
398

Frequency: instantaneous, 629; as interpreta-
tion of credibility under random selection
of universes(?), 398

Frequency response function, 854
Frequency theory of probability, 13; apparent

concession to, 1 3
Frequentism: as inconsistent with complete

additivity (de Finetti), 956; as subsumed
under Bayesianism, 1313

Freudian theory, as possibly scientific if made
statistical, 191, 243 (494), 753

Friedmann universe, 999
Functional equations, 211, 315, 505, 599

(141).Seeo/so Slide-rule
Functional relationship with x and y both

subject to error, 875
"Functionality" (generalized additivity), 211
Functions: "after-effect," 398; class of,
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positively linearly closed, 795; generalized,
398; space of, 13, 701, 810

Functions of several i.i.d. random variables,
1334

Fundamental particles: and Moire fringes,
1445; numerology concerning, 218, 339

Fundamentaldiskriminante and DFT's, 1036
Futuristics, 753
Fuzziness of language, 1 313. See also Degrees

of meaning
Fuzzy Bayes estimation, 1148, 1402
Fuzzy sets, 1148. See also Degrees of meaning

G for contingency tables: asymptotic distribu-
tion of, good down to/>= 70~30, 929, 1199;
equivalence to a type II likelihood ratio, 929,
1199, 1420

Go for multinomials (equivalent to a type II
likelihood ratio), its asymptotic distributions
adequate down to extreme tails, 547, 862,
1420, 1444

Galaxies on photographs, automatic identifica-
tion of, 153

Galaxy, whether its size is surprising, 814, 999
Galois fields, 708
Galton-Watson-Biename process, 200, 857
Gambler's ruin, 20
Gambling (and betting), 13; impossibility of

a system (von Mises), 13
Game playing by computer, 592. See also

Checkers program; Chess; Draughts
Game theory (and statistical decisions), 115
Games. See Chess; GO
Games of chance (idealized), for producing

probability landmarks, 13. See also Cards;
Coin-spinning; Dice

Gamma distribution, moments of, 1257
Garden of Eden, 1451
Gauss transforms, discrete, inversion of, 1111
Gaussian matrix, inverse of, 1111
Gaussian model, can it be salvaged(?), 210
Gaussian noise, band-limited, 142, 1 92; clipped,

409; in a transmission line, 939
Gaussian polynomial, 1111
Gaussian process, 854
Guassian sequences, their smoothness, 1343
Gaussian source, estimating direction of, using

weighted covariance, 323, 323A
Gaussian stochastic process with bell-shaped

autocovariance, 1111
Gaussian sum, 127, 316; and DFT's, 1036;

simplest proof of, 56
Gaussian variables and maximum entropy, 398

Gauss-Jacobi integration, 1100
Gauss-Kuzmin formula, 1075
GC & CS (Government Code and Cypher

School), 1015, 1178, 1218, 1299, 1419
Gedanken experiment, 547 (428)
Geheimschreiber, 1419
Gel, 397 (61)
General Problem Solver, 777, 1367
General relativity: and angular momentum,

898; and black holes, 788A; and invariant
priors, 1160; prior probability of, 890. See
also Relativity

Generalist, preferably also a specialist, 169
Generalization, 397 (71)
Generalized determinants and generalized

Jacobians, 1354, 1371
Generalized generalized variance, 1354
Generalized inverses treated by the singular

decomposition, 607, 1354
Generalized variance, 1248
Generating function: as applied to folded

contingency tables, 398; extraction of coef-
ficients in, 127, 238, 645, 1408; in several
variables, 127, 236, 238, 974. See also Arrays;
Lagrange's expansion; Trees

Generation of random digits, 1436
Genetic code, 398, 1450, 1451
Genetic nets, randomly connected, 1401
Genetic systems, circuits of regulation, 1401
Genetics, 13, 207, 398, 1451; phenotypic

values in, 486; short glossary for, 1451;
and skin banks, 33

Geology, 753; grandfather of (G. H. Toulmin),
750 (102)

Geometrical structure occurring in voting
theory, 966

Gestalt thinking, 777, 1367
Ghost in the machine, 243 (490, 512ff)
Ghost within ghosts, 243 (490)
Gibbs-Szilard-Shannon-Watanabe-Turing-Good-

Jeffreys-Kullback-Leibler dinegentropy, 957,
980. See a/so Weight of evidence, ex-
pected

Gingivitis, experimental, 1453
Gini's index of diversity, variance of its un-

biased estimate, 1397
GO (Wei-chi), 777, 1367; and cosmology,

1 81; and "fields of force," 777, 1 367
God (Godd), 391, 418, 476, 644, 882, 1217,

1322A; and Bronowski's expression "No
God's eye view," 721 (29-30); and conscious-
ness, 1322A; devil's advocate for, 243 (490);
and free will, 761; and Good saw that it
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was, 882, 1322A, 1455; limitations of, 761;
as putting a soul in a machine(?), 777, 1367;
and quantum mechanics, 385; and a second
time dimension, 999; species in the mind of
(Plato), 1397; and telepathy, 391, 476,
644. See also Lahmu and Lahamu

Godambe's paradox, 1332
Godd, 882, 1322A; humans becoming part

of, 882, 1322A; as otherwise invented by
Good, 882, 1322A; as showing "through
a glass darkly" ("shy"), 882, 1322A; and
telepathy, 391, 476, 644. Also consult
God

Gbdel's theorem, 426; and determinism,
761; philosophical significance of, 540;
as a red herring, 626; versus transfinite
counting, 761

Gods: atheistic, 999; countable infinity of,
882, 1322A; Greek (absolute humbug),
1414; out of chaos, 999; plan of to replace
humans by machines(?), 861

Golden ratio and planetary distances, 764,
837

Golgi apparatus, 796
Good, I. )., and one person who has read all

he has written, 958
Good-Cooley-Tukey algorithm, 146, 209, 708
Good-de Bruijn diagram, 7
Good-King Solomon's law, 1436
Good: de, 1436; and getting better, 1015,

11 78, 121 8; noncitations of, 844; the, 1350
Goodman's paradox of induction resolved,

844
Good's Dream Figure, 598
Government Code and Cypher School. See

GC & CS
Grade inflation, a simple cure(?), 1 033
Grades, "standardized," 1033
Grading of game players, 50
Grafts, skin, 33
Gram determinants, 142, 192
Gram matrix, 398
Grand Cosmological Principle, 999
"Grandparents of the deed," 243 (499)
Graphs: oriented linear, 7, 136, 413; use of,

7, 169, 217, 397,413, 521, 533, 592,615,
700, 755

Gravitation, infinite speed in Newtonian
physics, a simple proof of, 898

Gravitational constant, 709
Greek gods, 1414
Groping toward the truth (Cochran), 1330
"Groundnuts scheme," 1186

Group: characters of, 316; selection by, 1445,
1451; of transformations, 1 227

Grue and bleen, 875
"Gruesome" paradox, 541, 844, 875, 958
Grundstellung, 1386
Gun, and when I hear the word, I reach for

my culture, 339 (188-89)
Gun control and randomized legislation, 1020

H. G. Wells on Statistics, fifty years ahead of
his time, 1338

Haar functions, 1383
Haar measure, 737 (475), 1227
Habituation, possible explanation of, 243

(510, 511)
Hadamard transform, 708; in the brain, 796
Haldane's initial distribution for binomial

physical probability, 398, 631
Hallucinations and evidence, 1023
Hamming's error-correcting code, and crystal-

lography, 186
Happiness, 13. See also Utility
Happiness as wide vision, 796, 1445
"Hard science," definition of, 890
Hardy-Littlewood: circle method of summa-

tion, 6; principle of summability, 3
Hardy-Ramanujan partitions, and the multi-

nomial, 1408
Harmonic analysis, generalized, for discrete

and continuous time, 210. See also DFT
Harmonic-mean rule of thumb, for combining

tests "in parallel," 174, 753, 980, 1080
Harvard Mark I, 666
Hausdorff moment problem, 398
Hausdorff summation: generalization to mul-

tiple series, 398; as Monte Carlo process,
398

Hausdorff transform, 398
Hausdorff-Besicovitch fractional dimensions.

See Fractional dimensions
Hearsay evidence, 13
Heart attacks on rest days, 988
Heat equation, 643
Heat flow and Gauss transforms, 1111
Heath Robinson (electronic cryptanalytic

machine), 1015, 1178, 1218, 1419
Heaven-and-hell game, 750 (32)
Heaviside's function and DFT's, 1036
Hebern wheel, 1015, 1178, 1218
Hedonist, a problem for, 339 (1 99-200)
Height of men, 13
Hemoglobin, alpha-chain in (same for man

and chimpanzee), 1450, 1451
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Hempel's paradox of confirmation, 199, 245
Heredity, 13. See also Evolution; Genetics
Hermite functions (multidimensional), 238,

699, 701, 810
Hermitian matrices in signal processing, 323

(451)
Herpes simplex encephalitis, 1065, 1148, 1402
Heterogeneity, measures of, 38, 86, 398
Heuristics, 777, 1367
Hierarchical Bayes, 522, 547, 862, 929, 958,

1160, 1238, 1420, 1436, 1444; as necessary
for multiparameter problems, 1313

Hierarchical cosmology, 1075
Hierarchical perception, 615 (233)
Hierarchical probabilities, a psychological

technique for introspection, 890
Hierarchical regeneration, 397 (38)
Hierarchical universes, 999
Hierarchy: of cell assemblies, 397 (66); of

populations, 398; of probabilities, 398; of
types of sampling, 398

High-energy physics, 1080, 1200
Hijacking, double, 1445
Hilbert space, 8a, 398, 701, 810, 854
Hilbert's formula, 398
Hilbert-Schmidt operator, 854
Histogram smoothing, 699, 701, 810, 1200,

1383
Histology of the cortex, 397 (73)
Historically misleading philosophers of

probability, 958
History: as ignored by writers on probability,

844; and Kac's comment "Let history
decide," 1332; of probability, as potentially
dependent mainly on oral communication,
956; of science, as dependent on more than
publications, 970; of statistics in World
War II, 1201, 1361

Hitler, and astrology, 1322A
Holographs, and the assembly theory, 666
Holtsmark's distribution, 1436
Homogeneity, 38, 86; and the Pareto and Zipf

distributions, 1 397. See also Heterogeneity
Homogeneous functions, exponential of,

average on a sphere, 758
Homografting, 33
Honesty, 13; and its dishonest appearance,

398; as necessary for statisticians, 228
Horoscopes, psychological benefit of (Jung),

882, 1322A
Human and machine intelligence, 777, 1367
Human and machine logic, 540
Human intellect, aspects of, 777, 1 367

Human preserve, 391, 476, 644, 1298
Human spirit, threat to, 1137
Human thought: its present advantages over

computers, 777, 1367; not literal, 777,
1367

Human zoo, 1212
Humanity: redundancy of, 397 (34); survival

of, 397 (31, 34)
Hume not yet defeated, 398
Hume's principle deduced from postulates of

impotence, 617
Hut 8, 1015, 1178, 1218
Hut F (Newmanry), 1015, 1178, 1218
Huygens's principle and Feynman's path

integrals, 1333
Hypergeometric functions: and population

estimation, 1 250; ratio of, 141
Hypergraph of a data set, 1330
Hyperhyperparameters, 547, 862, 929, 1420,

1444
Hyperlikelihood ratio, 862, 929, 1199, 1420
Hyperparameters, 547, 862, 929, 1313, 1420;

distribution of (type II distribution), 810; in
MPL, 810, 1080; in MPL, comparison of,
810; in probability density estimation, 1383;
selection of, 1200; what can be done with
fewer of as done in vain with more, 1420

Hyperprior, 547, 793, 862, 929, 1160, 1268,
1313, 1420, 1444;log-Cauchy, 929, 1199,
1420. See also Distributions, of types II and
III

Hyperrazor, 1420
Hypersheets of space, 339 (330-36)
Hypnotism: explanation of, 243 (511); origin

of, 1445
Hypotheses: as considered in pairs, 1 3; far-

fetched, a concept not definable in non-
Bayesian statistics, 174; impracticability of
formulating all, 1420; mutual exclusiveness of
common for complex systems, 796; probabili-
ties of, 980, 1160; simple, and our neural
circuits, 750 (28); simple, reason we accept
them, 185 (10, 11); three, 13; too farfetched
to mention, 738 (326-27)

Hypothesis, 890; ausgezeichnet, 322; formula-
tion of, and botryology, 980; formulation of,
by maximum entropy, 875; formulation of,
mechanization of, 1 235; formulation of, in
perception, 1 235; H£ (of #38) in bacterial
population, 960; plausible, 13; probability of,
1313; selection of by computers, 666; as
stated after making observations, 13; testing
of: see Significance tests; or theory,
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formulation of, 890. See also Null hypoth-
eses

Hypothetical population, 13

I Ching, 524
"I think I think," 243 (494)
I AS (Institute for Advanced Studies computer),

666
IBP (International Business People), a firm

staffed by robots, 169
Idealized problems, 1 3. See a/so Additivity,

complete; Distributions, improper; Proposi-
tion, idealized

Ideas, half-baked: journal proposed for, 169;
and notebooks of great scientists, 169

Idempotent operator, 854
Identifiability: and Bayesian method, 875; and

Nelson Goodman's "gruesome" paradox,
875

Identity: as an illusion(?), 861; sense of, its
dependence upon speed of communication,
1212

"Idol of the market place" ("Tyranny of
words"), 1313

"Iffff," 1217
I. J. Good, and one person who has read all he

has written, 958
Ignorance: explosion of (Lukasiewicz), 666;

formal expression of, 398; about our uncon-
scious minds, and praising ourselves for it,
1 212; partial, when probability is used, 13

Ignoring of information. See Evidence, ignoring
of

Ill-conditioned calculation in population
estimation, 1250

Illusions, optical, and economy, 796
IM (intelligent machine), 666
I mage reconstruction, 1111
Image stabilization, 629
Imaginary alternatives, relevance of, 1357
Imaginary results, device of. See Device of

Imaginary Results
I maginary universe or world, 13
Imagination, 397 (34); in dreams, 397 (58);

and language, 397 (36)
Immortal consciousness, integrated. See Godd
Immortal men, extinction of, by natural

selection, 796, 1445, 1451
Immunity, 33
Importance versus urgency, 13
Improper priors, not always justifiable, 1268
Improper theories, 1 3
Impulse response function, 854

"In principle" as often meaning "impractica-
ble," 1420

"Inaccuracy,"61 8, 622
Incentives for probability estimation. See Fees,

fair
Incentives, principle of none, in a grading sys-

tem for game players, 50
Incidence matrix, 136
Independence, 13;causal, 397 (67, 68);in

contingency tables, 13: see also Contingency
tables; in contingency tables, evidence in the
marginal totals, 929, 1199, 1358, 1420;
maximization of, 397 (83), 398; of quadratic
expressions, 374

Indeterminism. See Determinism
Index of a library, size proportional to

n- log(n), 217
Index terms, 397 (43), 398
Indicant space, 700
Indicants in medicine, 636, 700, 755, 798
Indifference, principle of, 13
Induction, scientific, 13, 183, 398, 522, 617,

956, 958, 970, 1160; always used by good
mathematicians, 970: see a/so Probability,
dynamic; Bayesian arguments for, criticized,
294; as a consistent metaphysical hypothesis,
1 91; defense of, 1 91; and exponential-
entropy distributions, 793; large expectation
of, 191; mechanization of, 1 83; philosophy
of, 1217, 1221; predictive, robustness of,
1420; simplicity of as an argument in its favor,
844; universal, valid only for extremely large
samples, 1420; universal and predictive, 1420

Inductive methods, continuum of, history of,
1221

Inductivist, as sometimes less prepared to use
induction than his opponents, 890

Inequality: for determinants, 8; Liapounov's,
14

Inference: Bayesian (rational), 398; fiducial,
398: see also Fiducial argument

Infinite, "approximately," 13
Infinite Bayes factor, 13
Infinite expectation, 13
Infinite number of hypotheses, 13
Infinite number of parameters, 1 3
Infinite number of propositions, 13
Infinite population, hypothetical, 13
Infinite probability, 13
Infinite succession of trials, 13
Infinity. See Mathematical convenience
Inflexion, points of, and bumps, 13
Information, 854; amount of, concerning



290 INDEXES

one proposition, provided by another one,
77, 397 (47, 48, 81); amount of, distribution
of, 142; amount of, in a proposition, 13, 77,
397 (38, 54, 81); bombardment with too
much, 169; expected in an experiment, 77;
and explanatory power, 211; half-forgotten,
1 3; internal regeneration of, 397 (58); maxi-
mization per unit of effort, 398; mutual,
397 (48), 398; mutual, expected, 77; mutual,
as an interaction, 397 (81); probabilistic
explication, 505; rate, a "paradox" concern-
ing, 142, 192; rate, Riemannian and Lebes-
guian, 142; rejection of, 397 (37); retrieval
of: see Information retrieval; rewards of, and
quasiutilities, 690A; sacrifice of, for simplici-
ty, 1 330; and statistical independence, 397
(48); and sufficient statistics, 77; theory of,
82, 11 5, 1 30, 1 42, 1 92, 21 0, 221, 323, 339,
51 5, 524, 574, 599, 854, 939: see also
Communication; Entropy; Regeneration;
Weight of evidence; theory of, survey of, 376;
theory of, terminology and notation of, 77;
theory of and "fair fees," 77; utilitarian, 77;
vague, 13. See also Communication; Fisher's
information; Weight of evidence

Information retrieval, 169, 397 (43-74), 398;
and artificial intelligence, 217; classification
in as depending on the customers, 21 7; cut-
down factor in, 397 (48); and decision
theory, 523; and the definition of "defini-
tion," 397 (42); economics of, 217; eighteen
potential ingredients of a general theory of,
21 7; and information theory, 21 7; in libraries,
often too slow, 169; and measures of associa-
tion, 957; and mechanical translation, 217;
optimization of hierarchies of memories in,
21 7; parallel, processing for, 397 (43, 44);
probabilistic, 217, 666; and the problem of
the nondendriform structure of knowledge
(could be overcome by duplication of
documents), 21 7; and recall, 397 (43-54);
speculations concerning, 21 7; statistical or
weighted, 397 (43, 44, 47)

Informational correlation, 1389
Informational interaction. See Interaction
Ingenuity traded for money, 397 (62)
Inheritance of acquired characteristics, little

evidence of, 1451
Inhibition, 397 (57,62)
Inhibition of cell assemblies by others,

861
Initial and later digits of numbers, distributions

of, 1436

Initial distribution, insensitivity of conclusions
with respect to, 13

Initial probability, etc., 13
Insight, 777, 1367
Inspiration, 397 (72)
Instructions to statisticians by Neyman, 13
Insufficient reason, 1 3
Insurance, 13, 398
Integral equation, 673, 1111; nonlinear, 398; in

population genetics, 207; random, 753;
relevant to foundations of statistics, 398;
solution of by use of moments, 398. See also
Gauss transforms; Integral transforms

Integral operator, 854
Integral transforms, bounded, 8a, 18; multi-

dimensional, nth root of, 146, 209, 708;
numerical inversion of, 18

Integration: centroid method of, 1100; and the
DFT, 1100; midpoint versus trapezoidal
method of, 696; multidimensional, by cen-
troid method, 637, 696; over a simplex, 1100;
Stroud's method of, 1100; and truncated
cubes, 1100

Intelligence: amplification of, 1338, 1445; of
animals, 1212; artificial, 169, 183, 185, 243,
368, 391, 397, 398, 476, 521, 525, 533, 592,
615,666, 753, 777, 817, 938, 1 235: see also
Chess; artificial, and statistics, 592; definition
of, 592; explosion of, 397 (33, 34, 78), 753,
861; explosion of versus hydrogen explosion,
1212; explosion of versus ignorance explo-
sion, 666, 777, 1 367; and the habit of using
good heuristics, 777, 1367; sudden appear-
ance of, 1 445

Intelligent machines, 761; and the strongest
argument against their possibility, 777,
1367

Intensity of belief or conviction. See Degrees of
belief

Interaction: algorithm for and FFT, 146, 209,
708; of bishops, 1235,'causal: see Causal
interaction; between events, 397 (81);
Fourier, 398; high-order, 397 (55, 83);
informational, 397 (49, 50, 53, 79-83); rth
order, in multidimensional contingency
tables, 398; second-order, 398

Interactionism: one-way, 243 (512, 513); two-
way, 243 (513, 514); two-way, needed for
ethics, 243 (491)

Interactions: of amounts of information or
evidence, 700; generalized, 322; for Markov
chains, 322; in multidimensional contingency
tables, and maximum entropy, 322; vanishing,
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tests for, 322; for weight of evidence and
information, 21 0

Interfacilitation, 397 (65, 69). See also Synap-
tic facilitation

Interval estimation, 398
Intraterrestrial devils, 391, 476, 644
Introspection, 796; and artificial intelligence,

1 85; using a computer, 1313
Intuition, education of, 1 241
Intuitionism (Brouwer), 13
Invariance: as always implicitly Bayesian,

1160, 1227; and density estimation, 701,
810; and initial probability distributions,
398; under lumping of categories, 1420;
and ML estimation, 1078; rejection of by
device of imaginary results, 398; of rough-
ness penalties, 1383; and uniform distribu-
tions, 728 (355-56); and the utility of a
distribution, 618,622

Invariant density, Jeffreys's, a possible gen-
eralization, 737 (475)

Invariant estimation, its Bayesian meaning,
1227

Invariant prior: under ellipsoidal symmetry,
1457; Jeffreys-Perk, 618, 622; as a mini-
max prior, 618, 622, 631, 1278; related
to utility, 1160

Invariantized entropy, 61 8, 622, 11 60
Inventory control, and Poisson's summation

formula, 1436
Inverse function, 200
IQ, a measure of speed, 243 (502), 615
Irregular collectives, 13, 516; and generalized

decimals, 516
"Isms" and de Finetti, 956
Itch, removal of, 243 (508)
Iterative proportional fitting, 322
Iterative scaling procedure, 322

Jacobi transformation and DFT's, 1036
Jacobian matrix: generalized, 1371; predom-

inantly diagonal, 200
Jacobi's identity, 1111
Japanese Standards Association, 643
Jeffrey's candlelight problem, 1369
Jeffreys-Haldane uninformative (improper) pri-

or, 398, 547, 631, 737 (475), 862, 929,
1160, 1199, 1268, 1420

Jeffreys-Perks distribution, 398
Jeffreys-Perks law of succession, 398
Jeffreys's contributions to Bayesian statistics,

1160
Jeffreys's influence on my work, 1160

Jeffreys's invariant prior, 294, 1160; as a mini-
max prior, 875, 1160

Jeffreys's paradox, 1396
Jeffreys's subjective judgments in spite of

his belief in credibilities, 294
Johnson's combination postulate, 398
Johnson's sufficientness postulate, 398, 547,

862, 1420; inappropriate when frequencies
of frequencies are informative, 398; tauto-
logically true if t = 2, 398

Judgments, 13; as always vague by definition,
1 74; consensus of, 636, 11 86, 1 238, 1 241;
and discernments, 722 (513-14), 1313; how
to make, 290; kinds of, 290; mature, 398;
as not known how made, 1313; if rules
given for, not called judgments, 183; in
statistics, essential, 156; of subjectivist,
everything grist to mill of, 398; "vagueness"
of, measures for, 724 (77-80)

Jung and astrology, 882, 1322A
Jupiter and sunspots, 882, 1 322A
J upiter's red spot, 1212
Jury. See Law
Justice: utilitarian justification of, 1350; in

voting, 1001
Justification of axioms (a priori), 13

Karhunen-Loeve representation theory, 854
Keller system, 1338
Kernels, 398; "standard," 8a
"Kertrix," 398
Keynes's withdrawal of his belief in credibili-

ties, 294
Keywords to statistical publications, from

#750 to #1238, 1266
Kinetic theory: of gases, 1250; and Gauss

transforms, 1111
King Solomon's law of eponymy, 1436
Kinkeraand EDA, 1330
Kinkus, definition of, 1330
Knowledge: compartmentation of, 721 (29-

30); at fingertips, defined as quick recall
with or without aids, 169; growth of, 890;
as a network, 169

Kollektiv, 13. See also Irregular collectives
Kolmogorov's axiom (complete additivity), 13,

398, 956, 1300
Kolmogorov-Smirnov statistic, approximation

of lower tail, 937
Kolmogorov-Smirnov test, multidimensional^)

1021
Kriegspiel, 1178, 1299
Kronecker symbol and DFT's, 1036
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k-statistics, new formula for, 981
K-transform, 708
Kudology, 339, 1436
Kudos receptivity, 1436
Kullback (-Leibler number). See Cross-entropy;

Dinegentropy; Weight of evidence, expected

Lagrange distributions: and branching processes,
857; multivariate, 857

Lagrange's expansion: and branching processes,
55; generalized, and a formula of Carlitz,
899; generalized, and tree enumeration,
413; multidimensional, and stochastic pro-
cesses, 200

Lagrangian and path integrals, 1333
Lahmu and Lahamu, the first gods, 999
Lambert series, 646
Langevin linear system, 854
Language, 339, 397; canonical, 397 (77);

design of, 13; economical, and the meaning
of complexity, 958; economy of, 524; of the
EEC, 1445; handling by machine, 397
(36); and imagination, 397 (36); nonmathe-
matical, 13; origin of, 524; probability
depending on, 13; as regeneration, 397
(38); statistics of, 524; underlying struc-
ture, 861; understanding by machine, 861;
vagueness of, as contributing to difficulty
of probability estimation, 398. See also
English; Linguistics; Style; Translation; Word
frequencies

Laplace and determinism, 1322A
Laplace's formula for the Legendre polynomial,

generalization of, 56
Laplace's integral for the Legendre polynomial:

Heine's generalization of, 1036; made dis-
crete, 56, 1436

Laplace's law of succession, 13, 398; and
De Morgan's generalization to multinomials,
398, 1420

Laplace transform, multidimensional, 200, 237
Laser: and the finite Gauss transform, 1111;

as a revolution in applied science, 890
Latent class analysis, and maximum entropy,

322
Law: as "a ass, a idiot," 1 396; as a frequency

distribution, 13; legal, 13; of large numbers,
13, 1436; of large numbers, for random
processes, 854; as perhaps irrational, 1351

Laws of nature, basically qualitative(?) (Edding-
ton), 686. See also Scientific theories

Laziness, 13. See a/so Rationality, type II
Learning, 397 (57, 58); definition of, 185;

from experience, 929; hints for, 169; a little,
855; by machines, 183, 185; two kinds,
with and without reasoning, 185

Least squares: and likelihood ratios, 565;
and singular decomposition, 607

Least utility, principle of, 61 8, 622
Lebesgue measure, 1300
Lecturing, and losing audience one at a time,

1075
Legal applications of hypotheses, 13
Legal logic as largely Bayesian, 1436
Legendre polynomial, 13, 1397; associated,

1036; new finite series for, 56, 972; new
finite series for, and an analogue of Poisson's
summation formula, 1436; and trinomial
random walks, 140

Legendre symbol and DFT's, 1036
Legislation, automatic lapsing of laws (John

D. Andrews), 1445
Liapounov's inequality, 14, 38, 86
Library: color scheme for, 1445; index in,

465
Library of Congress, potential capacity of,

169
Lie detectors for androids, 243 (512, 513)
Life: construction of by chemical means,

185; definition of, 391, 476, 644, 1298;
human, value of, 1 350

"Lightning of the neuron," 796
Likelihood, 13; and Jacobians, 956; precise,

13; principle of, 1217; type II, 398
Likelihood, maximum. See ML
Likelihood ratio (ratio of maximum likeli-

hoods), 13, 398; for contingency tables,
929, 1199, 1420; decomposition of, and
analysis of variance, 565; generalized, 198;
for independence in two-byv? contingency
tables, 398; for multinomials, 398, 547,
862; partitioning of, for contingency tables,
1185; and test for multinomials, 665; type
II, 398, 547, 862; type II, adjusted for
curvature, 398; type II, approximations
for, 1420; type II, asymptotic distribution
of, valid into extreme tail, 1199, 1420; type
II, sometimes approximately equivalent to
Bayes factor, 398

"Lindley's paradox" (attributed to Jeffreys
by Lindley), some history of, 1396

Linear filter, 854
Linear graphs, oriented, 7
Linear inequalities, simultaneous, with weights,

636
Linear planning (or programming), 80
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Linear predictor, 854
Linear recurrent sequences and pseudorandom

numbers, 660
Linear system, 854
Linguistic philosophy, 524
Linguistic transformations, 397 (41, 42)
Linguistics: and authorship, 418, 524; and

mathematics, 666; and word frequencies,
130. See a/so Language

Literary text, sampling of, 398
Literature search, and a branching process,

1018
Logarithmic payoff, and a demiurge, 1274.

See a/so Fees, fair
Log-Cauchy hyperprior, 522, 547, 603B

(45-46), 862, 929, 1160, 1199, 1420, 1436
Log-factors, 397 (48). See also Weight of

evidence
Logic, 13, 339, 1217, 1221, 1235; creativity

in, 426; dynamic, 131 3; see also Logic,
temporal; formal, a contrast with prob-
ability, 13; human and machine, 426, 540,
626; inadequacy of formal, 13; loose, and
statistics(?), 1026; and Mackie's paradox,
1159; and prediction paradox, 425; and
Richard's paradox, 400; and statistics, 1 026;
temporal (with time element), 1313; tem-
poral, and FORTRAN, 890. See also Godel's
theorem

Log-likelihood plus entropy as an objective
function, 322

Loglinear model, 322, 957; Bayesian, 83,
844; interaction in, 1389; prehistory of,
970

Lognormal distributions: of mineral reserves,
1186; mixtures of, 1016

Longevity, 861, 1212
Lorentz force, 898
Loss due to error in diagnosis, various inter-

pretations, 798
Lotteries, fraudulent, and sampling surveys,

1022
Loyalty, main advantage of, 1350
LRL (Lawrence Radiation Laboratory) scatter-

ing data, 1200, 1383
LSD, 525
LSD-ESP-EEG, 1445
Lumped parameter system, 854
Lung cancer. See Smoking
Lying by psychologists, 1322A

Macaulay's essay on Bacon, nouns in, 38,
86

Mac Gregor's bump, 1200
Machine: consciousness in, 243 (490-94),

861; ethical, 1350; intelligence in: see Ar-
tificial intelligence; intelligent, and the short
transition period from good one to ultra-
intelligent one, and the danger, 1 85; making
of "judgments" by if we do not know how
they are made, 1 83; as master, 1 350; power
of, 666; psychoanalysis of, 183; rewarded
and punished "in hot blood," 1 83; as reward-
ing itself, 1 85; thinking, 243 (495-99); think-
ing, definition of, 777, 1367; thinking,
Turing's test for, 861; training of, 1 83

"Machine-building," my 1947 name for micro-
programming, 666, 1419

Mach's principle, 999
Mackie's paradox, resolution of, 673, 1159
MacMahon's Master Theorem, 263, 264, 899
Macrolepidoptera, 38, 86
MADM (Manchester computer), 666
Mafia, 1350
Magic not a good explanation, 1421
Magnetic storms and sunspots, 882, 1322A
Mahalanobis metric, 980
Majority rule (generates Condorcet cycles),

871
Mammoth, frozen, cloning of, 1445
Man chauvinism, 777, 1367
Manager, how rational should he be(?), 290
Man-computer symbiosis (should still be

called "synergy"), 397 (34)
Man-computer synergy, 77, 1 01 5, 1178, 1 21 2,

1218, 1367
Marginal ML. See ML, type II
Marginal totals, 397 (80)
Marginalism, 174, 732 (14-15), 753, 1420
Markov chain, 236, 397 (54, 70), 524; binary,

and probabilistic causality, 1331; binary,
regenerative, run lengths of, 882; binary,
variance of number of zeros in, 237; and
complex integrals, 200; derived from ran-
dom sequences, 36; frequency count of,
joint distribution of, 237, 375; interaction
in, 398; likelihood-ratio test for, 84; order
of, and maximum entropy, 322; and popula-
tion estimation, 1250; regenerative, 822;
and state diagrams, 7; ternary, and probabilis-
tic causality, 1331

Markov probabilities from oriented linear
graphs, 136

Markov process, 854; binary, 939; Gaussian,
1343; reduced to limits of Markov chains,
237
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Markovity, degree of, a measure for, 237
Mars, craters, a lognormal mixture(?), 1016
Mars effect, an artifact(?), 1414
Mathematical art, 598
Mathematical convenience, 1 3. See also Addi-

tivity, complete
Mathematical planning, for a national economy,

80
Mathematical prodigies all, 1445
Mathematical programming, 80
Mathematical theorems, beliefs concerning, 13
Mathematical thought, as perhaps having led to

improved languages, 1338
Mathematics: as an experimental science, 1 338;

of history, 21 7; of philosophy, 221; pure,
probability in, 13; as requiring terminological
inexactitudes, 686

Matrices: direct products, and the DFT, 146,
209, 708; singular decomposition, 398, 607;
sparse, 146, 209, 708; sparse, in a definition
of clumps, 21 7; spectral decomposition of
and statistics, 1430. See also Circulices;
Matrix

Matrix: approximation to, by singular decom-
position, 398; balanced, 411; centrosym-
metric, inversion of, 673; colleague and
companion, 235; complex, real representation
of, 323 (466); equations and singular decom-
position, 607; predominantly diagonal, 235;
predominantly diagonal, but inverse not
necessarily so, 200; product, characteristic
polynomial, true but unproved conjecture
concerning, 1404; sum, factorization of, 646;
Toeplitz, 673. See also Matrices

"Maturity of the chances," 520, 928
Maximum entropy, 522, 592, 618, 755, 1160;

conditional, 322; for continuous distribu-
tions, 322; and the Gaussian distribution,
322; for hypothesis formulation, 322, 81 5,
1 235; and interactions in multidimensional
contingency tables, 970; and maximum
likelihood, a duality theorem concerning,
322; principle, generalized, 322; with some
moments assigned, 322

Maximum expected utility. See Rationality
Maximum likelihood. See ML
Maximum marginal likelihood, 1250
Maximum penalized likelihood. See MPL
Maxwell demon, 13
McCarthy potential, 690A
McCarthy's theorem, 690A
Meaning, 13, 397; assembly theory of, 397

(74-77); and behaviorism, 397 (41); and

communication, 397 (38); degrees of, 1 3,
1313: see also Fuzziness of language; and
degrees of belief, 397 (76); economy of, 397
(77, 78); versus effectiveness of a statement,
397 (76); evolutionary function of, 397 (77);
literal, 397 (76); of "meaning," as a meta-
metalinguistic problem, 397 (40); multi-
subjective, 397 (76); representation of, 397
(40-43); and subassemblies, 397 (74, 75);
subjective, and causal tendencies, 397 (74).
See also Definition; Semantics

Meaningfulness, degrees of, 1300
Means affect ends, 1350
Mechanical translation, 397 (40, 41, 71), 666.

See also Language
Medical consultants, implicit utilities of, 636
Medical diagnosis, 592, 666; measures of

diversity for, 1397. See also Diagnosis
Medical "events," 798
Medical history taking by computer, 798
Medical records, 666; criteria for preserving,

798; and rationality, 700
Medical research, and hypotheses of small

prior probability, 13
Medical statistics, 570, 636, 700, 755, 798,

1017, 1146
Medicine, logical analysis of, 798
Mediocrity versus "elitism," 1338
Mehler's formula, 701
Meier G-function, 398
Mellin convolution, 398
Mellin transforms, 8a; relation to Fourier

transforms, 604 (333)
Memex machine, 169
Memorizing of long sequences of digits, 397

(60)
Memory: in assemblies or single neurons(?),

796; block, 397 (44); in children, 796;
clues in, 397 (44); as dependent upon interest
and incentives, 169; distributed, 397 (55, 56),
666; erosion of, loss of detail in, 397 (59);
innate, not as important as it seems, 169;
long- and short-term, 243 (503); stereotyping
of, 397 (59)

Mendelism, why ignored at first, 1160, 1451
Mendel's laws, 1338
"Mentalism," 626
Mercury, 705
Mersenne numbers, 900
Mersenne primes: conjectured distribution of,

62; and pseudorandom numbers, 1 86, 643
Message, final odds of, 574
Metalanguage, axiom of, 398
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Metamethods, 1402
Metaphonetic conjecture, 339 (63)
Metaphysical statement, definition of, 191, 298
Metaphysically, 243 (492-94, 513-14); changes

in with technology, 243 (493)
Metaphysics, 397 (40, 64, 77), 398; pure and

applied, 243 (493); and a theory impossible
to believe if true (anticipated by Goethe),
339 (1 84); of today, as perhaps the science of
tomorrow, 243 (492)

Meteorites. See Chondrites
Meteorology, 690A; first and second laws of,

522, 753; forecasts in, their need of odds, 1 3
Methods, good enough, 398
Micromicrofilms, 169
Microprogramming, 666. See also "Machine-

building"
Microsonics, 796
Miller's paradox, resolution of, 672
Milner's ruling out of all rivals to Doogianism,

844
Mind, 243, 861; conscious and unconscious,

397; Hogben's objection to use of, 1 56. See
also Consciousness; Psychology

Mind-body problem, 243; a quasi-pseudo-
problem, 243 (491)

"Minds, machines, and transfinite counting,"
626

Mineral reserves, 1186, 1271
Minicommunications, 986 to 992, 1016 to

1027
Minimax entropy, 1160; in diagnosis, 755
Minimax procedures, and invariant priors, 61 8,

622, 631, 1278; joke concerning, 1357
Minimax property of singular values, 398
Minimax regret, 883
Minimax regret of type II, mentioned, 883
Minimax type II, 75, 115; modified, 80
Minimum chi-squared, 398, 1250
Minimum cross-entropy, 322
Minimum discriminability, 322, 844; and an

invariant property of chains, 522
Minimum discrimination information, 1160
Minimum entropy in diagnosis, 798
Minimum expected weight of evidence, 322,

1160
Minimum information as a minimax procedure,

844
Miracles, 13; fraudulent, 1322A
Misprints in a table of random numbers, 643
Mittag-Leffler method of summation, 3
Mixed congruential method for pseudorandom

number generation, 660

Mixture experiments, 662
ML (maximum likelihood) estimate, 13;

asymptotic properties of not a reason for
preferring to a Bayesian estimate, 398; and
Bayesian statistics, 957, 1430; as final
expectation when initial distribution is
Haldane's (or generalization thereof), 398;
of frequencies unreasonable for the species-
sampling problem, 398; generalized: see
Bayesian estimation "in mufti"; as having
a superficial appearance of being less arbitrary
than Bayesian estimate, 398; and local maxi-
ma, 750 (57); as mode, when initial distribu-
tion is uniform, 398; as perhaps not invariant,
1078; of a probability, sometimes absurd as a
betting probability, 1420; relationship to
Bayesian methods, 1160; type II (maximum
marginal likelihood), 398, 522, 547, 862,
1365, 1420; type II in econometrics, 875;
type II, an unproved conjecture concerning,
1420; types I and II, their approximate
justifications, 398; when okay for a Bayesian,
1430; worse than Laplace's law of succession,
398

ML/minimum discrepancy (ML/W) probability
estimation, 1402

Mobius function, 646; and DFT's, 1 036
Mobius sequence, and the Riemann hypothesis,

610
Models, good enough, Bayesian and non-

Bayesian, 1420
Modulo 2 addition in cryptography, 141 9
Moire patterns, 598; and fundamental particles,

1445
Molecular biology, 398, 1451
Moment: method of summation, 3, 5; problem

of, 604 (322), 750(100)
Moments, 1 3; of Lagrange distributions, 857; of

a simplex, 11 00; of a triangle, tetrehedron,
and simplex, 696; of a truncated cube, 1100;
a use of by maximum entropy, 323 (462).
See also Cumulants

Momentum matrix and probability density
estimation, 701

Money, utility of, 1 3
Monotony, approximate local, 1
Monozygotic criminals, 1166
Monte Carlo method, 643; applications of,

195; for Bayes factors, 398; classification
of, 195; exemplified by Hausdorff summation,
398

Mortality and the bomb, 666
Motivation, 1 3; possibility of in machines, 243
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(506-7); of various orders, in a machine, 243
(506)

MPL (maximum penalized likelihood), 322,
659 (135-38), 699, 701, 733 (284-86), 844,
991, 1060, 1080, 1160, 1200, 1341, 1383;
and consistency, 701; and the Fast Fourier
Transform, 1383; Hermite functions for
preferred to Hermite polynomials, 81 0; for
histograms, 81 0; and histograms as raw data,
81 0; and Laguerre functions mentioned, 810;
and Legendre functions mentioned, 810;
simulation experiments for, 81 0

Mu meson, mass of, numerology concerning,
218

MUI (French for UIM), 777, 1367
Multidimensional scaling, 871, 1014
Multinominal-Dirichlet probability, 398, 547,

860, 862, 1420
Multinomial distribution: Bayes factor for,

unimodal conjecture for, 860; a Bayesian
significance test for, 547, 862, 1230, 1420;
and Bayes's argument for binomials, 1228;
categories of, equivalent number of, 81 0;
chi-squared for, 127, 238, 1408; discrimina-
tion between, and lumping categories to-
gether, 211; discrimination between, and
significance, 398; with equiprobability, tests
for, 1444; equiprobable, exact chi-squared
distribution for, 1408; estimation in, 398,
547, 862, 1160, 1228, 1245, 1402, 1420:
see also Probability, estimation of; estimation
in, and Carnap, 844; lumping of categories
for, 398; maximum and minimum entries in,
127; mixed Dirichlet prior for, 398, 547, 860,
862, 11 99, 1 230, 1420; number of "repeats"
within cells of, exact distribution of, 1408;
number of zero entries of, 1 27; and related
distributions, 1148, 1402; saddlepoint
method for, 127, 238; significance tests for,
127, 238, 398, 547, 665, 862; tests for
equiprobability for by empty cells, 225;
with ordered categories, 1399, 1404

Multiple precision arithmetic, 858; in popula-
tion estimation (fifty-six decimal places),
1250

Multiple sampling, 398, 547, 862
Multiple-choice examinations, and fair fees,

1181, 1238
Multiplication, variable length, 1 25
Multiplicative congruential method for pseudo-

random number generation, 660
Multiplicative Fibonacci sequences, 660
Multiplicative models, 11 86

Multiplier of the Manchester computer, 666
Multivariate characteristic functions, 376, 604,

646, 1034, 1334, 1434
Multivariate normal distribution: Bayesian test

for mean of, 1 74; entropy of, 142; singular,
142

Multivariate notation, 55; as. giving analysis
profitable impetus, 857

Murder, 13
Music, 13, 796; and absolute pitch, 796; as

easier for a computer to produce than non-
abstract visual art, 861; language of, 1445;
and surprise, 598. See also Chords

Mutation: and cosmic rays, 13; of synaptic
strength, 397 (58, 59, 80)

Mutual information, 397 (70, 76), 854
Mutual observation, impossibility of complete-

ness, 1222
Mysticism, 391,476,644

Nachwirkungsfunktion, 398
Natural rejection, 339 (257-58), 1212, 1445
Natural selection, 1451; belief in, depending on

initial probability judgment, 1421; difficulties
in, 1451; and ESP, 1322A;and the "extinc-
tion of immortal men," 525; and immortality,
796; in machines, 1 235; and semilinearity,
796

NDMPLE, 1383
Neck, sticking out of, 666; by turkeys, 796
Necker'scube, 615,617, 980
Necklace, 646
"Need to know," 1015, 1178, 1218, 1299
"Needle for lecturer" tried out, 750 (85)
Negative feedback, and cows chewing cud, 217
Negentropy: invariantized, 61 8; in medical

diagnosis, 1397
Neo-Bayes-Laplace philosophy, 156, 174, 1160
Neo-Darwinism's interpretation of evolution,

defined, 1451
Neo-Luddites, their potential maltreatment of

androids, 243 (499)
Neo-neo-Darwinism, 1451
Neper, 13
Nessie effect in probability density estimation,

1383
Networks, 7; partly random, 243 (502);

pseudorandom, the advantage of, 185;
random, analogy of with Zato-coding, 1 85;
random, as containing much variety, 185

Neural density at apertures, 397 (66)
Neural networks: artificial, 397 (36), 592;

cycles in, 1401; partly random, 1 85;simple,
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more likely to become consolidated, 185;
umbrella shaped, 397 (65)

Neuron: description of, 777, 1 367; individual,
as possibly trainable, 796; simulation of, 861

Neurons: binary decimal notation for, 185; in
the brain, nonregeneration of, 796; circuits
of, 1401; "forcing," 1401; number of, 861;
primed, 243 (506), 397 (61); refractory, 397
(61); reliability of, 397 (36); like Slinkies,
1212; varieties of, 185

Neurophysiology, 185, 243 (503, 506-7), 398,
525, 939; armchair, 796; and EDA, 1330;
speculations concerning incorporation of
weights of evidence in, etc., 221. See also
Brain

Neurosis in machines, 666
"Neutral stuff," 243 (496)
Neutron stars, 999
Neutrons and neurons, 1212
"New York salesman" problem, 80
Newmanry (Hut F), 1015, 1178, 1218, 1419
Newspaper English statistics, 38, 86
Newspaper for publishing dreams, 1322A
Newts, 1279
Neymann-Pearson lemma, 398
Nicod's criterion refuted, 958
Nixon and time travel, 1451
Nodes of Ranvier, equal spacing of, 796, 939
Noise, 753; band-limited, 142, 210. See also

Gaussian noise
Non-Bayesians: as Bayesians, 1420; definition

of, 1420; as people, 1420
Nondeterministic process, 854
Nonparametric statistics, Bayesian method for,

844
Normal distributions, mixtures of, 1383
Normal recurring decimals, 7
Null hypotheses: as capable of receiving

support, 890; and scientific theories, 322;
true relative to a sample size, 631; type II,
398

Number theory: and crystallography, 186; and
DFT, 708; and orderings of candidates, 858;
and "prime words," 646; and pseudorandom
numbers, 526, 660; and the serial test, 36;
and the teleprinter problem,7, 191. See also
Mersenne

Numerals, 143
Numerical analysis, 643; and a medical

problem, 636. See also Computers; Comput-
ing; FFT; Integration; Rounding-off errors

Numerology: in astronomy, 764, 837; for
fundamental particles, 218, 339; physical,

339 (315-19), 705, lQ9;seealso Bode-Titius
law

Nylon uppertights, 1212
Nyquist rate, 210

Objective (and subjective) degrees of belief,
comparison of, 13

Objective world, why we believe it exists, 729
(492-94)

Objectivity: alleged, 1137; degrees of, 13; at
the expense of ignoring information, 13, 162;
glorious, a pretense concerning revealing lack
of objectivity, 162; superficial appearance of,
13

Oblique stroke, meaning "as against," 398
Obscurity, the time for which is past, 697
Observable universe, its meaning not necessarily

precise, 339 (330-36)
Observer error, 755
Obvious, overlooked, 1445
Occam. See Ockham
Occupancy problem on a rectangular board,

225
Occupations: and causes of death, 83, 398; of

fathers and sons, 83, 398
Ockham-Duns razor, 13, 397 (55, 69), 599,

844, 1420; and maximum entropy, 322
"Ockham's lobotomy," 736 (375), 755
"Odds entropy," 755
Odds: expected, 1 3; gambling, 1 3
Offizier cipher (on the Enigma), 11 78, 1 299
Oil and gas resources, 11 86
Giber's paradox (Christopher Harding), 1445
Olympic games, and Turing, 1015, 1178, 1218
Omni interview, 1212
Operating characteristic curve, 755
Operational research, 80, 1436; workers in,

liasion with managers, 290
Operationalism, 243 (495); and de Finetti, 956
Operons (Jacob and Monod), 1451
Opinion, differences of, 13
Optical illusions, and economy, 796
Optional stopping: history of, 1 277; in

statistical tests, acceptable to a Bayesian,
1396

Orderings of candidates: and Poisson's summa-
tion formula, 1436; with ties, enumeration of,
858. See a/so Voting

Organism, definition of, 798
Organization: optimal size of, 762; and Orgs,

796; theory of, 290, 315, 397
Originality in computers, 1212
Orthogonality in a finite Abelian group, 316
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Orthonormal systems, 398, 701, 81 0, 854
Oscillating universes, 999
"Other man's other cheek," 1 322A
Our Mutual Friend, 86
Overdeveloped countries, 1445

Page references, first page insufficient, 169
Pain: above the semilinear threshold, 796;

mystery of, 1322A; and pleasure (in
machines), 243 (494), 777, 1367: see also
Pleasure; real metaphysical, 397 (64);
transfer of to machines, 1445

Paleontology, 398
Paley-Wiener criterion, 854
Panda's thumb, 1451
Panic above the semilinear threshold, 796
Paradox: and the absence of true ones in

Doogianism, 1 268; of changing a prior, 720
(431); concerning rate of information, 142;
Condorcet-Borda (for voting), 871; of
confirmation (Hempel's), 199, 245, 844;
Cretan liar, and Mobius bands (Gordon
Serjak), 1445; in diagnosis, 755; EPR
(Einstein-Podolsky-Rosen), 385; EPR and
ESP, 1 322A; Godambe's, 1 332; and God's
knowledge that there are arguments against
religion, 1 322A; "Gruesome," 541, 844,
875, 958; Hill's, allegedly resolved, 1268; of
induction, 844; that intelligent non-Bayesians
are Bayesians, 1420; Kyburg's, 1241;
Mackie's, 11 59; Miller's, 672; Nelson Good-
man's, resolved, 541, 844, 875, 958: see also
"Gruesome" paradox; that objectivists are
more subjective than subjectivists, 1 31 3; of
prediction, 425; Richard's, 400; that teachers
will be best when there is the least need for
them, 1338

Parallel measures, 854
Parallel operations in Colossus, 1419
Parameter improvement, automatic, 777,

1367
Parameters: in a law, 13; minimization of their

number, even for type II probability distribu-
tions, 398

Paranormal phenomena, 1414; under emotional
stress, 1322A. See also ESP; Parapsychology;
Precognition

Parapsychologist, "set a psychologist to catch
a," 1322A

Parapsychology, 243 (493, 495-97, 508, 512),
822, 1 322A; and the Crystal Ballroom, 1 338;
and quantum mechanics, 385; and religion,
861, 882, 1322A;in the Soviet Union, 861;

"through a glass darkly," 861, 1322A. See
also ESP; Precognition

Pareto law, 398, 1075
"Paris, fabriquee en," 243 (499)
Parity, 339; breakdown of, 999
Parking, perpendicular, 1445
Parsimony, 1420. See a/so Ockham-Duns razor
Partial correlation, and spherical trigonometry,

1249
Partial ordering, 13. See a/so Probability,

partial ordering of
Particulate inheritance, 1160
Partitions: Bernoulli-Euler formula for, 606;

and the discrete Gauss transform, 1111; and
a formula for Euler, 981; and a formula of
Sylvester, 981; identities for, 1111

Partly baked ideas, 339, 525, 796, 1 21 2, 1 297,
1445. See also Speculation

Path analysis: and correlation for power func-
tions, 1157; and Feynman's path integrals,
1 333; for tracing a man's influence(?), 1160

Path coefficient, complex, 1 333
Path diagram, "continuously infinite," 1333
Path integration, 1333
Pattern, complicated, often a kinkus, 1330
Pattern recognition, 185, 322, 398, 777, 1367;

and botryology, 980; creativity in, 615; and
subassembly theory, 777, 1 367; and use of
quadratic terms converted to linear terms,
1019

Pauline epistles, authorship of, 418
Pbi's. See Partly baked ideas
Peace: by bribery (Dan Herrell), 1445; at the

press of a button, 666
Peakedness, 690A
Pearson's distributions, an intermediate type,

38,86
Peirce, C. S., his error concerning "weight of

evidence," 1382
Penalized likelihood. See MPL
Pentasyllable names, 666
Perception: creativity and duality in, 615; and

eye movements, 771; hierarchies in, 615
(223); and initial probabilities, 397 (39);
multilayer, 796; and recognition and recall,
all Bayesian, 1420; subliminal, and the
subassembly theory, 777, 1367; three kinds
of, 615; and topology, 615 (233). See also
Vision

Perceptrons, 185, 397 (49); self-organizing, 185
Periodic band-limited white noise, 854
Periodic random functions, 142
Perks-Jeffreys estimation, 398



INDEXES 299

Perks's lumping idea "at a higher level," 1160,
1420

Permanents, 895, 981
Permutability (of events), 398, 617; versus

"exchangeability," 727 (312), 956; for
Markov chains, 1 221; as never entirely
accepted, 617

Permutation tests for significance of clusters,

1432

"Perplexity." See Effective number of states
Personality, integrated, by unconscious auto-

suggestion, 243 (512)
Petersburg problem, 13
Phenotypic space and environmental space,

1025

Phenotypic values of parents, etc., 486
Philosopher: as king, 956; practical, 75
Philosophers: the best, often mathematicians,

11 5; great (definition), 796 (214); implicitly
concerned with multinomials and contingency
tables, 958; and the others as wrong, 722
(513-14); and practical statisticians, narrow-
ing of gap between, 398; of probability,
waking up of, 1160; who are unknowingly

Bayesians, 958
Philosophy: a "dirty ten-letter word" (L. J.

Savage), 844, 1420: see a/so Metaphysics;
functions of, 1445; great, definition, 796; and
the independence of abstract theory from
philosophical interpretation of probability,
1 3; as influenced by computers, 796; and
numerical methods, wedding of, 810; of
statistics, 1420 and passim

Philosophy of science, 719, 890; Jeffreys's
importance for, 294; lattice structure of
space-time, 1 81; probability judgments by
machines, 183; and a review of a book by
Popper, 191. See a/so Bode-Titius law; Causal-
ity; Confirmation, Contingency; Explicativity;
Extraterrestrial life; Free will; Foundations of

probability and statistics; Gbdel's theorem;
Induction; Logic; Multinomial distribution;
Paradox; Speculation; Weight of evidence

Phoenix universes, 999
Phonemes, 397 (45, 51, 66); and Good's

consonant, 339 (62); recognition of, 524;
regeneration of, 397 (39); and subassemblies,

397 (60)

Physics, and high-energy or scattering data,

1 383. See also Astronomy; Causality; Chaos;
Determinism; Dyson's conjecture; Entropy;
Fundamental particles; Gravitation; Numerol-

ogy; Parity; Quantum mechanics

Physiological philosophy, 243 (505)
Physiological psychology, 243 (510)
Pi, 13,397 (60)
Pictures and language, 861
Pigmatic, 196
Pitman's shorthand, explanation of distribution

of number of strokes in, 130, 398
Planaria, RNA, and turkeys, 796
Plancherel's theorem, 8a
Plancherel-Watson transform, 8a
Planetary systems in the galaxy, 882, 1212,

1322A
Planets: motion of, 890; number in galaxy,

391, 476, 644; and satellites, analogy with
sunspots, 688, 1445; and the tendency to
pair off, 688. See also Bode-Titius law

Planned obsolescence, 1445
Planning and descriptions, 1212
"Plausibility," 1 3; gain or loss of: see a/so

Weight of evidence
Plausible inference, 970
Players' ruin, 13
Pleasure, as resolution of conflict, 243 (507).

See also Pain
Pleasure center, 339, 525
Point charge, moving, electric and magnetic

fields, 898
Poisson: black washed, 1436; his contributions

to science, 1436
Poisson bracket, 1436
Poisson distribution, 1 436; approximate, of the

number of "repeats" in a sparse contingency
table, 398; and the matching problem, 1436

Poisson trials, 1436
Poisson's summation formula, 316,1 036;

application of to spectral densities, 21 0;
discrete analogue of, 56, 127, 209, 316;
discrete analogue of and factorial experi-
ments^), 1436; and the sampling theorem of
communication theory, 1436; and uniform

distribution of angles, 728 (355-56); various
applications of, 1436

Poisson's work, statistical applications of, 1436

Polish cryptanalysts, 1397
Political behavior in a hierarchical society, 795

Political platforms, spatial model of, 795, 871,

966,1014
Politicians, a hormone test for aggressiveness of,

666
Politics, 753. See also Democracy; Sociology;

Voting
Pollaczek-Spitzer formula, 236
Pollution, 753
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Polya's random-walk theorem, and winding
space, 339(330-36)

Polychotomization, optimal, 755
Polygons, regular, a geometrical property of,

1345
Polymerization, 337, 397 (61)
Polymers: and the frequency of isomers in

nature, conjectured as Good's law (later
described by Manfred Gordon, in a lecture,
as "prophetic vision"), 200 (378); platted,
1445

Polynomial algebra, and the FFT, 645
Polynomials, "primeval," 660
Polypeptide chains: in distinct species, de-

grees of similarity, and evolution, 1451;
irregular shapes of, 1450, 1451

Polyploidy and "instant speciation," 1451
Polytopes, convex, and mixture designs, 662
Poor Bloody Infantry, 1015, 1178, 1218
Popper: influence of on me, 890; mettle-proving

criterion of and its failure to avoid an infinite
regress, 191; philosophy of and its resem-
blance to Fisherian statistics, 1 91; and refuta-
tion of his argument against induction, 191;
as stimulating even when wrong, 191; as too
subjective, 599 (136); unreasonable inter-
pretation of simplicity of, 191; as upside-
down, 750 (19)

Population: composition of, not necessarily
described by a single parameter, 1397; contin-
gency table for, 397 (51); estimation of
by the removal method, 1 250; explosion of,
solution for, 666; finite or infinite, 13;
genetics of, and a new kind of integral equa-
tion, 207; of types I, II, III, etc., 398

Positive-definite covariance function, 854
Post Office Research Station, 1015, 1178,

1218
Posterior, injecting (not medical), 729 (492-

94)
Postulate of impotence, and Hume's prin-

ciple, 617
Potential gradient, 690A; in lightning and in

neural membranes, 796
Power functions: correlation for, 792, 1157;

for multinomials and contingency tables,
1444

Power laws of sensation (Stevens), a linguistic
matter, 796

Power method for calculation of eigenvectors,
398

Power statistic in signal detection, its distribu-
tion, 210

Power and strength of significance tests, 1444
Practical difficulties in Bayesian statistics, 13
Practice, closeness of our theory to, 13
Prebaiting, 1250
Precision fallacy, 1 3, 174, 520, 928
Precision versus accuracy, 755
Precognition: speculations concerning, 339

(151 -57): see also ESP; and tachyons, 1212;
"whispering gallery" theory, 882, 1322A

Precognitive dreams, caution in evaluating,
861, 992, 1322A

Prediction, 13, 398; of disasters, 1445; method
of making one with certainty, 398; paradox
concerning, 425. See also Prophecy

Prediction error, 854
Predictive sample reuse: and multinomial

estimation, 1245; and procedural parameters,
1245

Predictivity, 890
Predictor, minimum mean squared-error, 854
Preferences: as discernible but not perceptible,

1357; transitivity of, 1221
Premises uncertain, 1369
Premium Bonds, British, 203, 643
Preposterior analysis. See Device of Imaginary

Results
Presumptuousness, definition of, 243 (493)
Prevision, in de Finetti's sense, 956
Priggish principles, 1313
Primary colors, four instead of three, 1445
Prime number: as a postmark, 643; theorem

of, 970
Prime words, 646
Primes, 643. See also Mersenne primes
Prime-time locusts, 1445
Primitive concept, 1 235
Primula sinensis, 1 3
Principle of indifference, 1 227. See also Bayes's

postulate
Principle of minimum expected weight of

evidence, 322
Principles, general, obvious but overlooked,

169
Printing, boustrophedon, for saving reading

time, 169
Prior: choice of, 293, 1160; conjugate (G. F.

Hardy), 522, 731 (449); density in function
space, 1060, 1383: see also MPL; dependence
of on its mode of usage, 1277; distribution,
and the beta distribution for binomial para-
meter (G. F. Hardy), 883; "inducing" of,
1080; "informational," 875; invariant, 293,
522; judged by its implications, 547 (429);
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"least favorable," 618, 622, 875; "minimal
informative," 875; rejection of, 720 (431);
uncertainty of, 1420

Priors: families of, 1420; on function space,
1060; geometrical invariance of, 293; for
multinomials, affected by considering con-
tingency tables, 1160; via imaginary bets,
293; via imaginary errors, 293; via imaginary
results, or Bayes's theorem in reverse, 293;
via smallest discernible domains, as an in-
variant procedure, 293, 294, 322

Prisoners used for clinical trials, with compen-
sation, 1146, 1272

Prisoner's sentence, depending on probability
of guilt, 1217

Prize, unsolicited, for exposition, 316
PRN machine (a machine with partly random

networks), 1 83
Probabilistic causality, 397 (67), 928, 1336;

and an answer to Salmon's criticism, 1 263
Probabilistic indexing, 397. See a/so Informa-

tion retrieval, statistical
Probabilistic information in small pieces,

1386
Probabilities: conditional (invariably), 221,

1300; estimated, for unique events, 243
(505); higher types of fuzzier (woollier),
1313; of hypotheses, 75; initial, 617; inter-
mediate, 77; interval-valued, 1313; meta-
metaphysical, 617; physical, measured by
a subjectivistic theory, 617; relative versus
absolute, 956; subjective, precise, often
judged to be good enough, 1 74

Probability, 1 3, 20, 1 83, 224, 263, 264, 337,
339 (256), 398, 413, 521, 598, 645, 668,
696, 702, 705, 854, 857, 1221, 1228, 1248;
abstract theory of, 13: see a/so Black box;
axioms for, 1300; classical definitions of,
13; comparative, 1313; conditional, Fisher's
omission to use a notation for leads to an
error in the fiducial argument, 970; condi-
tional, when the "given proposition is uncer-
tain, 890; definitions of, 13: see a/so Prob-
ability, kinds of; dendroidal categorization of
522, 750 (3); dynamic, 938, 958, 1268,
1300, 1338, 1396, 1420: see also Axiom
A4'; Probability, evolving; Time, variations
of belief with; dynamic, and the resolution
of controversies, 970; dynamic, and temporal
logic, 890; estimation of, 38, 83, 86, 322,
397 (32, 33, 54), 398, 522, 524, 592, 957,
1060, 1080, 1148, 1402: see a/so Multinomi-
al distribution; Probability density estima-

tion; estimation of and degree of regeneration
of a subassembly, 397 (77); estimation of,
incentives for: see also Fees, fair; estima-
tion of in medicine, 636; of an event that
has never occurred, 83, 398, 735 (191);
evolving, 599, 666, 844: see a/so Probability,
dynamic; fallacies, and fifteen ways of com-
paring kinds of probability, 520, 928; founda-
tions of, 844, 956, 1068; generating func-
tion for, iterated, 55; generating function,
pseudo-, 237; generating matrix, 236; hier-
archy of, 398: see also Hierarchical Bayes;
history, 1300; of a hypothesis, 980, 1313;
interval-valued, 13, 112, 127, 174, 183,
228, 290, 294, 618, 729 (492-94), 844,
1160, 1267, 1330: see also Probability,
partial ordering of; intuitive, 398, 1267;
intuitive, precise and imprecise, 398; in-
verse, 13, 1160: see also Bayes's theorem;
judgments of, combination of, 636, 1186,
1238, 1241; judgments of, good and bad,
131 3; judgments of, higher "types" vaguer,
but vagueness matters less, 862; judgments
of, by machine, 1 83; judgments of, precision
of, 290; kinds of, 293, 322, 397 (76), 398,
520, 844, 928, 1313; kinds of, and Poisson,
1436; and language, 397 (41); linguistic,
1 3; logical or necessary, 398, 729 (492-94),
1267: see also Credibility; magic, 729 (492-
94); measures of, parallel, 854; measures
of, perpendicularity between, 854; modern
history of, 844; as necessary in statistics,
844; as not just mathematics, 750 (3); par-
tial ordering of, 397 (45, 46), 398, 844,
1241: see also Probability, interval-valued;
physical, its existence, 398, 956; physical,
and the reason I do not accept de Finetti's
interpretation, 398, 617; physical, subjective-
ly probable, 398; physical, urn model for,
398; of a probability, 1160; of a propensity
(or "chance"), 13, 1160; psychological,
398; qualitative: see Probability, interval-
valued; Probability, partial ordering of;
simplest useful theory of, 398; small, 13;
and statistics, foundations of: see under
Foundations of probability and statistics;
and statistics, to motivate some parts of
mathematics, 1338; subjective (personal),
883, 956, 1217: see also Degrees of belief;
Subjective probability; subjective, of cred-
ibility, 398; subjective, interval-valued, as
implying a Bayes/non-Bayes compromise,
1267: see also Probability, interval-valued;
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subjective, a necessary extension of logic,
13, 398; subjective, partially ordered: see
Probability, interval-valued; subjective, pre-
cise, a "paradox" concerning, 1241; sub-
jective and semantic vagueness, 890; tail-
area 1320: see Tail-area probabilities; tauto-
logical or mathematical, 398: see a/so Prob-
ability, kinds of; theories of, 13: see also
Probability, kinds of; theory of, as making
judgment more objective, 13, 1313; theory
of, purposes of, 13; "types" of, 294, 398,
1160; upper and lower, 398, 729 (492-94):
see also Probability, interval-valued; Prob-
ability, partially ordered; upper and lower,
and exterior and interior measure, 1300;
upper and lower, as upper and lower limit-
ing frequencies, 1300; use of for under-
standing of everything, 398; of war, 498.
See also Credibility; Statistics

Probability density estimation, 699, 701,
733 (284-86), 810, 991, 1080, 1200, 1341,
1383; from histograms, 810; nonparamet-
ric, review of literature on, 810; and ther-
mographs, 991

Problem of points, 750 (8)
Product, "indirect," 397 (81, 82)
Products, continuous, an analogue of inte-

gration, 224
Prognosis, 798
Program notation, 6 I 2
Program translation, 612
Programmers, as necessary splitters of hairs,

666
Programming languages, approaching natural

language, 861
Programming manuals, not lucid, 666
Programs: as alterable in Colossus, 1419;

as readily changeable, essential, 243 (502)
Progress, as depending on the artificial be-

coming familiar, 169
"Progressive deepening" in problem solving,

777, 796, 1367
Projection operator, 854
Propensity (physical probability, not neces-

sarily single case), 1 83, 398, 1 21 7
"Proper and improper" theories, 1 3
"Proper" scores, scoring rules, fees or pay-

offs, logarithmic and quadratic, 690A, 1 068,
1181, 1387. See also Fees, fair

Prophecy: concerning computer-aided instruc-
tion when terminals are cheap enough,
686; concerning frequency of isomers in
nature, 200 (378); concerning intelligent

pocket computer terminals, 666; concern-
ing personal computers for game playing,
666; concerning pulse repetition frequency
in computers, 666; concerning the UIM,
666; concerning ultraparallel computers,
666

Proportional bulges, 643
Proportional trapping in population estima-

tion, 1250
Proposition: atomic, definition of, 169;

as a class of equivalent statements, 397
(77); definition of, 13, 1300, 1313; ele-
mentary, 1300; empirical, 13; idealized,
13; incompletely defined, 13; involving
probability, 13; "partial," 13; possibly
more than language the basis of thought,
1313; random, 221

Prepositional functions, 13
Prospective versus retrospective studies, 928
"Prospector," 1 369
Proton, mass of, numerology concerning,

218,339,709
Proton and neutron masses, 709
"Provisional restructuring" (microprogram-

ming), 666
Pruning of a game-tree, involves guesswork,

777, 1367
Pseudo-Bayes, 957, 1420. See also Doog;

ML, type II; Quasi-Bayes
Pseudoindeterminism, 153
Pseudoprobabilities, 397 (76)
Pseudorandom numbers: advantage of, 195;

and determinism, 1221; as flatter than
flat-random, 643; and linear recurrent
sequences, 660; multiplicative method for,
643

Pseudorandom ness, physics, and free will,
761

Pseudotree, and its "strengths," 974
Psi-squared test, 36, 84, 123, 203, 526
PSR (predictive sample reuse) in multinomial

estimation with collateral information,
1402

Psychology, 13, 185, 243, 315, 525, 753;
and communication and causality, 243
(496); and physics, 861. See also Arti-
ficial intelligence; Consciousness; Mind; Para-
psychology

Psychophysical parallelism, 243 (496); im-
plausible, 243 (513)

Public choice, 795. See also Democracy;
Voting

Public opinion surveys, 13
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Pudding, proof of, in the eating, 731 (449).
See also Device of Imaginary Results

Pulsars, 999
Punctuation, rationalization of, 666
P-value, 1320, 1396; diminishing signifi-

cance of as sample size increases, 1320.
See also Tail-area probabilities

Pythagoras, generalized, 13, 1354; "physi-
cal" interpretation of, 1371

Quadratic expressions: independence of,
374; joint characteristic function of, 646;
joint characteristic function of, and the
noncentral Wishart, 1434; joint cumulants
of, 646; in Markov-chain frequencies,
375; and prime words, 646

Quadratic form: with chi-squared distribu-
tion, 621; distribution and cumulants, 210;
and generalizing Pearson's X2, 1399; minimax
property of, 398; in nonnormal variables,
1034

Quadratic indexes of homogeneity and hetero-
geneity, 1 397. See also Diversity

Quadratic loss, local, 618
Quality control, 13, 882
Quantity emerging out of quality, 686
Quantum mechanics, 339, 499; and Brownian

motion, 1 333; and conscious beings (Wigner),
882, 1 322A; and dualism, 398; equivalence of
Heisenberg's and Schroedinger's formulation
of, relevant to probability density estimation,
701, 810; and God, 385; and multiple time
series, 1333; and mutual observation, 1222;
prior probability of (the truth of its observ-
able implications), 890; probabilities in, 13,
956; short partial description of, 882, 1322A;
stranger than (consistent) science fiction, 666,
882, 1322A; why |^|2 occurs in, 339 (153),
1333; and Yoga, 385

"Quasi," as sounding less pseudo than "pseu-
do," 1420

Quasi-Bayes, 1267, 1420. See also ML, type II
Quasigod, 391, 476, 644. See also Godd
Quasi-pseudo problems, 1445
Quasireligion, fraudulent, 1 322A
Quasistellar radio sources, 520, 928
Quasiutility, 737 (475), 958, 1160, 1217,

1 278; in diagnosis, 755; and medical records,
700

Queen's highways, 929
Questioning of questions, 243 (492)
Questions, and whether the right ones are

asked, 520, 928

Queues and branching theory, 1436
Queues with several different types of

customer, 200
Quiescent positions in games, 521, 777, 1367
Quotation marks, square, for inexact quota-

tions, 666
Quotient groups, 209, 316

Radio, microminiature, 397 (35)
Radio astronomy, 323, 323A
Radon-Nikodym derivative, 854
RAN D's million random digits, 643
Random, at, 1 3
Random motion on an Abelian group, 20
Random numbers, 7: see also Pseudorandom

numbers; applications of, 643; philosophy of,
643, 697; and Premium Bonds, 203; produc-
tion of, 1 3, 643; tests for: see Serial test;
Tippett's, 478

Random propositions, 221
Random selection of universes, 398
Random sequences, 398, 516, 643; infinite,

mentally convenient but not strictly opera-
tional, 162

Random variables, 1 3; clustering of, 1 248;
functions of, having identical distributions,
1334

Random walk: on an Abelian group, 20; and
analytic continued fractions, 141; conditions
for recurrence in, 37; and a discrete analogue
of Poisson's summation formula, 1436; on
knowledge network, 169; Polya's, generaliza-
tion of, 37; recurrent right-handed, 140, 236;
trinomial, and Legendre polynomials, 140

Randomized and pseudorandomized substan-
tialization, 186

Randomized design and the suppression of
information, 520,643, 928

Randomness, tests for. See Markov chain;
Multinomial distribution; Serial test

Randomness and emergence, 697
Ranking, 871. See also Orderings of candidates
Rare events, 13
Rat finks (Rattus finkus), 1250
Rate of transmission of evidence, 574
Ratio, distribution of, 604, 1035
Ratio club, 243 (490)
Rational, not rational to assume that everybody

is, 883
Rationality, 13, 956; benefits of, 290; com-

plete, impossibility of, 290; degrees of, 290;
in diagnosis, 798; and Harper's summary of
my views, 890; in information retrieval, 523;
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of medical consultants, 636; and medical
records, 700; principle of, 13, 112, 397 (39),
1313; social, various difficulties in, 1350;
teaching of, by appropriate elementary
courses, 1 338; theory of, 183; of two types,
398, 720 (431), 1160, 1 31 3; of two types,
and resolution of controversies, 290; type II,
in diagnosis, 755; ultimately to be understood
even by judges, 1338; and whether to vote,
883. See also Decision theory; Utility

Rat's memory, 777, 1367
Rattus finkus, and Rattus rattus, 1 250
Ravens, black and jet black, 1420
Rayleigh variates, generalized, 1457
Rayleigh-Parseval formula for DFT's, 316,

1036
Rayleigh-Ritz method, 699, 701, 810
Razor, sharpened, 599
Reactionary representation, 708
Reading: audiovisual, 339 (1 37-39); fast,

169, 796; when sleepy, and the effect on
perception, 796

Real metaphysical pain, 243 (512-14), 397 (64)
Real realism, 1445
Reality and fantasy, distinction between, 397

(59)
"Reasonable," 13
Reasoning: electronic, 1 3; fallacious: see

Fallacies; as logic plus probability, 1 3, 397
(38); as reducing freedom, 547 (428); versus
statistics, 721 (29-30). See a/so Rationality

Recall, 397 (36, 43-54), 398; creativity and
duality in, 615; immediate to long-term,
397 (72, 73); long-term, and "meaning," 397
(77, 78); perfect, 397 (59); temporal, 629;
when difficult, perhaps aided by changing the
EEC frequency, 169

Recognition, as a Bayesian process, 13, 1338,
1420

Recurring decimals, normal, 7
Reductionisrn, 617; its possibility merely a

semantic problem, 697
Redundancy: in the brain, 397 (36); of

humanity, 397 (34)
Referees: compensating and fining of, 169;

fallible, like people, 643
Refutation, a Bayesian explanation of its

importance, 890
Refutation, "honest attempts at," importance

of follows from inductivism, 890
Refutation and confirmation, 398
Regeneration, 397 (37-40, 46); approximate,

of an assembly, 397 (57); and economy,

397 (37); as error correction, 397 (37);
as gaining or losing information, 939;
generalized, 376, 796; hierarchical, 397 (38,
39); and language, 397 (38); and meaning,
397 (39); of phonemes, 397 (39); proba-
bilities, 397 (37, 38, 57, 62, 77); as suppres-
sion of information, 520, 928; in a transmis-
sion line, 939

Regenerative Markov chains, 822
Regression: an early Bayesian form of, 875;

fallacy of, 520, 928; and phenotypic values,
486; and probabilistic causality, 131 7

Regular process, 854
Reincarnation, 999; biological, 1445
Reinforcement, 1 85, 397 (36, 46, 66, 77)
Relativity, 898; and "winding space," 323

(448), 339 (330-36). See a/so General
relativity; Special relativity

Relevance, 13, 753; of index terms, 397 (58);
measures of, 217

Reliability: of complex systems, 986; with
unreliable components, 185

Religion: ancient, possibly twaddle, humbug,
and balderdash, 1414; arguments against, God
knows, 1322A;and parapsychology, 861,
882, 1322A; Pascal's argument for, 1322A;
and science, 882, 1322A. See a/so Godd;
Pauline epistles; Yoga; also consult God

Repeat rate (Gini's index), 38, 398, 524, 547,
862, 1201, 1361; of amino acids in poly-
peptides, 1450; in clinical medicine, 798,
1397; of order s, 1398; unbiased estimate of,
1 397. See also Diversity

Repeats: within cells of a contingency table,
mean and variance of, 1199; in a contingency
table, 1199, 1365, 1420; in cryptanalysis,
1386; number of, distribution of, 547;s-fold,
1468, 1469

Repetitive sleepy thought, 397 (58)
Reproducing Hilbert space, 854
Research: encouragement of, 690A; post-

subsidization (? G. Tullock), 690A
"Reserve list" of scientists, 1015, 1178, 1218
Resonance, 397 (44)
Response surfaces, 662
Responsibility, allocation of, 315
Results, imaginary, 398. See also Device
Retention, short-, medium-, and long-term,

777, 1367
Reticular system, 796
Reverberation, 397 (61)
Reversed-digit representation, 708
Reviews. See Book reviews
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Reward and punishment, 397 (77)
Ricci's formula, 701
Richard's paradox, 400
Riemann hypothesis: and the pseudorandom-

ness of the Mbbius sequence, 610; a reason
for believing it, 610

Riemann zeta function, 598, 61 0
Riemann-Christoffel curvature tensor, 701
Riemannian metric in parameter space, 1160
Rights of slaves, animals, and machines, 1350
"Rigor mortis," 1160
Rim (cyclic word), 646; irreducible, 646
Risk, theory of, 11 2. See also Rationality
RNA (ribonucleic acid), 1451; as food for

thought, 796
Robot, 397 (63, 76, 80); unconscious mind of,

1350
Robotics, Asimov's three laws of, 1350
Robustness: of Bayesian methods, 398; and the

Device of Imaginary Results, 1420; with
respect to choice of hyperhyperparameters,
1420

ROMS (Resources of Modern Science), 1386
Room 47, 1015, 1178, 1 218. See also GC &

CS
Roots of unity, 1 27, 974, 1408. See a/so

Arrays; Cumulants; DFT; FFT; Polynomial
algebra

Rote learning, 777, 1367
Rothman's law, 764
Rotor in Enigma, 1 01 5, 11 78, 1 21 8
Rough paper, electronic computer as, 397 (34)
"Roughness," 322; multidimensional, 659

(1 37-38); penalty for, 659 (1 35-38), 699,
701, 810, 1060, 1080, 1383: see a/so MPL;
penalty for, general forms of, 81 0; penalty
for, invariant under rotation of axes, 1341,
1 383; penalty for, iterative determination of,
81 0; penalty for, maximum possible value of,
81 0; of a probability density curve: see a/so
MPL; putative, 810

Roulette wheel, electronic, 203, 643. See a/so
Wheel

Rounding-off errors, 643
Rounding-off noise, 142, 21 0
Rows, columns, shafts, ranks, files, turnpikes,

spurs, and corridors, 322
Royal Statistical Society weekend conference

(7957) , 1137, 1160
RSPCA (Royal Society for the Prevention of

Cruelty to Animals), and the philosophy of
pain, 861

Rug. See Carpets

Rule 7 for the statistician (look at the data),
738(326-27)

Rules, 13. See also Axioms, as combined with
rules and suggestions

Run lengths in Markov chains, 822
Runs, 36; true and apparent, 822
Ruritanian correspondence, 708
Russell, knocked, 754
Russian vocabulary, distribution of, 398
Ryle, brilliant, lucid, and wrong, 243 (491)

Saccadic movements of eyes, 629
Saddlepoint approximations, 3; and differences

of powers at zero, 225, 238; for the multi-
nomial, 1 27; and probability-generating
functions, 127, 140,238

Safecracking, 20
SAGE, 666
Salzburg conference, 617
"Sameness," definition of, 221
Sample: basic and nonbasic, 398; effective

smallness of, 398; survey and fraudulent
lotteries, 1022

Sampling: a compromise between systematic
and random, 735A (275); effective rate of,
21 0; to a foregone conclusion, 875, 1 396;
s imple , 398

Sampling space, 398. See also Alphabet
Sampling theorem for band-limited signals, 142
Sand, burying heads in, and whistling, 1 74
Saporology, 169
Savage-Lindley argument, 750 (65)
"Scalar indicia!," 645
Scattering data, 1 200, 1 383
Scharnhorst, sinking of, 1178, 1299
Scheffe's mixture problem, 662
Schroeder-Bernstein theorem, 1222
Schroedinger wave-function, a telepathic

field(?), 1322A
Schroedinger's "cat paradox," 882, 1 322A
Schroedinger's equation and Feynman's path

integrals, 1 333
Schwarzchild singularity, 788A
Science: antiintellectual (Mencken), 1322A;

at fingertips, 169; hard, definition of, 1330;
and religion, 882, 1322A

Science fiction, 243 (492); anticipations of
better than those of statesman (Russell),
169

Scientific ability, analyzed as a mental habit,
169

Scientific communication, 11 0, 686
Scientific induction. See Induction, scientific
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Scientific methodism, 243 (491)
Scientific speculation. See Speculation
Scientific theories, 13: see a/so Laws of nature;

as null hypotheses, 322, 631
Scientist, if not a philosopher, a technician, 1 91
"Scientist Speculates, The," 339, 1 212
Sculpture, number of pieces latent in a block of

stone, 243 (504)
SEAC, 666
Search trees, 1201, 1361
Seismology, 323 (448)
Selection for an attribute harmful to bearer,

1451
Self-adjoint operator, 854
"Self-consciousness," possibly largely a lin-

guistic matter, 861
Self-consistency. See Consistency
Self-interrogation, optimal amount of, 398
Semantic information, 397 (38)
Semantics, 397; and economy, 368; relevance

of to artificial intelligence, 368; statistical,
397 (45, 46); and thought, 777, 1 367. See
also Definition; Meaning

Semi-Bayesian procedure, 1250
Semifoj-malizing, 1217
"Semilinearity," 796
Semitone, 1 3
Sensations, subjective, and interpersonal

comparisons, 243 (495)
Sensitivity analysis. See Device of Imaginary

Results
Separateness: feeling of, dependence of on

slowness of communication, 861, 1 21 2; as
an illusion, 243 (497); index of, 1432, 1441

Sequence, totally monotonic, 398
Sequential analysis, 13; history of, 732 (14-15),

1201, 1361; and Turing, 732 (14-15)
Serial test (for random numbers), 162, 203,

526; for arrays, 1 23; correct use of, 36;
misuse of, 520, 643, 928

Series, transformation of, 86, 398
Series of de Morgan, generalization and applica-

tions, 900
"Set," psychological, 397 (60, 64, 66, 75)
Shanks's method of summation, 86
Shape recognition, 796
Sharpened razor, 736 (375), 958; and

complementarity, 724 (77-80); and the hope
that philosophers will try to refute it (and
fail), 890. See also Explicativity

Shift-register, in Colossus, 1419
Shift-register feedback, 643
Shift-register sequences, 7

Shrinkage estimators, 1420
Sidelobes, 323, 323A
Sierpinski sponge, 1075
<j-age, 1 3

Signal detection: in a Gaussian model, 142,
192, 21 0; perfect, 854. See also False-alarm
probabilities; Gaussian source

Signal-to-noise ratio, matrix for, 142
Significance tests, 398, 416, 1217; choice of in

advance, 1 74; chosen after an experiment,
reasonable, dangerous, and often done, 174;
combination of, 78, 1 74, 398, 734 (368),
753, 960; and ignoring unpublished failures,
169; interpretation of, 928; and more than
one on the same data, 174; as not perfect but
the best available, 547 (430); as not to be
knocked, 631; in parallel, combination of,
1 74, 733 (284-86); power and strength of,
1444; for rank of matrix, 398; and sample
size, 631, 1320; in series, combination of,
732 (14-15); for simple and composite null
hypotheses, 631; and trading robustness for
power, 174; weighted combination of, 78.
See also Contingency tables; Markov chain;
Multinomial distribution; Surprise, index of

Silica in chondrites, 1200
Similarity, index of, 1453
Simplex: lattice designs for mixtures of, 662;

moments of, 11 00; regular, angles between
"faces" of, 1371; uniform distribution in,
398; volume of in terms of edges, 696

Simplicity, 13, 322, 398, 599, 1160; and
beauty, 861; in the brain of the beholder,
1 330; as brevity, 1330; from complexity
from simplicity, 1451; and "entrenchment,"
958; relative to a field of activity, 958; and
surprise, 82. See also Complexity

Simplification by simulation, 666
Simulation. See Monte Carlo method
Simulation of brain, 397 (34)
Singular decomposition: and intertwining of

the singular values, 398; of a kernel, 398; of
a matrix, 398, 607, 1354; and Vinograde's
lemma, 1335

Singular functions and gambling, 1075
Singular process, 854
Singular series, possibly of use in statistics, 127
Singular values of a matrix, intertwining

property, 398
Singular vector of matrix, 398
Singularity, between probability measures, 854
Sino correspondence, 708
Sino-Ruritanian representation, 708
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Skill, and the difficulty of transferring con-
scious understanding to the unconscious, 1 85

Skin banks, 33
Sleep, 243 (509), 339 (1 27, 130), 397 (57, 65,

72, 80); and "cooling the economy," 777,
1 367; and delta rhythm, 525; a possible
function of, 525

Slide-rule, generalized, 13
Slinky, and vibrations of DNA, 796, 1445
Smith's (Adam) "hidden hand," 1350
Smith's (C. A. B.) statistic, 1199
Smoke, where there is smoke there is (Wheeler),

1322A
Smoking, 1 3; and the bitter end, 339 (365-67);

and lung cancer, 228, 339 (365-67), 1 389;
and lung cancer, and weight of evidence, 570

Smooth, the, and the rough, 1330
Smoothness, 1 3
Social choice. See Democracy; Voting
Social choice and surfaces of constant societal

loss, 795
Social implications of computers, 339 (1 92-98),

666, 861
Social problems, 397 (34)
Socialism, 753. See a/so Computers, as making

capitalism and socialism possible
Society, control by machines, 339 (192-98),

666,861
Sociology, 753; mathematical, 795; one of the

most important problems in, 861; of sta-
tistics, 1 56. See also Crime; Democracy;
Voting

Solar system, 705; origin of, 688
Solipsism, 13; communal (Berkeley) and

quantum mechanics, 882, 1322A;and de
Finetti, 956; as not disprovable, 1436; as not
implied by a subjectivistic theory, 1 3

Solipsists, card-carrying, not known to me,
1436

So-much-or-more method, 13. See also Tail-area
probabilities

Soul: of a dolphin, 777, 1 367; of a machine,
777, 1367; as offered in a bet, 1420

Souls, using up of, 1445
Source (of information), 397 (37)
Space: curvature of, Einstein's formula for, 339

(330-36); dimensionality of, 339 (330-36); as
divided up by hyperplanes, 966, 1404; of
functions, 13: see a/so MPL; isotropy of,
undermined, 339 (330-36); as not needing to
close on itself, 339 (330-36); winding, 339
(330-36)

Space-time, lattice structure of, 1 81

Spatial models of political platforms, 795, 871,
966, 1014

Special Relativity, 898
Special selection, "paying factors for," 929
Speciation, not always gradual, 1451
Species sampling problem: and DNA homology,

1397; estimation of population frequencies
for, 38, 86, 398, 522, 524, 960; goodness of
fit test for, 1027

Spectral analysis, 210
Spectral decomposition: of a linear transforma-

tion, 398; of a matrix, 1250
Spectral distribution function of a sequence,

1343
Spectrum, discrete, and rank of covariance

matrix, 1 92
Speculation, 339, 397 (32), 1212, 1445; as

equaling thinking (Hayek), 796; on percep-
trons, 1 85; in science, function of, 525;
succinct, 1445. See a/so ESP

Speech center in brain, and whether a chimpan-
zee has one, 796

Speech perception, 61 5
Speech recognition without tuition, 592
Speeds, visual (David Hughes), 1445
Spelling, rationalization of, 666
Spherical distributions, 1457
Spherical trigonometry, partial correlation and

beer, 1249
Spheroids, volumes of, 709
Spike frequencies in neurons, 796
Spin of fundamental particles, and winding

space, 339 (330-36)
Spirits only in some kinds of systems, 861
Spiritualism, the weight of evidence for, often

zero, 861
Splitativity,690A
Split-brain experiment, proposed for ESP,

1322A
"Spread" of several random variables, 1 248
Sprocket holes in teleprinter tapes, 141 9
Square root: law of for solving problems, 533;

rapidly convergent series for, 900; of 2,
binary expression for, 526

Squared-error loss, 956
Squares, sums of, in the theory of numbers,

127
"Squariance," 795
Squashing of frequency count, 398. See also

Flattening constant
Stability of social groups by music, not by

rationality, 666
Stabilized images, fractionation of, 796
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Stable distribution, 604 (325-26); character-
istic functions of, and chaotic environment,
224; for generalizing multivariate analysis,
724 (77-80); multivariate, 724 (77-80), 1034

Standard of living: increase at low cost possible
by saporology, 1 69; and stationery, 987

Star magnitudes, 13
Starvation, 753
State diagrams, 7
State of mind, 1 3
Statements in canonical form, 397 (41)
States, effective number of: of the brain, 169;

of a continuous record, 169
Station X, 1 01 5, 11 78, 1 21 8, 1 299. See a/so

GC & CS
Stationary process, in various senses, 854
Stationery and standard of living, 987
Statistic, "efficacious," "simply efficacious,"

and "largely efficacious," 1 74
Statistical consulting, block diagram Tor, 198
Statistical fairy-story, 1338
Statistical mechanics, 13; and cross-entropy,

322; and maximum entropy, 398; as a null
hypothesis, 398

Statistical theory of probability, 1 3. See also
Frequentism

Statisticians: increasing demand for, 1 338; as in
a position to be unscrupulous, 1 74

Statistician's stooge, 1 99, 245, 643, 520, 928;
and randomized designs, 970

Statistics: elementary curriculum for, 1338;
foundations of: see Foundations of statistics;
future of, 1276; as having the purpose of
increasing objectivity of subjective judgments,
1 74; history of, 1 56, and passim; and how its
history gets covered up, 1160; of language,
524; philosophy of as important as its mathe-
matics, 1 56; published, biased in favor of
what is interesting, 169; versus reasoning,
721 (29-30); as reducible to probability(?),
13; sociology of, 1 56; of statistics, 1 3, 753;
and today's problems, 753. See also Bayes;
Information; Probability; Rationality

Statute Book of Nature, as empty (R. O.
Kapp), 599

Steady-state universe, 788A, 882, 1 322A; and
big-bang, synthesis of, 999

Steak from sawdust, 1212
Steckers, 1386
Stein's paradox, need to go Bayesian, 293
Stereographic projection in statistics, 293
Sterilization, reversible (William Tobin), 1445
"Stimulus-response," too crude, 796

Stirling numbers: of first kind, 238; of first
kind, asymptotic approximation to, 225; of
the first and second kinds in the same
problem, 966; geometrical interpretation of,
966

Stoogian observations, 199, 245
Stork theory of babies, equal time for, 1445
Street urchin, Bross not, 722 (51 3-1 4)
"Strength" of a significance test, 1 444
Strongly parallel probability measures, 854
Stroud's method of integration, 11 00
Structural inference: Bayesianity of (with

improper distributions), 1 227; refutedf?),
723 (337-39); surreptitiously Bayesian,
725 (52), 1227

Structure factors in crystallography, 52
Style, statistical analysis of, 418, 524. See also

Exposition
Subgoals in problem solving, 777, 1 367
Subsubassemblies, 796
Subassemblies (of cells), 397 (43, 54-74), 980;

connectivity of, 397 (57, 62); and the
Gestalt theory, 796; "half-life" of, 397 (57,
61); and phonemes, 397 (60); and uncon-
scious (preconscious) thought, 397 (58), 615
(223), 796; uninhibited in sleep, 397 (58).
See also Subassembly theory

Subassembly theory, 243, 339 (127, 130),
525,615, 666, 771, 777, 796, 861, 1367;
and future ultraparallel computers, 861. See
also Sleep; Subassemblies

Subjective (personal) probability: de Finetti's
radical position on, 956; denial of as an
example of its use, 890; foundations of, 956;
and meaning, 368, 397 (38). See also
Probability, subjective

Subjectivism: versus credibilism, 398; as swept
under the carpet, 1137

Subjectivity, another name for common sense,
750(50)

Subset, "recognizable," 398
Substantialism, 411, 929, 980
Substantialization: of binary patterns, 52, 1 86;

in football pools, 52; points in (to represent
clusters), 376; of sign sequences, randomized,
and crystallography, 186

"Substantially right," 13
Subtilisin (Bacillus subtilis Carlsberg), 1451
Sufficient statistics, insufficient if the model is

wrong, 520, 928
"Suggestions" necessary for neo-Bayesian

theory, 13, 1313. See also Axioms, as
combined with rules and suggestions
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Summability: Euler, 398; Hausdorff, 398;
Shanks, 86, 398

Summation: of a classical divergent series, 4; of
divergent series, 3; of divergent series, and the
moment method, 5; of divergent series,
regularity of general method, 6

Sums, cumulative, and multiple contour
integration, 236

Sums of squares, 1282; Cuthbert Daniel's
adjustment, 1453

Sunspots: and analogy with planets and
satellites, 688, 1 445; and "descendents" of,
688; and Jupiter, 882, 1322A; and magnetic
storms, 882, 1322A

Sun-Tsu's theorem, 708. See a/so Chinese
remainder theorem

Super-mind (network of UIP's), 777, 1367
Superpopulation, 13, 398
Superstition, 1 3
Support, 1 3
Suppression of the uninteresting as a source of

bias, 520, 928
"Surgery" in bump evaluation, 1200, 1383
Surgery versus medical treatment, 636
Surprise: biological function of, 82, 1 396; and

coincidences, 734 (368); and diversity, rela-
tionship to, 1 397; index of, 82, 734 (368),
1274, 1396, 1420; index of, generalized,
690A, 723 (337-39), 618, 755; index of
for the multinormal distribution, 82; index
of, quadratic, logarithmic, and general-
ized, 1 397; measures of, 1 396; as a reason
for looking for new hypotheses, 398,
1396

Surprise, tail-areas, and Bayes factors, 82
Survival of humanity, 397 (31, 34)
Symbiosis, biochemical, 397 (34)
Symbiotic selection, 1451
Symmetric function, elementary, 13
Symmetric sequence, 398. See also

Permutabiiity
Symmetry, 13, 398
Synapses, 777, 1367
Synaptic facilitation, 397 (55, 58, 59)
Synaptic "juice," 777, 1367
Synaptic strengths (quantized?), 397 (58, 59,

80)
Synchronizing pulses in Colossus, 1419
Synergy: between man and computer, antici-

pated in Colossus usage, 1419; as not
"symbiosis," 666

Syntax: in classification systems, 21 7; of
pictures, 861

System: of communication, 243; complex,
796; definition of, 753

Tachyons, 882, 1322A; and precognition, 1212
Tail trouble in density estimation, 1 200, 1 383
Tail-area probabilities, 960, 1 320, 1 396; and

approximate relation to Bayes factors, 174,
398: see a/so Bayes factor; and Bayes factors,
416, 1 269, 1 320, 1 420; Bayesian justification
of when justifiable, 1273; and Daniel Bernoul-
li, 1 269; and the dependence of their interpre-
tation on the sample size, 1 269; extremely
small, available after looking at the outcome,
162; of 5% often grounds for repeating an
experiment, 1 74; of 5% unconvincing, 796;
fixed, not equivalent to a fixed degree of
provisionality of rejection of the null hypoth-
esis, 75, 416, 1 320; harmonic mean of, 1 74;
and how to dwindle them, 1414; as irrelevant
possibly to the null hypothesis, 1 74; as not
complete nonsense, 724 (77-80); as not at
tail end of usefulness, 547, 862; and the
reporting of actual values not just inequalities,
722 (513-14); weighted combination of, 78;
and why 5% is conventional, 722 (513-14).
See a/so P-value; Significance tests, combina-
tion of

Taking-for-granted-ism, 196
Tanganyika (Tanzania), 11 86
Tanning factory at Fenny Stratford, ugly and

smelly, 1015, 1178, 1218
Tapes, magnetic, sixteen applications of, 169
Taste, science of ("saporology"), 169
Tax returns, billions of man-hours wasted on,

666
Teachers versus computers, 1338
Teaching: of elementary statistics and probabil-

ity, keynote speech on, 1338; the fundamen-
tals of as too often ignored, 169; how to
learn, to reason, and to create, 1 338; how
not to do statistics, 1338; how to think, 750
(65)

"Tea parties" in Newmanry, 1015, 1178, 1218
Tea-tasting experiment, 520, 750 (62), 928
Technique versus understanding, 1338
Telepathy, 243 (496, 508, 512, 513), 339

(164-65); and God(d), 391, 476, 644. See a/so
ESP

Teleprinter: problem of, 7, 1 36, 191; tape for,
as input to Colossus, 1419; tape for, its
strength, 1015, 1178, 1218; wheel for, 136

Temporal summation, 397 (61)
Tensors, and roughness penalties in density
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estimation, 699, 701, 810, 1341. See a/so
Fisher's information

Terminology: and the mention of the old
terms, 727 (312); possibly more important
than theorems, 1 351

Terrorism, the main objection as leading to
ruthless governments, 1350

"Test," in clinical medicine, 798
Testery, 1419
Testimony, uncertain, 1369
Tests of hypotheses or significance. See Signifi-

cance tests
Textbooks: and guessing the reader's questions,

686; as written with scissors and glue, 1330
Theorems, their "wherefore" versus their

formal proofs (de Finetti), 956
Theories, scientific. See Scientific theories
Theory: abstract: see Abstract theory; defini-

tion (at least 7% accuracy), 999; descriptive
or prescriptive (normative), 1313; impossible
to believe if true, 339 (184); improper, 13; of
numbers: see Number theory; of probability,
13: see also Probability, theory of; of types
for probabilities, 1160

There-You-Are model of the universe, 999
Thermodynamics: equilibrium in, 398; fourth

law of, 666, 882, 1322A, 1451
Thermographs and probability density estima-

tion, 991
Thesaurus, mechanical construction of, 397

(71)
Theta functions (Jacobi's formula), 937;

Poisson's formula for, 1436
Thing, Russell's definition of, 980
Thinking: and cookbook, good mixture of

required, 1 338; definition of, 777, 1367; in
machines, 243 (498); nonlinguistic, 861;
prelinguistic, 796; and sensations, 777, 1367;
unlike consciousness, definable for a machine,
861

Thought-word-thing-engram tetrahedron, 397
(40)

Thunder, 796
Thyratron ring counters, 1419
Thyroid carcinoma versus simple goitre, 755
Time: backward: see Backward time; delay of

in neural networks, 397 (54); direction of,
and whether it should be axiomatized jointly
with causality, 180; elapsed, judgment of,
397 (59); end of, 1445; sequence of (neural
representation of), 397 (69); variations of
beliefs with, 13: see a/so Probability, dynam-
ic. See a/so Space-time

Time series, 1 7. See a/so Gaussian noise;
Markov chain; Random walk; Serial test

Time-invariant systems, 854
Time's arrow, 1445. See also Backward time
Titius-Bode law. See Bode-Titius law
Today's problems, and statistics, 753
Toeplitz matrix, 1111, 1343
Tomography, 670
Toroidalization, 1383
"Total evidence," rule of, 730 (1 04-5), 1 221
Totally monotonic sequences, 398
Tournaments. See Grading
"Tout comprendre c'est rien louer," 76 1
Tracheal deviation, 755
"Trade union" activity, 666
Transfer function, 854
Transfinite counting, 626; versus Godel's

theorem, 761
Transformational grammar, 861
Transformations: adjoint, 8a; to normality,

960
Transgeneration, 397 (39)
Transistors, as perhaps no worse than murderers

for control of society, 1 350
Translation, 397; mechanical, 1 83, 397 (40, 41,

71); mechanical, and the need for an inter-
mediate and less ambiguous language, 169.
See also Language

"Transmission of matter" by radio, 882, 1322A
Transplantation, 33
Traps and animals, symmetry between, 1250
Trees: for decisions, 777, 1 367; dichotomous,

and two-by-two contingency tables, 398;
enumeration of, 413; in information retrieval,
21 7; rooted and ordered, enumeration of, 200

Triangle, vanishing, 598
Trientropy, 618, 690A, 755
Trigonometrical identities, 1036
Trigonometrical interpolation, 142
Truth, suppression of some to communicate,

1330
Truth tables, 13
Turing, and empirical Bayes, 38, 86
Turing machine, 426, 540, 626, 666
Turing-Good formula, 522
Turing's bicycle, 1015, 1178, 1218
Turing's criterion for thinking in machines,

183
Turing's expression (expected weight of evi-

dence), 322
Turing's mannerisms, 1015, 1178, 1218
Turing's statistical work in World War II, 1 201,

1361
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Turing's test for machine th inking, tightened
up, 861

Twins: of criminals, 1 74, 1166; fingerprints of:
see Fingerprints

Two-armed bandit, 592
Two-level Bayes, 1420. See a/so Hierarchical

Bayes
Two-stage Bayes, 1420. See also Hierarchical

Bayes
Type I I ML. See ML
Type III distribution, 547, 793, 862, 1420
Types: as psychologically useful , 547, 862; in

the sense of Russell, 547, 862, 929, 1420;
theory of, 13

Type-token statistics, 38, 86
Typhoons, origin of, 1445
Typicalness, fallacy of, 13
"Tyranny of words" ("Idol of the market

place"), 1313

U-boat cyphers, 1015, 1178, 1218, 1299, 1386
UFO's, 1212
U I M (ul t ra in te l l igent machine) , 185, 391, 397

(33-37), 476,644,666,771, 777, 882, 1212,
1322A, 1350, 1367; association for safe-
guards against, 666; as the common enemy,
666; coping with, important problem and
therefore ignored, 666; definition of, 397
(33), 861; design of, 861; going into orbit
accompanied by robots, 777, 1 367; integrated
with electronic computer, 397 (36); justified
expenditure on, 777, 1367; and longevity,
1 21 2; and the next dominant species ( A r t h u r
Clarke), 666; as potential bu i lder of ultra-
intelligent organisms, 1451; and space travel,
1212; time of arrival of, 861, 1 212; value of,
397 (34). See a/so Art i f ic ia l intel l igence

U I P (ultraintel l igent person), 777, 1367
Ultra, 1 01 5, 11 78, 1 21 8, 1 299, 1 386
Ul t ra in te l l igen t machines. See Ar t i f i c i a l intel-

ligence; UIM
Ultraparallel machines, 397 (35, 36, 51, 55, 56,

79)
Ult rapara l le l operation of brain, 1235
Unbiased estimates often not unbiased in

practice, 13, 750 (58)
Uncertainty pr inc ip le : in exposition, 1445; as

invoked only when needed, 1333
Unconscious, the, 243 (497). See also Sub-

assemblies
Understanding, as symbolic representation, 1 85
Unicursa l paths, enumeration of, 136
Uniform random variables, sum of, 11 00

U N I VAC, 666
Universe: conjugate, 339 (1 53): see also Back-

ward time; as having no beginning, 788A;
observable, perhaps a black hole, 788A, 999;
seeing right round of, 323 (448); sheets of,
999. See also Imaginary

Universes, hierarchical, 999. See also "Chinese"
universes

Universities, organization of, 1217
University: without departments, 666; organi-

zation of, should resemble a knowledge
network viewed from a distance, 169

Unobservables, 13
Unscientific private thoughts, naughty, 398
Unusua l , to the, all things are unusua l , 169
Upl i f t , 323 (461,467)
Ur-eggs and ur-chickens, 999
Urgency versus importance, 13, 666, 1350
Urn models, 398
Ur-universe, 999
"Utiles," 750(31)
Uti l i ta r ianism, Bayesian form of, 1350
Ut i l i ty , 13; communal , 795; of a d is t r ibut ion ,

198,618,622, 733 (284-86); of a distribu-
tion, and fair fees, 690A; of experiments,
211; a five-star system for, 636; of gambling,
13; imp l i c i t , of medical consultants, 636; of
an interval estimate, 398; judgment of, 13;
and management, 290; neglect of, 13; as not
a conscious concern of Jeffreys, 1160; of a
probability vector, 755; in pure science, 75,
71 9 (302); and Ramsey, 1 3; and reason for
the word, 750 (2) ; of scientif ic theories, 1 3;
and sequential tests, 13; of a state of health,
1146. See also Quasiutility; Rationality

Vagueness versus precision, 13, 174
Variable length mult ipl icat ion suggested,

125
Variance: and approximate standardization by

a square-root transformation, 38, 86; ratio in
a nonnormal model, 1034; "scalar," "vector,"
and "matrix," 990

Velikovsky, presumably misguided but u n f a i r l y
treated, 1212

Venn diagram, 798
Venus and J u p i t e r , 1212
Verification of the theory, 13
Vertical stroke, meaning "given" (used through-

out), 13,398
Vicarious selection, 1451
Vigenere's c ipher system, 643
Vinograde's lemma: geometrical meaning of,
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1335; singular decompositions, and k-frames,
1335

Virtual particles, 1445
Vision: and eye movements and perception,

771; and an eye-brain experiment, 629; and
why only one octave visible(?), 796. See a/so
Perception

Visual cortex, 397 (65)
Visual information processing, partly serial,

partly parallel, 796
Visual simplicity, to be defined by experiment,

1330
Visual system, and the ignoring of minor

kinkera, 1330
Vitamin C, 1212
Vocabulary: in memory, 397 (44, 46); sampling

of, 38, 86, 522
Voice recognition, 666
Volition, 13
Voltaire, backwards and permuted, 1445
Volume in function space, 13. See also

Function space
Vote, efficacy of, and binomial estimation, 883
Voting: demand-revealing method, detailed

proof of, 1001; justice in, 1 001; and whether
rational for the voter, 883; relevance of
imaginary alternatives to, 1357; spatial theory
of, 871, 101 4; spatial theory of, and Stirling
numbers, 966; system of in which "twin"
candidates are not handicapped, 871, 1014;
theory of, using multidimensional attribute
space, 871, 1 014; weighted, 666, 751. See
also Democracy; Orderings

Wakefulness, degree of, 397 (64)
Walsh functions, 1383
War, 753; probability of, 498
Wars, reduction in number of, if beliefs were

degrees of belief, 1338
Watson transforms, 8a
Watson-Galton-Binayme process, 55
Wave function, 1 3; of the universe, 882,

1322A; and why |>//|2 occurs, 339 (153),
1333

Waveforms: Fourier analysis of, 323; in quad-
rature, 323(451)

Weather forecasts, 13
Weber-Fechner law, adapted to judgment of

elapsed time, 397 (59)
Wedding of Bayesian and non-Bayesian

methods, 810
Wei-chi. See GO
Weight of evidence, 13, 397 (38, 48, 54, 76),

398, 547, 599, 854, 860, 862, 1 160, 1221,
1320, 1420, and passim; additive property of,
1 99, 755; adjustment of doctor's estimate,
755; analogy with money as a quasiutility,
755; and chi-squared, 13; and coding
theorems, 1201, 1361; and corroboration,
958; cumulants of, 574; cumulants of, in
signal detection, 221; and degrees of meta-
physicality, 243 (492); in diagnosis, 700, 755,
798; and discrimination between languages,
524; in elementary teaching, 1338; an error
by C. S. Peirce concerning, 1 382; and errors
of the first and second kinds, 1303; expected:
see Weight of evidence, expected; as an
explicatum for corroboration, 211; and fair
fees, 690A, 1274; and false-alarm probabili-
ties, 221; and the Goddess of Justice, 221;
interactions in, 755; interactions in, and lung
cancer, 570; and interaction, relationship to
spectral analysis, 21 0; and its value for
refutation, 890; and lung cancer, 570; and the
paradox of confirmation, 1 99, 245; and
probabilistic causality, 221; as a quasiutility,
211; in radio astronomy, 323 (462ff); in
relation to explanation, 421; relationship of
to amount of information, 221; and rough-
ness penalties, 699, 701 (258); in signal
detection, 210; as "support" for a hypothe-
sis, 541 A; transient undesirable use of by
Keynes to mean something like the total
amount of paper covered, 211; from uncer-
tain event, 1369; variance of, 1 201, 1 361;
when testing random sampling numbers, 203;
and World War II, 1436. See a/so Bayes
factor; Corroboration

Weight of evidence, expected (or Gibbs-
Szilard-Shannon-Watanabe-Tu ring-Good-
Jeff reys-Kul I back- Kupperman-Ku-Leibler
dinegentropy), 13, 174, 191, 198, 322,618,
622, 810, 854, 957, 980, 1160; and entropy,
522; as fully explicating degree of corrobora-
tion, 191; generalized, 755; historical
comments concerning, 1160, 1397; maxi-
mization of in experimental design, 755; for
ranking facets (in differential diagnosis),
798; rate of, 854; and Tippett's random
numbers, 478; use of as a loss function in
simulation experiments, 81 0. See a/so Cross-
entropy; Dinegentropy; Entropy

Weighted voting, 666, 751
Wells, H. G., on statistics, fifty years ahead of

his time, 1338
Whales, intelligence of, 397 (35), 1212
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What I say fifty times is true, 1 267
What is said three times sounds true, 1 263
Wheel, rotation of a, 13. See also Roulette

wheel
Whirlwind, 666
"Whispering gallery" theory of precognition,

339(152), 882, 1322A
White holes, 999
White noise, 854; band-limited, 142
Wiener-Hopf equation, 854
Wiener-Khintchine theorem, 142, 854
Will, freedom of (and determinism). See Free

will
Wilson-Hilferty formula, 1408
Wilson's theorem, analogue of, 660
Winding space, 323 (448), 339 (330-36)
Wisdom, prerogative to, not possessed by

statisticians or philosophers alone, 958
Wisdom's cow, 162, 21 7; probabilized, 243

(505), 980
Wishart characteristic function, noncentral,

determined via quadratic expressions, 1434
Wittgenstein: and Churchill, 686; parodied (my

German was incorrect), 777, 1350, 1367,
1445

Witnesses: chain of, 643; chain of, and Markov
chains, 1331; independent, 1436

Word frequencies, 38, 86, 130, 418, 524
Words: association of, 397 (54, 55, 70); as

clumps, 397 (38);clumps of, 397 (71);
diagrams, and numbers, 686; distribution of,
397 (44); frequencies of, distribution of,
explanation of, 130; prime, 646; unique
factorization of, 646

World, created in 1916 on December 9,
1421

World government: by machine, 195; by
people, 339(188)

World War II, 1386; cryptanalysis in, 1015,

11 78, 1218, 1299; Turing's statistical work
in, 1201, 1361

Worlds, infinite population of, 729 (492-94)
Wormholes, 999; in space, 339 (330-36); of

Wheeler, 709
Worpitzky's formula, 1100
"Wrens" (Women's Royal Naval Service), 1015,

1178, 1218; 1419;toplessnessof proposed,
1015, 1178, 1218

X2: for contingency tables, 929, 1199;
generalizations of, for multinomials, 992;
and likelihood ratio, and G compared, 862;
and the ordering of samples by probabilities,
862. See also Chi-squared

X-ray shadowgraphs, 670

Yale ball, annual, 1351
Yates's algorithm, 146, 209, 708
Yates's formula for the probability of a contin-

gency table (Fisher-Yates formula), 398
Yoga and quantum mechanics, 385
"You," 13, 398; as outside the black box,

"thou" inside, 228
Yule's coefficients of association and

colligation, 1389

Zato-coding, 185, 243 (504), 397 (56)
Zen Buddhism, 525
Zero: differences of powers at, 225; of a

polynomial, location of, 235; of a real
function, calculation of, 235

Zero crossings, 409
Zeta function. See Riemann hypothesis
Zeus, 626
Zipf laws, 38, 86, 130, 524, 1075
Zombie society of machines, 666
Zombies, 243 (496), 666, 777, 861, 1350,

1367

Name Index

Abel, Neils Henrik, 203, 239
Aczel, J. D.,203, 239
Agassi, Joseph, xiv, 114, 152, 159, 162, 163
Aitken, A. C, 35
Alexander, C. H. O'D.,x, 115
Anscombe, F. J., 23, 51, 135, 239
Aristotle, 27, 64, 227

Ayer, Sir Alfred J., xvii, 1 78, 1 79, 239

Barnard, George A., 16,23,38,62, 100, 101,
138, 175, 191,239

Bartlett, Maurice S., 23, 24, 95, 146, 174, 187,
239

Bayes, Thomas, xi, 21, 35,67, 239
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Beale, E. M. L., 216
Berliner, Hans, 1 06
Bernoulli, Daniel, 11, 35, 39, 64, 65, 68, 1 38,

145, 148, 177, 239
Bernstein, Sergei, 26, 240
Bishop, Y. M. M., 102, 240
Blackett, Lord Patrick M. S., 127
Bochner, Salomon, 146, 240
Bode, Johanri Elert, xv, 1 22, 1 28
Bohm, David, 90, 91, 240
Boole, George, 68
Borel, Emile, 145, 240
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Butler, Samuel, 86
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Cassel, David Giske, 104, 245
Chalmers, T. C., 241
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Churchill, Sir Winston L. S., 149
Cicero, 64
Coffa, Alberto, 83, 84, 91
Cohen, John, 150
Coolidge, J. L., 155, 240
Cornfield, Jerome, 23, 54, 240
Cournot, A. A., 68
Cox, Richard T., 26, 175, 240
Cronbach, L. ]., xvi, 40, 230, 232, 240
Crook, James F., 145, 240

Dabbler, A., xv
Daniels, Henry E., 23, 32, 61, 184, 240
Dante (Alighieri), 64
Darwin, Charles R., 27
David, Florence Nightingale, 96, 240
Davidson, Martin, 128, 240
Davies, Owen L, 214, 240
de Finetti, Bruno, x, xi, 1 5, 26, 31, 32, 69, 76,

81, 91, 93, 96, 101, 132, 150, 154, 158, 174,
216, 240, 241

de Morgan, Augustus, 100, 241
Dempster, A. P., 99, 241, 269
Dickey, J. M., 93, 241
Dirac, P. A. M., 45, 234, 241

Dirichlet, Lejeune, 101
Dodge, H. F., 61, 241
Doll, Sir Richard, 55
Doog, Lord K. C., 24
Duns Scotus, John, xviii, 17, 101, 227

Eddington, Sir Arthur S., xviii, 167, 1 93, 241
Edgeworth, F. Y., 5, 123, 150, 241
Edgeworth, K. E., 128, 241
Edward III, 12
Efron, Bradley, xv, 139, 241
Einstein, Albert, 6
Eisenhart, Churchill, 35, 40, 241
Ellis, Leslie, 68
Empodecles, 27, 227. See also Aristotle
Euclid, 69
Everett, H. J., Ill, 91, 217, 241

Fath, E. A., 128, 241
Feibleman, J. K., 32, 241
Feller, William, 135, 241
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135, 140, 215,241

Folks, Leroy, 136, 243
Frazier, Kendrick, 142, 241
Friedman, K. S., 155, 241
Frieman, J. A., 144, 241

Gauss, K. F., 35, 40, 68, 115, 241
Geisser, Seymour, 17
Gibbs, J. W.,xi, 43, 192, 230, 241
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Godambe, V. P., 87, 241
Godel, Kurt, 156
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Hilbert, David, 124
Hildebrandt, T. H., 101
Hitler, Adolf, x
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Jeffreys, Sir Harold, x, xi, xvii, xviii, 21, 26, 31,

32, 34, 36, 38, 39, 42, 43, 44, 69, 74, 76, 97,
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Johnson, William Ernest, 69, 1 01, 1 50, 165,
243
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about. The following index is intended to servesuch readers well. The references are to page numbers.

Abstract (mathematical) theory, 70. See a/so
Black box

Acceptance, sometimes the same as nonrejec-
tion, 62

Actuarial science, 93
Adam, the son of a monkey, 1 57
Additivity, 1 86; complete, 15, 21, 78, M6.See

also Kolmogorov's axiom
Administration, "losing on the clock, "116
Admirals, and confidence regions, 48
Admiralty, and allocation of blame, 222
Advice, as distinct from decision, 13
Al, workers in, ambiguous, 114
Aksed, Ms, 234
Algol, 115
Alphabet, generalized, 83
"Alphagam," 83
Amount of information: definition of, 124;

and weight of evidence, 160, 161
Analysis of causal tendency (like analysis of

variance), 209
Analysis of data, xvi
Android, 73; as forced to use its own probabili-

ty judgments, 95
Angular momentum and magnetic moment,

127
Aristotelean logic, 1 53
Ars Conjee tandi, 64
Artificial intelligence. See Al; Chess; Diagnosis;

UIM
Artificial intelligensia, 106
"As if" philosophy, 26, 69, 86, 1 54, 165
Association factor, 1 85; definition of, 124
Asteroids, 128
Astronomy, 1 93. See also Bode's law;

Branching universe; Cosmology; Galaxy;
Phoebe, Planets •

Asymptotic properties, and requisite size of
sample, 60

Authorship, determination of, 161
Axiom: M', 8, 1 76; of complete additivity: see

Additivity; Kolmogorov's (complete additivi-
ty): see Kolmogorov's axiom

Axiom systems: especially for subjective
probability, 73-82; esteemed for their
succinctness, xiii

Axioms, 4; as combined with rules and sugges-
tions, xi, 27, 1 30, 1 73; in conditional form,
26; of the integers, 85; as not seen to be
contradicted, 21; as partly conventional,
1 76; and rules, 8, 1 75; simplicity of, 21; as
unable to produce a probability out of
nothing, 28; for upper and lower probability,
79, 80; use of different ones for different
kinds of probability, 74; without utilities, 27,
31

Baby: infinitely intelligent, but ignorant, 121;
learning by, 85

Background information, 225; and "collateral"
information, 233

Backtracking in a (diagnostic) tree, 40, 109
Ban (unit), 124, 132
Banbury, 124
Bayes, empirical, 28; the less obvious form of,

97; and Turing, 93
Bayes factor, x, xv, 36, 38, 11 9, 1 20, 1 59, 1 87;

definition of, 131, 221; and incentive
payoffs, 11; and induction, 164; and like-
lihood ratio, 1 37, 1 87; notation for, 124;
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and tail-area probabilities, 1 40-43; used for
deciding on further experimentation, 1 8;
weighted average of, 52. See also Factor in
favor of a hypothesis; Weight of evidence

Bayes solutions, 1 3; hierarchy of, 14
Bayes-Fisher compromise, 143
Bayes-Jeffreys-Turing factor. See Bayes factor
Bayes-Laplace inference, 67
Bayes-Laplace philosophy, modified, 60
Bayes/Neyman-Pearson compromise, 145
Bayes/non-Bayes compromise or synthesis, xi,
xiii, xv, 17, 21, 130, 142, 143; and combina-
tion of tests in parallel, 52; and dynamic
probability and utility, 114; and estimation
of a hyperparameter, 1 02; in the interpreta-
tion of a randomized experiment, 89; and the
multinomial, 47; necessity of, 95, 96; and
partially ordered probability, 30; and
probability density estimation, 45, 46; and
several of the Doogian facets, 34; in the
twenty-first century, 95; and type II
rationality, 22, 23; Bayes/Popper compromise
or synthesis, xviii

Bayesian. See Bayesians.
Bayesian estimation: asymptotic properties of,

39; as more robust than Bayesian significance
testing when there are many parameters, 17

Bayesian influence: on significance testing, 146,
147; in statistics, xiv, 22-40, esp. 34; in
statistics from 7925 to 7350, 39

Bayesian interval estimates, 48
Bayesian likelihood, 131
Bayesian method, "in mufti," 39, 45
Bayesian methodology, 95. See also

Hierarchical Bayesian methodology
Bayesian models, two-stage, 33
Bayesian and non-Bayesian methods, main

distinction between, 129
Bayesian philosophy, opposed by Fisher, 70
Bayesian robustness, 50, 99; and number of

parameters, 1 25
Bayesian significance tests, 43; as having a

weakness that is also a strength, 1 7
Bayesian statistics: as an ambiguous expression,

1 26, 1 27; psychological technique in, xiii
Bayesian technique, xi; hierarchical: see

Hierarchical Bayesian methodology
Bayesianism: eleven facets of, 24; varieties of,

in excess of the membership of the ASA, xiv
Bayesianity, degrees of, xi
Bayesians: bad, clobbering of, 87, 139; both

good and savage, 24; classification of, 24;
crucifying of, 88; eleven facets of, 20;

flexibility of, 38',46656 varieties of (now
93312], 20; infinite variety of, 20; as placers
of cards on table, not up sleeve, 125; as
speaking for all some of the time and some all
of the time, 24; varieties of, 22, 29, 149; to
whom all things are Bayesian, 23

Bayesians all, 114
Bayesians and non-Bayesians, a simple distinc-

tion, 130
Bayes's postulate: and least squares, 35; not

invariant, 49
Bayes's theorem, 67, 131; Jeffreys's formula-

tion of, 34; in reverse, 1 7, 29, 69, 1 26, 1 52
Behavior, rational, theory of, as a recommenda-

tion to act in a particular way, 7
Belief: degrees of, xv, 129, 130, 1 73; degrees of

only partially ordered, 5; degrees of, reason-
able, 7; as depending on prior probability,
131. See also Probability, subjective

Beliefs: body of, 6;concerning probabilities, 6;
and how to argue against rationality, 6

Bernoulli's theorem, 64-67; inversion of, 68
Berterolli's restaurant, 23
Betting men, that is, all men, 25
Binomial estimation, Laplace's law of succes-

sion, 100
Biology, theoretical, ultimate aim of, 94
"Bit," 124, 220
Black box: of the cranium, 29; de luxe, 76, 78;

as a description of theories, 75
Black box theory, xiv, 22, 25, 70, 1 07, 1 23,

153, 1 82; as involving a time element, 1 07
Blagg'slaw, 122
Blame and credit, assignment of, xvii, 1 97
Block diagram, for the black box theory, 75
Blueness of face, 108
Bode's law (or Bode-Titius law), xv, 122, 127,

128, 135, 145
Body of beliefs, 6, 70, 107, 153; reasonable, 7
Body of decisions, 7
Boldtype, meaning of, ix
Books, large, as more impressive, but not

completely read, xii
Boolean logic, 184
Bortkiewicz effect, 92
Brain, respect for, 26
Branching universe, 91
Brevity, the soul of high probability, 156
Bump-hunting, 104

Caissa and Moirai, 108
Carpet, sweeping judgments under to appear

objective, 16, 22
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Causal calculus, 1 97-21 8; desiderata of, 201-6;
a simplification in, 21 8

Causal chain: cutting of, 211; formal definition
of, 21 0

Causal chains: in parallel, 211; in parallel and
series, 199

Causal influence, subluminal, 199
Causal Markov chain, 218
Causal network, 198, 199; formal definition of,

21 2; with independence, 21 2; and laws of
nature, 224; series-parallel, 211; and statistical
methods, 225

Causal propensity, versus explicativity, 233
Causal resistance, 201, 218
Causal strength, 201, 218
Causal support, 221
Causal tendencies, independent, 21 1
Causal tendency (causal support), 197, 199,

209; as depending on several variables, 200;
intrinsic, 21 0

Causality: and a firing squad, 205; as a matter
of physics, 215; probabilistic, 93, 94, 1 06,
1 89, 1 97-21 8; probabilistic, increasing
interest in, xvii; quantitative explicata for,
1 97; and "screening off," 216; strict, 1 89;
and time sequence, 1 97, 1 98; units of, 208

Causation, 1 98; degrees of, 21 5; and explana-
tion, 225

"Causats," 208
Certain, almost, 79
Chain, and its weakest link, 202
Chance, 66, 71. See also Probability, physical;

Propensity
Chaos, order out of, 85
Checkability, xv, 167, 230; and expense, 169,

170; formula for, 169
Chess, 1 8; advantage of two bishops in,

explained, 115; draw, odds of, 11 5; end-
games, 116; evaluation functions and weight
of evidence for, 108, 109; law of multiplica-
tion of advantage in, 111; and probability,
108; psychological or trappy(?), 116; and
tree analysis, 1 09; and the utilities of winning,
etc., 1 09; value of pawn in, 110

Chess analysis, probabilistic depth in, 111
Chess programs: and "agitation," 11 0; and

changing the world, 110; and descriptions,
I 09, 110; expectimaxing in, 110; learning
by experience in, 111; minimax backtracking,
I1 0; quiescence and turbulence in, 110; and
tactical brute force, 11 0. See also Tree

Chi, x (not Vx2), 198, 199. See also Causation
Chicken and egg, 59, 86

Chi-squared: reason for using, 146, 147; test for
multinomials, 33; and X2, 136

Chondrites, 105
Chromosomes, 158, 166; complexity of, 37,

235; existence of, 167
Cleromancy, 64
Clinical trials, 148; different laws for in differ-

ent countries, 144; and errors of second kind,
144

Clobbering of bad Bayesians, 139
Cluster of statisticians, 149, 150
Clutter, 229, 230
Coding theorems and weight of evidence, 161,

187
Cogent reason, 78
Coin, double-headed, 67
Coin-spinning, 68
"Collateral" information, 233
Colon ("provided by"), 1 87, 198, 225
Combinatorial explosion, 113; and probabilities

of theories, 158
Common sense, definition of, 59
Communication, theory of, 1 86, 221. See a/so

Information
Complete additivity. See Additivity, complete
Complete superadditivity, 80
Complexity, xv, 227, 235, 236; and additivity,

235; and amount of information, 1 54; as
emerging from simplicity, 27; and language,
235; and length of chromosome segments, 37;
a recantation concerning, 154; as related to
length of statement, 155, 156; as weighted
length of shortest statement, 235. See also
Simplicity

Composite hypotheses, 168
Compromises. See Bayes/non-Bayes compro-

mise or synthesis
Computable numbers and constants of nature,

157
Computer chess, 1 06-16. See also Chess
Confidence intervals, 1 7; with client causing

breakdown of its official interpretation, 61;
as a confidence trick if used dogmatically, 61;
and conflict of interests, 48; history of, 61;
as sometimes unreasonable, 61

Confidence region, elliptical, 48
Confirmation: and Carnap's Humpty-Dumpty

usage of, 32, 1 24; paradox of, 119; as a term
used confusingly by many philosophers, xv

Conjugate prior, early example of, 100
Conjunction, notation, 220
Consciousness after death, 167
Consilience of laws, 223
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Consistency, 22, 28, 1 07; as an aim of a
Bayesian, 20; degrees of, 74; as far as seen so
far, 29; importance of, 3; as the main aim of
the theory of subjective probability and
rationality, 1 7; as taken seriously, 126

Consultants: ethical problems, of, 10; reward-
ing of for probability estimates, xii: see also
Fees, fair; with utilities distinct from those of
the firm's, 10

Contingency tables: Bayesian analysis of and an
unproved conjecture, 1 04; and an early use of
the EM method, 99; empty cells in, 92;
independence in, xvii, 1 03, 1 04; large, 27;
loglinear model for, 99; and maximum
entropy, 99, 100; multidimensional, 27;
multidimensional interactions in, xvii; multi-
dimensional, interactions and maximum
entropy, 100; multidimensional smoothing
of, 28; "pure," 1 03; sampling models for,
1 03; as shedding light on multinomial priors,
104

Contradictions: and Payne-Gaposchkin, 128;
and Young, Charles A., 128

Contrapositive, and Hempel's paradox, 119
Controversies: decrease of by using standard

methods in themselves unjustifiable, 16; in
foundations, main one, 1 29; in statistics,
resolution of, 140, 185

Conviction, intensities of, 1 29. See also Belief,
degrees of

Cookbook statistics, 23
Corroboration, xi, 149, 1 98; interpreted best as

weight of evidence, xv; and Popper, 1 86;
slow, refutation fast, 168; sometimes
objective, 1 86; sometimes as useful as
refutation, 169; and weight of evidence, 124,
159, 160, 187. See also Weight of evidence

Cosmology, 91. See also Relativity, general
Creativity, as another man's routine, 115
Credibilities (logical probabilities), x, 32, 70;

and an argument for their existence, 5; belief
in, like a religion, 1 53; and infinitely large
brains, 74; as laid down by an international
body(?), 21; mentally healthy, 5, 98; as not
known accurately in practice, 74; as not
necessarily assumed to exist, but convenient,
5; as objective rational degrees of belief, 5;
and subjective probabilities, and which are
primary, 32; as an unattainable ideal, 1 7,
104, 1 51. See also Probability, logical

Credit and blame, 197
Cross-entropy, 1 90; and fair fees, 1 77. See also

Weight of evidence, expected

Cross-validation, 100
Crows, black, paradox of, xv, 119
Cryptanalysis, x, xi, 139, 145
Cryptology, 88

Dabbler's law, xv
Damnation, 8. See also Salvation and

damnation
Data, and what they are trying to say, 45
Data analysis, xvi; and looking at the data, 51;

Rule 7 for, 138
Deciban, 124, 1 59, 220; as an intelligence

amplifier, 132
Decibannage, xi, 159
Decibel, 124, 159
Deciding in advance, 22
Deciding what to do, 3
Decimals, generalized, xiv, 83, 84
Decision: in business, xvi; definition of, 191;

and the more important, the more Bayesian,
51; nonrandomized, 1 2; as "prudent" rather
that rational, 13; quick, sometimes necessary,
9; rational, 3; rational methods of not
dependent on being a statistician, 3; rational
versus minimax, 14; sequential and terminal,
12; when to make, 1 8

Decision theory, whether it covers inference, 62
de Finetti's theorem, multinomial generaliza-

tion of, 101
Degrees of belief. See Belief, degrees of
Demarcation between science and nonscience,

166
•Demiurge, 182
Democratic decisions, 12
Density estimation, and roughness penalties,

22, 104
Density function, and its square root in Hilbert

space, 46
Desiderata: compelling, 1 86; reasonable, 1 86
Desideratum-explicatum approach, xvii, 184.

See also Causality, probabilistic; Explicativity
Determinism: versus indeterminism, 55:seea/so

Indeterminism; and indeterminism arising out
of, and vice versa, 92; as indistinguishable from
indeterminism, 90; metaphysicality of, 86

Device of Imaginary Results, 17,21,22, 92,
101, 177; and Bayes's theorem in reverse,
152; and multivariate Bayesian statistics, 33;
for selection of a prior, 32, 33; and the two-
way use of Bayes's theorem, 1 26

Diagnosis, 40, 161; dendroidal, 40; and inter-
actions, 1 89; and minimax entropy, 1 91; and
weight of evidence, 161, 169
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"Diction," 223
"Dictivity," 226
Dientropy, xi, 1 92
Dinegentropy, xi, 43
Dirac delta functions in density estimation, 45,

104
Direction finding and confidence intervals, 48
Dirichlet priors, 47; mixture of, 101, 1 03;

mixture of for multinomials, 33
Dirichlet's multiple integral, 101
Discernments, 1 23, 1 73; absence of with no

input judgments, 75; definition of, 1 53; as
output of a black box, 70, 107

Discrepancy from the null hypothesis, 136, 137
Discriminability, minimum, principle of, for

formulating hypotheses, xvii
Discussion, heated, xv
Disjunction, notation, 220
Disputes, mostly about taste, 97
Distance from the null hypothesis, 136, 137
Distribution: initial, 45: see also Prior; least

favorable, 1 3; normal, xvii; semiinitial, 93; of
a statistic, given the non-null hypothesis, 140;
uniform, 67

"Divergence," 169
Dogmatism: degrees of, 48; provisional, 39;

about simple arithmetic (justified), 48; about
witches existing (unjustified), 48

Dominating row of a contingency table, 1 79
Doog, as Good's alter ego, 31
Doogianism, 24; as adequately complete and

simple, 25; as applying to all activity, 24; the
elevenfold and twenty-seven-fold paths of,
29; highly succinct account of, 1 30; "minimal
sufficient," 25

Doogians, and statisticians unaware they are
Doogian, 47

Dualism, 69
Duns-Ockham razor. See Ockham-Duns razor
Dutch book, 115
Dynamic information, 112
Dynamic logic, 112. See also Logic
Dynamic probability. See Probability, dynamic

or evolving
Dynamic utility, in nonroutine research, 113

Eclecticism, xi, 31; as acceptable until seen to
contradict the axioms, 127

Econometrics, Second World Conference on, xii
Economics: of information, xii; as not the

concern of Fisher and Jeffreys, 31; Shackle's
theory of, 176

Education versus rowing, 175

Electromagnetism. See Maxwell's equations
Elephant: and explicativity, 222, 229, 230;

irrelevant, 229, 230
EM method (alternating expectation and ML

iteratively) for contingency tables, 99
Emeralds, 161, 162
Emergence: in machines, 94; and randomness,

94
Enlightenment, 1 5
Ensemble, 199
Entropy, xi, xvi, 99; cross-, xi: see also Weight

of evidence, expected; and fair fees, 11,1 77;
generalized, 148; invariantized, 190; as a
quasiutility, 112; relative, xi; in a tree search,
112. See also Maximum entropy

"Equally possible" cases, 68
Equally probable cases, 4
Error: by a discussant of the Bode paper, 1 39;

of first and second kinds, 141,144, 145; by
Fisher, 29;by Good, 119, 188,216;in
interpretation of P-values, 139; by Peirce,
30; by Popper, 1 26, 1 54; by Reichenbach,
216; of second kind, neglect of, 144; of two
kinds, ignores robustness, 61

ESP, xii, 142. See also Parapsychology
Estimates, precise, used for convenience, 16
Estimation as hypothesis testing, 126
ETA (77), 225
Ethical problems in statistics, how they arise,

48
Ethics: in clinical trials, 144; and utilities, 9
Euclidean distance, 136
Event, 198; big, 215;small, 199
Evidence, xi, 30; in favor of a null hypothesis,

141; free, of positive expected utility, 1 08;
and information, 1 85; principle of total,
xvii; and suppression of the fact that it is
suppressed, 88; total, 1 78. See also Weight of
evidence

Evolution of theories, xv
Examinations, multiple-choice, xii
Exchangeability. See Permutability
Existence proofs, not necessarily constructive,

84
Experimental design, 87; analysis of depending

on the experimenter's design procedure, 53,
54; and utility of a distribution, 1 90. See also
Tea-tasting

Experimental result not enough, 132
Experimenter, dropping dead of, 53, 54
Experimenter's intentions, 22
Experiments, design of, quasiutility and, xvi
Explainedness, 225
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Explanandurn, 222
Explanans, 222
Explanation, 1 89, 21 9; and causation, 225;

contingent part of, 224, 225; kinds of, 162,
222; lawlike part of, 224, 225; and laws of
nature, 224; as not entirely probabilistic,
223, 224; philosophy of, 94; as putative in
practice, 21 9; as putative in science, 226; and
regression, 225; teleological, 223. See a/so
Explicativity

Explanatory power: in the strong sense
(explicativity), 163; weak, 232; in the weak
sense, and mutual information, 163. See also
Explicativity

Explicativity, xvi, xviii, 147, 1 49, 21 9-36;
additive properties of, 228, 229; and belief,
21 9; versus causal propensity, 233, 234; and
choice of hypothesis, 234; definition of, 21 9;
as depending on four propositions, 233, 235;
desiderata for, 227, 228; distance, 231;
"dynamic," 228, 229; and experimental
design, 234; explication of, xviii; "informed,"
226; minimum, xvii; mutual, 231; parameter
7 in, 230; and predictivity, 162, 163;
qualitative definition of, 225; quantitative
explicatum of (which naturally contains the
qualitative features), 228; as a quasiutility,
1 8, 21 9; and rate of information flow, 234;
and repeated trials, and expected weight of
evidence, 231, 232; and statistical practice,
234; and statistics, 21 9-36; and triangle
inequality, 231; use of in statistical problems,
xviii; and weight of evidence, 229, 234. See
also Explanation

Extreme, more, what is(?), 22

Faces, dirty, sticky, 65
Factor in favor of a hypothesis (Bayes factor),

36, 159, 187; and likelihood ratio, 38. See
also Bayes factor

Factorial experiments, 28
Facts that people do not wish to know, 88
Fair fees. See Fees, fair
Fashions in statistics adopted to avoid dispute,

9
Fees, fair (incentives for probability estima-

tors), xii, xiii, 3, 10, 11,48, 176, 177; and
entropy, 11; logarithmic and quadratic, xii

Fiducial argument, 16; its fallacy pinpointed,
29; and why Fisher overlooked the fallacy, 29

Fiducial distributions, not necessarily unique,
61

Fisher's avoidance of Bayesian methods, 139

Fisher's common sense, 139
Flattening constant, 101
Flying saucers, surreptitious, 1 70
Focus-outcome, when rational, 1 77
Forecasters of weather, xii
Formula and many words, 220
Fortran notation, and dynamic probability, 108
FRACT (factor arising from row and column

totals), 103
Frequencies: limiting, 4; as not the only basis

for beliefs, 5
"Frequentism," 68. See also Long run
Frequentist, whistling by, 152
Fresnel's laws of optics, 114, 163
Fuzziness of higher types of probability, 81

G: and asymptotic distributions accurate down
to extreme tail, 47; as a statistic for multi-
nomials, 47

Galaxies, distribution of sizes of, 193
Galaxy: size of, 1 93; unusually large, but no

cause for surprise, xvii, 1 93
Gambles, "linear," 47
Gambling, 64; as possibly rational, 9; and

probability judgments, 30; system for,
impossible, 69. See also Roulette

Games: of chance, 26; fair, 65; history of, 14,
1 08; of perfect information, 1 08

General relativity. See Relativity, general
"Geometric" figure, 155
Geometry, projective, 4
Gibbs's use of dientropy, 1 92
God: act of, 234; conscious entities as a part of,

91; Good saw that it was, 91; half-belief in,
1 53; mentioned, 98

Godd, 91
Godel's theorem, 16
Golders Green Hippodrome, x
Goodman's paradox, 161, 162; resolution of,

162
Government Code and Cypher School, x
Gravitation, 162, 163, 167, 223
Gravitational frequency shift, 161
Grue and bleen, 151, 161, 162

Harmonic-mean rule of thumb, for combining
tests in parallel, 22, 52, 54, 147

Heinz varieties, 20
Hem pel's paradox. See Paradox, of

confirmation
Heuristic, definition of, 108
Hierarchical Bayesian methodology, xiii, 95-

105, 225
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Hierarchical method, robustness of, 98
Hierarchical theory, 130
Hierarchy: of distributions, 1 8; of physical

probabilities, 96; of probabilities, 21; of
probabilities, Savage's dismissal of, 98; of
subjective probabilities, 96; of types of
probability, 22

High-energy physics and checkability, 169, 1 70
Hilbert space to represent density functions,

46
History of science, why important to science,

126
Hitler: destruction of, x; and irrationality, x
Holmes, Sherlock: death of, 216; and Moriarty

and Watson, 216
Homing missile, purposeful behavior of, 223
Homo sapiens, as not entirely irrational, 1 73
Horse: existence of, 167, 168; as kicker to

death, 92
Humpty-Dumpty-ism, 32, 163
Hyperhyperparameters, 102
Hyperparameters, 99, 100; in bump-hunting,

105; definition of, 33; and procedural param-
eters, 100; as treated like parameters, 46, 47

Hyperpriors, 1 8; avoidance of to avoid contro-
versy, 105; for a flattening constant, 102

Hypotheses: chains of, and minimum discrimin-
ability, 1 91; as considered in pairs, 1 58, 159;
relative odds of, 158, 1 59; statistical, types
of, 6; and theories and laws, 220

Hypothesis: composite, initial probabilities of
its components, 37; farfetched, 51, 55: see
also Kinkosity of hypotheses; farfetched,
definition of, 158; formulated after observa-
tions, 1 58; formulation of by maximum
entropy or minimum discriminability, xvii;
probability of, 20, 1 27; probability of,
difficult to make high, 165; probability of,
not mentioned in the Ney man-Pearson
school, 1 0; probability of, not zero, 165;
simple and composite, 133; simple statistical,
definition of, 5

Hypothesis formulation: automatic, 100;
before and after an experiment, 145

Hypothesis testing, 1 25; an aspect of not
captured by the Neyman-Pearson approach,
144; Bayesian approach to, 133, 134; choice
of an a level in, 134; as depending on the
class of non-null hypotheses, 136; logic and
history of, 129-48; Neyman-Pearson approach
to, 144; as regarded as parameter estimation,
233; and tail-area probabilities, 134

Hypothetical circumstances: as disdained by

Philistines, 29; as a useful judgmental tech-
nique, 7

I, 198. See also Information
Idealization, 69
Ignorance, priors representing, 97
Imaginary Results, Device of. See Device of

Imaginary Results
Immersed hypotheses: and Jeffreys, 168; and

physics, 168
Impossible, almost, 79
I mpropriety as a felony, 1 02
Inaccuracy, 190
Incentives for probability estimators. See Fees,

fair
Inconsistency: avoidance of when known, 18;

of Popper, 152
Indeterminism, 71, 72. See also Determinism;

Pseudoindeterminism
Induction: definition of, 1 26; as implicitly used

by Popper, 164; as not needing sharp proba-
bilities, 161; and Popper, 126, 127, 164;
relevance of numerological laws to, 19;
second theorem of, an apparent contradiction
concerning, 165; as a special case of multi-
nomial probability estimation, 166; and truth
of theories, 163-66; two theorems of, 164,
165

Inequality judgments, 76
Influences, early, x
Information: amount of, 185, 220; amount of,

definition of, 198; from computer output,
possibility of, xiv; discriminatory, xi; and
evidence, 186, 1 87; and explanatory power,
230; Fisherian, xvi, 35, 40; Fisherian, mini-
mum proposed, xvii; inequality for, 35;
matrix, Fisher's, 42, 43; measures of, related
to surprise, xvi; mutual, xi; mutual, normal
distribution of, 93; mutual and explanatory
power, 163; physical, logical, and subjective,
1 86; as a quasiutility, xvi, 1 8, 21, 40; and
rate, 186; and theory, terminology, and
notation, xvi. See also Communication,
theory of

Insurance of articles of small value, 9
Intelligence, possibly impossible in machines

and men, 114
Intelligence amplification, xi
Interaction, 214, 215
Interval estimates: and the client's utilities, 48;

and implicit utilities, 48; replacement of by a
point near middle, 98; and "short is beauti-
ful," 48
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Introspection, aid to, 130
"Intuitive appeal," 23
Invariance, 42; not enough, 42. See also Least

utility
Invariant method, a bad such, 42
Invariant prior, 42-44, 1 01; of Jeffreys, 45; of

Jeffreys, as a minimax prior, 42, 43; of
Jeffreys and Perks, 190, 1 91; an objection to,
44

Invariant quasiutility functions, 43
Invariant utility functions, 43
Inverse binomial sampling, 147
Inverse square law, 223, 228, 229
Irish Sweepstake, 233
Irrationality as intellectual violence, 25
Irregular collective, 69; consistency of the

concept, 83, 84
Irregular Kollektiv, 83
Irrelevance, judged, 199
Iterated logarithm, 135

Jargon, 1 87
Jeffreys-Haldane density, 102
Johnson's sufficientness postulate, 101
Joke, as an excuse for rejecting a paper, 147
Judgment: as always interval-valued, 25; and

authorities, 6, 127; bad, protection against,
51; as depending on known theorems, 9; and
discernment, 75; Doog's verse concerning,
11 5; how made, must be puzzling, 37, 1 08,
11 5; as incorporating judgments of others,
6, 9, 1 27; about judgments, 1 25; kinds of,
20, 30; mature, 20; origins unknown by
definition, 1 52; overall versus detailed, 30;
and philosophers, 108; precision of, 20, 30;
of probability, improved by honesty and
detachment, 9; respect for, 26; of utility,
more difficult to be unemotional concerning
than for probability judgments, 9; of various
types, all interval-valued, 127

Jury: decision of, depends on probabilities and
utilities, 1 2; as not controlling the "experi-
ment," 1 2; as upset in a ditch when not
unanimous, 1 2

Justice, 222

Keynes's obituary on Ramsey, 25
Keynes's recantation, 123
"Kinds," its ambiguity, 63
Kinkosity of hypotheses, xvi
Kinkus, 139
Knowledge: amount of, as a quasiutility, 112;

engineering, 115; from ignorance, 1 51;

measurement of, 111; measurement of in
chess, 113

Knowledge business, 40, 41
Kolmogorov's axiom, 1 5, 21, 33. See also

Additivity, complete
Kudology, 41

Language: economical, 1 55; efficiency of, 151;
as not a Markov process, 165; statistical
properties of, 151

Laplace-De Morgan estimate for multinomials,
42, 100

Laplace-Lidstone (Laplace-De Morgan esti-
mate), 42, 100

Laplace's law of succession, 67, 1 00
Latin squares with diagonal properties, 87
Law: of large numbers, 8; as potentially

affected by more statistical thinking, 97; and
statistics compared, 11

Laws of nature: distinction between their being
true and requiring an explanation, 1 39;
numerological, xv; relative generality of, 224,
225

Lawyers, 1 99; as paid to change their probabili-
ty estimates, 11

Layperson, intelligent, xii
Learning, sometimes dangerous, 1 81
Least quasiutility: principle of, 43; as a

unifying concept, 44
Least utility, principle of, and invariance, 43,

190
Legal proceedings. See Law
Liechtenstein, 193
Life: expectancy tables for, 64; why pick on(?),

94
Light and gravitation, 223
Likelihood, 38, 42; definition of, 67, 131;

generalized, 18; less controversial than prior
probabilities, 34; logical and historical origins
of, 34; merit of, 16; as modifying belief, 132;
penalized, 46; "sufficient," but not enough,
132; as taking sharper values than initial
probabilities, 35. See also ML

Likelihood brotherhood, 38, 229
Likelihood function, graphing of, 22, 38
Likelihood principle: as clear to a Bayesian,

132; statement of, 35, 132
Likelihood ratio, 137; definition of, 124, 131;

as resembling a Bayes factor, 137; type II or
second order, 22, 33, 46, 47, 102

Likelihood ratio test, not always sensible, 60
Log-Cauchy hyperprior, 102, 132
Log-factor, 159, 187
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Logic: "affirmative," 156; Aristotelean, as not
enough, 95; Boolean, 1 84; dynamic, 11 2; as a
scientific theory, 4; temporal, evolving, or
dynamic, 29

Logical probabilities. See Credibilities
Log-linear model, Bayesian, 27, 99
Long run: in the, all dead, 69; as truncated by

absurd statements, 61
Loss, squared-error: Gauss-given, 40; as a

negative utility, 40
Loss function, 48; analytic, 40; asymptotic to a

constant for large deviations, 40; quadratic,
38, 40, 1 90; upside-down normal shape of,
40. See also Squared-error loss

Lung cancer, 55, 189, 190, 209, 210

McGovernment, 90
Machine intelligence, and mathematics of

philosophy, 1 84
Magic, of the brain, 26
Magnetic moment and angular momentum, 127
Marginal likelihood, maximum. See ML, type II
Marginalism, 44, 49
Markov chain, 165, 218
Markov processes, two-state, 208, 209
Markov property, 208, 216, 222
Martians, 73
Martingale in chess, 111
Mathematical theorems, and dynamic probabili-

ty, 108, 123
Mathematics: an exciting feature of, 27; of

philosophy, 197, 220
Max Factor, 47. See also ML, type II
Maximization of utility, integrated and dis-

counted, 9
Maximum entropy, 99, 1 00; and contingency

tables, 191; for formulating null hypotheses,
41; and least utility, 1 90; and Markov chains,
1 91; as a minimax procedure, 190; principle
of, xvii; for selection of a prior, 41. See also
ML/E

Maximum likelihood. See ML
Maximum penalized likelihood. See Roughness

penalty
Maxwell's equations, 114, 163
Meaning: as a cluster, 149; the "use" theory of,

63
Measure: inner and outer, 77, 80; of a non-

measureable set, 73-82; theory of, as not
including probability theory, 77

Medical diagnosis. See Diagnosis
Medicine. See Clinical trials
Men, great, not divine, 16

Mercury, 128
Metamathematics, 78
Metaphysical statements, Popper's belief in,

166
Metaphysical theory, definition of, 71
Metaphysics: and economics, 1 70; and log-

odds, 71; as sometimes harmless, 1 75; when
useful, 176

Meteorite, 105; Aksed hit by, 234
Meteorologists, piecework for, 11
Meteorology, xii; and fair fees, 1 77
Mettle-proving, and infinite regress, 164
Michelsson-Morley experiment, 169
Mind-body problem, 91
Ming-Vase, in midair, 224
Minimax, type II, 14, 41, 98
Minimax procedures, xvii, 41
Minimax solution, 177; reasonable if the

least favorable prior is reasonable, 13;
simplification and generalization of, 12

Minimax strategy, rational if your opponent
also uses it, 1 85

Minimum disc rim inability, 191; as a minimax
method, 44

Minimum-variance bound, 35
Mitosis, 162
ML (maximum likelihood), 39, 42; breakdown

of for many parameters, 46; potential badness
of, 42; as compared with Laplace's law of
succession, 68; invariance of, 42; for non-
parametric density estimation, as no good, 45;
as preferably used with common sense, 59; as
related to Bayesian methods, 38, 39; type II,
22, 33, 46, 47, 1 02, 105. See also Roughness
penalty

ML/E (maximum likelihood entropy), 99, 100
Models, mathematical, Bayesian and non-

Bayesian, 125
Moirai and Caissa, 108
Money, diminishing utility of, 11
Monkey, accidental typing of a hypothesis by,

18
Monogamy, 1 75
Monte Carlo method, 54
Moon, as a computer, 11 5
Mossbauer effect, 161, 169
Mother Superior, as a bad shot, 226
Multinomial: and induction, 166; and

philosophy, 32, 42; significance test for, 33
Multinomial estimation, 100-103; and Laplace-

de Morgan estimate, 100
Multiple sampling, 101
Multiplicativity, complete, 81
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Multivariate statistics, and what is more
extreme(?), 50

Music, enjoyment of, 85

Natural ban, 1 24
Natural selection, almost obvious, 27
Neck, sticking out of, 3
Negation, notation for, 220
Negation of a hypothesis, seldom fully

formulated, 1 25
Negentropy, 190
Neo-Bayesian techniques, xi
Neo-Bayesian theory, 70
Neoclassical theory, 70
Neptune, 128
Newtonian mechanics: analogy with a null

hypothesis, 135; and special relativity, 166
Neyman-Pearson theory, origin of, 145
Non-Bayesian: as a Doogian to some extent,

1 35; Bayesian behavior of, 138; as saved by
his common sense, 130

Non-Bayesian methods: as acceptable when not
seen to contradict Bayesian view, 31; as often
good enough, 31; as politically expedient at
present, 1 25

Nondogmatic remark by Jeffreys, 140
Nondogmatism, principle of, 30
Non-null hypothesis: implicit allowance of by

Fisher, 140, 141; and when to try to make it
more precise, 1 38

Notations, good, as readable from left to right,
65

Null hypothesis: and an analogy with a physical
theory, 135; "immersed," 168; as not neces-
sarily sharp, 135; and physical theories, 168;
as usually composite even if only just, 49

"Numerological," definition of, 127
Numerological hypotheses, some more than

others, 1 8
Numerology, xv, 1 27

Objectivism: honest, as leading to subjectivism,
1 52; ostensible, really multisubjectivism, 38

Objective statistics: as discarding information,
86; as emerging from subjectivistic soil, 22,
23

Objectivists: as the hidebound ones, 34; if
prepared to bet, give implicit information
about their probability judgments, 1 7; as
wanting their judgments to be unconstrained
by logic, 26

Objectivity: and the judgment of what informa-
tion is relevant, 90; as politically desirable,

129; pretense of, 6; of science, basking in the
glory of, 16

Oblique stroke, not to be confused with upper-
case italic / in this book, 220

Observations, looked at in advance, as having
dangers but often necessary, 1 25

Obstinate, definition of, 9
Obvious, often overlooked, 22, 27, 130
Ockham-Duns razor, xviii, 1 7, 1 01, 1 27, 1 32,

147, 156,227, 230; of higher type, 101,234;
hyperrazor, 101. See also Razor, sharpened

Odds, 36, 1 24, 131, 1 87, 198, 221; relative,
149, 158, 159

Operational research, xiii
Optics. See Fresnel's laws of optics
Optional stopping, 142, 147; as acceptable to

Bayesians, 1 35; as allowable by the likelihood
principle, 136; as immaterial to Bayesians, 36

"Org," 73
Outlier, its effects on the test statistic used, 1 38

Paradox: of confirmation (HempePs), xv, 119,
1 87, 188; Cretan liar, xiv; "gruesome," 151,
161, 162; Jeffrey-Good-Robbins-Lindley,
129, 143; of martingale in chess, 111;
Mackie's, 188; Miller's, 188; and need to
resolve, 1 88; of optional stopping, 1 35; of
regularity, 84, 85; of simplicity, 114; of
unknowable measure, 78

Parapsychology, and small "proportional
bulges," 142

Partial ordering, 76
Pattern recognition, personal, for random

numbers, 87
Payoff, xiii. See also Fees, fair
Peace of mind, purchase of, 9
Peano axioms, 85
Permutability (of events), 96, 1 01; criticism

of, 154
Philistine, as a person who disdains the hypo-

thetical, 29
Philosophers of science, distinguished, and their

failure to explain the principle of total
evidence, xvii

Philosophical disputes, as often a "matter of
degree," 4

Philosophy: applicable, ix; applied, xviii, 32,
220; armchair, 31; and artificial intelligence,
106; "as if," 26,69, 86, 154, 165; as a dirty
ten-letter word, 92; function of, 38; influence
of on statistics, xiii; of knowledge, and weight
of evidence, 160; mathematics of, 184; versus
mathematics, 50; of physics, indeterminacy
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of, 54, 55; potential practicality of, 130; of
probability, as largely a matter of classifica-
tion, 64; in statistics, 3; and statistics, blend-
ing with, xviii; as talk about talk about talk,
64. See a/so Metaphysics; Solipsism

Phoebe, xv
Physical circumstances, essential, 199, 200
Physical theories as null hypotheses, 1 68
Physics: high-energy (scattering), and bump-

hunting, 104, 105; laws of, complexity of,
156

Pi, millionth digit of, 54, 55, 90, 1 07
Piglings, newly born, apparent beliefs of, 5
Place selection, 84, 88
Planets: mean distance from sun, xv, 1 27:

see also Bode's law; motion of, 162, 223;
orbits of, 138. See also Mercury; Neptune;
Pluto; Saturn's satellites; Uranus

Playing cards, 65
Pluto, 128, 138
Poker, 14
"Polynome," 84
Poppa, 149
Popper fixation, 149
Popperian philosophy: existence of explained,

169; improved, 169
Power function, 1 39, 140, 144; with several

parameters, apprehension of by averaging,
145

Precision fallacy: and anti-Bayesianism, 140;
prediction concerning, 54

Prediction, 221; and a rule of thumb, 67
Predictive sample reuse, 100
Predictivity, xviii, 226, 232, 233, 235; and

explicativity, 162, 163; as a quasiutility, 232
Preposterior analysis. See Device of Imaginary

Results
Priggish principles, xiii, 15, 22, 24
Prime number theorem, Gauss's defeat by,

115
Princes Risborough, xiii
Principle of least utility, 43, 1 90
Principle of rationality, of two types, 153
Principles, priggish, xiii, 15, 22, 24
Prior: Cauchy, 105; choice of, and marginalism,

44, 45; credibilistic, xvii; improper, shading
off of, 43; invariant, xvii, 190, 191; Jeffreys-
Haldane, 102; known by their posteriors, 1 7,
29; least favorable, xvi, 43; and the log-
Cauchy hyperprior, 102, 1 32; minimax
quasiutility, xvi; of the second type or order,
33; uniform ("Bayes's postulate"), 100;
uninformative, 45

Probabilistic causality. See Causality, prob-
abilistic

Probabilities of hypotheses, ratios of, as more
relevant to science, 1 7, 36, 1 26

Probability: "a priori," not usually a good
expression, 67; axioms of, 188; axioms of,
the need to adjust, xiv; black box theory of:
see Black box; classical definition of, 64;
comparative, 107, 182: see a/so Probability,
interval-valued; conditional, notation for, 65;
continuous gradation between kinds of, 74,
1 51; as deducible only from other probabili-
ties, 106, 152; definition of, 7; dendroidal
classification for, 1 22; as derived from judg-
ment, 152; does it exist(?), x; dynamic or
evolving: see Probability, dynamic or
evolving; estimates of, good ones, fees to
encourage, 3: see also Fees, fair; estimates of,
logarithmic payoff for and information
measure, 11; estimates of, merit of, 11;
estimates of, possibly improved by imaginary
fair fees, 11; estimation of, by actuaries, 93;
estimation of, in diagnosis, 93; estimators of,
distinguishing between, and logarithmic
scores, 10, 11; of an event that has never
occurred, an obvious but provocative concept,
22, 27, 92; evolving: see Probability, dynamic
or evolving; fallacy caused by an incomplete
notation for, 16; final, not in Popper's philos-
ophy, 230; final or posterior, 67; hierarchy
of types of, xiii, 33, 81, 92, 95-1 05; hierarchy
of types of, decreasing effect of its increasing
woolliness, 14; hierarchy of types of, wooli-
ness of at high types, 98; of higher types,
levels, or stages: see Probability, hierarchy of
types of; history of, xiv, 1 53; of a hypothesis,
1 7, 36, 37, 1 26; hypothetical, 66; implicit
definition of, 175; infinite regress of avoided,
99; initial (prior), 38, 42; initial, dependence
of on analogies, 37; initial, and elegance, 234;
initial, as not unique, 38; initial, as ostensibly
irrelevant in legal trials, 38; initial, as related
to length of statement, 37; initial, and
smoking, 55; interval-valued (partially
ordered): see Probability, interval-valued;
intuitive, 21, 70, 115, 153; inverse, 66-68;
judgment of, as aided by feelings of potential
surprise, xvi; judgment of, vagueness of,
perhaps correlated with variation between
judges, 16; judgment of, vagueness of, two
definitions for, 16; kinds of, xiv, 63-72 (esp.
70), 73, 74, 122, 1 23; "known," definition
of, 96; logical, definition of, 74, 123: see also
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Credibilities; logico-subjective, 150; and long-
run frequency (not required as a definition of
probability), 15; mathematical, 27; of a
mathematical proposition, 8; and meaning,
157; multisubjective (multipersonal), 70, 150;
naive definition of, 67; neoclassical definition
of, 69; numerical inside the black box, 77;
partially ordered: see Probability, interval-
valued; personal: see Probability, subjective;
philosophy of, xv; philosophy of, as a com-
promise, x; physical: see Probability, physical;
prior: see Probability, initial; of a probability
judgement, 6, 33, 130, 1 88; psychological,
73, 150; qualitative, 97; sharp, x, xvii, 30,
182; sharp, as an example of type II rational-
ity, 30; sharp, as a simplifying assumption, 8;
single-case, 92; small, as not enough for
rejection of a hypothesis, 133; and statistics,
and which is primary, xiv, 59-63; subjective
(personal): see Probability, subjective; tail-
area: see Tail-area probability; tautological, 5,
71, 11 5, 1 82; theory of: see Probability
theory; of type III, 13; of types 1,11, etc.,
xiii, 6: see also Hierarchy; "unknown," as
one judged to lie in a wide interval, 1 3; upper
and lower, x, xiv, 15, 77, 140: see also
Probability, interval-valued; and the weighing
of evidence, x. See also Propensity; Random-
ness

Probability, dynamic or evolving, xiv, 16, 22,
26,55, 89, 90, 106-16, 154, 162, 163,185;
analogy with Fortran notation, 108; defini-
tion of, 1 23; and explanation, 223, 224; and
explicativity, 228, 230, 231; the most
fundamental kind of, xiv; philosophical
applications of, 114; as required for refuting
Popper's theory of simplicity, 16

Probability, interval-valued (partially ordered),
x, xvii, 8, 15, 30, 75, 97, 98, 107, 123, 152,
153, 1 84; as a Bayes/non-Bayes compromise,
130; as leading to hierarchies of probability,
97; as necessary for rationality, 95, 96;
simplest theory of, 97. See also Probability,
comparative

Probability, physical, 21, 31,66, 71,73;
estimation of, 27; existence of, 15, 32, 93,
123; as measurable by subjective probability,
1 5, 32, 71, 74; as measured or defined by
subjective probability(?), 93; metameta-
physical, 1 54; probable existence of, 1 5, 32,
93, 1 23; and subjective, related, 70; sub-
jective expectation of, 38; and tautological,
related, 71; as usually regarded as precise, 75

Probability, subjective (personal), 65, 1 30, 1 84;
axioms of as applicable to other kinds, 74; as
bridled by axioms, 1 06; and Carnap, 74, 1 51;
Carnap's move toward, 74; of a credibility,
81; definition of, 73, 123, 150; function of as
greater objectivity, 1 27; interval-valued: see
Probability, interval-valued; as the measure
of a nonmeasurable set, 73-82; as more
immediate than credibility, 74, 1 53; as not
necessarily connected with mind, 73; as
regarded as a credibility estimate (for mental
health), 1 7, 32; and the vaguer, the more
non-Bayesian, 30; and what it is not, 73.
See also Beliefs

Probability density estimation, 22, 1 04, 1 05;
nonparametric, 45; window methods for, 45

Probability theory: development of without
mentioning utilities, 7; function of, 70; as
intermediate between logic and empirical
sciences, 4; justification for, 4; simplest
possible, xii; terse exposition of, 1 22-27; as
used by mathematicians, statisticians, and
philosophers, 63. See also Theory

Probability-consciousness by leaders of
industry, and its effect on statistical theory,
10

Program: adaptive, 112, 11 3; expected utility
of,11 2

Propensity (physical probability), 66, 71, 197;
as a good term but hardly a theory, 32.
See also Probability, physical

Propensity to cause, 221
Prepositional functions, 78, 80
Propositions: atomic, 156; monotonic

sequences of, 81; sequence of, limit of, 81;
and which ones are analogous to points, 81

Protoplasm and states of uncertainty, 64
Pseudodognosticians, 106, 114
Pseudoindeterminism, 55, 71, 212
Pseudoprobability, 212
Pseudorandom numbers, 22, 54, 55, 90; and

the philosophy of physics, 90
Pseudoutilities, 18, 31. See also Quasiutility
Psychokinesis, 215
Psychology, armchair, 70
Purgatorio, 64
P-values, 134. See also Tail-area probability
Pythagoras's theorem, why true, 223

Q (causal tendency), 1 98; explicatum of, 207;
more operational than x, 1 99. See also
Causal tendency

Quadratic loss and flat space-time, 46
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Quantum mechanics, 55, 66, 94; probability of,
165; solipsistic tendencies of, 91; and
"states," 200, 217

Quasiloss, 50. See a/so Quasiutility
Quasiprobability, 212-14
Quasiutility, xi, xvi, 21, 22, 31, 40-42, 191-92;

and additivity, 219; examples of, 18; and
explicativity, 21 9; invariant, 41, 42; and
predictivity, 232; and weight of evidence, 160

Questionnaires, 66

Radioactive particle, 206
Random design, justified by type II rationality,

54
Random digits (or numbers), 54, 62; vanishing

after use, 84
Random sampling, 54; and precision of

statements, 87
Random sequences. See Sequence, infinite

random
Randomization, as objective only if some

information ignored, 62
Randomness, xiv, 83-94; and emergence, 94;
"infinite" amount of, 91; mathematical and
physical, analogy between, 91; physical,
logical, or subjective, 85; and probability,
and which is primary, 85, 86; as related to
regularity and probability, 84-86; with
respect to tests, 88

Rational behavior, 9; principle of, 7: see also
Rationality, principle of; theory of, 7.
See a/so Rationality

Rational numbers, closeness to, 122
Rationality, 3, 1 76; and allowance for the

cost of theorizing, 9; Bayesian, should be
understood by top managers, xiii; and
codification of its basic principles, xiii; and
the decreased importance of learning with
age, 9; and economics, 1 73; as fundamentally
commonsense, 1 5; as an ideal, 25; versus
irrationality, 3; justification of, 1 75; as at
least sometimes desirable, 25; and minimax
strategy, 1 85; philosophy of, xv; as preferable
to fashion, x; principle of, 1 5, 25, 1 23; theory
of, as contributing to the definition of utility,
7; and the theory of games, 1 85; and total
evidence, 179; twenty-seven principles of, 15;
type II, xii, xiii, 20, 11 2; type II, and the
Bayes/non-Bayes compromise, 22, 23; type II,
incorporates a time element, 16; type II, more
important than type I though vaguer, 16; type
II, and randomized experiments, 89; type II,
and sharp probabilities, 98; types I and II, 22,

29, 30, 123, 153, 185;types I and II,
compared with dynamic probability, 16

Razor, sharpened, 17, 1 27, 230
Reality, attempted definition of, 1 54
Reasoning: as logic plus probability, 6; machine

for, the only one available, 26; theory of, as a
recommendation to think in a particular way,
7; time element in, 29

Reductionism, 94; and lack of time, 94
Referees, sometimes stupid, 27
Refutability: of Popper, 167; why worshipped

by some, 168
Refutation: honest attempts at, a consequence

of inductivism, 166; of Popper, 1 57
Regression and explanation, 225
Rejection, degrees of provisionality of, 1 34
Relativity, 166, 199; general, 167; and tensors,

46; and weight of evidence, 161. See also
Mossbauer effect

Religions: choice between, and infinite utilities,
8, 175; the one and only true, 26. Consult
God

Repeat rate (Gini's index), 1 02
Repeated trials and explicativity, 231, 232
Respect for both judgment and logic, 26
Retrodiction, 221, 223
Retrodictivity, 226
Review, anonymous, by Good, 94
Reviews of books, personal evaluation of, xii
Riemann dissection, 209
Risk, and the cost of theorizing ignored by

Wald, 13
Robot, requires probabilities if intelligent, 1 52,

153
Robustness: Bayesian, 50, 99, 1 25; and

sensitivity, a trade-off (an "uncertainty
principle"), 61

ROME, 42, 45
Roughness of a density curve, 1 04
Roughness of a frequency count, 1 01
Roughness penalty, 46, 1 04; multidimensional,

invariant, 46
Roulette, 68
Royal Statistical Society, 7957 conference, xii
Rug, 16, 22. See a/so Carpet
Rules and suggestions, codification of, 130
Rules for rational decisions, 3
Rules of application, 4, 76

Salvation and damnation, 8, 1 75
Sample: effectively large, 45; large but effec-

tively small, 42
Sampling theory, 147



330 INDEXES

Sampling to a foregone conclusion, 36, 135.
See also Optional stopping

Saturn's satellites, "Dabbler's law" concerning,
xv, 122

Scattering. See Physics, high-energy
Schroedinger's equation, and underlying

random motion(?), 37
Science: as based on a swamp (like a baby), 85,

151,1 57; and commerce, 21 9; as expressible
in fifteenth-century English, 157; as
necessarily objective, a false slogan, 6; and
whether it can survive Popper's attack on
induction, 1 26

Scientific communication, oral, 23
Scientific reasoning, its subjectivity, 127
Scientific theories, Bayesian evaluation of,

122, 127
Scores, "proper." See Fees, fair
Scott's formula, 88
Screening off, 222. See also Causality
Self-reference, 1 88
Semantics, 157
Semitones, number in octave, xiii
Sequence: doctored, 88, 89; infinite random,

69, 83; infinite random, existence of, xiv;
infinite random, not one of which can be
explicitly defined, xiv

Sequential analysis, history of, 1 91
Sequential procedures common in ordinary

life, 11
Series-parallel networks, 199
Shackles, having one's mind in, xvi
Sharpened razor, 147, 230
Shrinkage estimation and Laplace's law of

succession, 1 00
"Sigmage" (deviation divided by a), 135
Significance testing, as often reasonable because

the null hypotheses have reasonable probabili-
ties, 52

Significance tests: Bayesian, 1 7, 43; as chosen
after seeing the evidence, 39; as decided in
advance, 60, 61; as estimation problems, 62;
not discussed by Popper, 168; in parallel, 22,
52; purpose of, 61, 62; relevance of (vague)
non-null hypothesis to, 138; selection of after
seeing the observations, 138, 139

Simple propositions, not necessarily initially
probable, 162

Simple statistical hypotheses, 71, 131; and
scientific theories, 168

Simplicity, 154, 235; and aesthetic appeal, 234;
and beauty, 236; and dynamic probability,
90, 114; and elegance, 234; and Popper's

Humpty-Dumpty usage, 32; and surprise, xvi.
See also Complexity

Slide-rule, generalized, 203
Smoking, and lung cancer, 55, 1 89, 190, 209,

210
Smoothing, Bayesian, 28
Society, ideal, private and public utilities in, 10
Sociology of science, 127
Solipsism, 91; and de Finetti's theorem, 93,

1 54; as not disprovable, 93, 1 54; as not
supported by asubjectivistic theory, 71

Species sampling problem, 28, 93, 97
Spurious correlation, partially, 209
Squared-error loss, 48; as not very invariant, 43
Stable estimation, 39
"State," in quantum mechanics, 200, 217
Statistic: more extreme, 49-51; regarded as the

evidence, 51
Statistical concepts, conventional, criticized,

xiv
Statistical mechanics, 55; and expected weight

of evidence, 192; and pseudorandom
numbers, 22

Statistical principles, not golden rules, 59
Statistician: versus the client, 48; going

Bayesian to give client what he wants, 48; to
the left and right, xi

Statistician's space, 149, 150
Statistician's stooge, 17, 54, 76, 88
Statistics: orthodox, 147; orthodox, contro-

versial aspects of, 59-62; theory of, terse
exposition of, 1 22-27; in 2047 A.D., 95

Stochastic processes, xvii
Stooge, statistician's, 17, 76; and randomiza-

tion, 54; shooting of, 88
Stopping, optional, in experimentation, 18
Streets, kept off, for a year, xvii
Strength of a test, 145
Subjectivism: bridled, 1 52; denial of a chronic

illness, 152; and how to sweep under the
carpet, 22-40; a practical necessity, 1 52

Subjectivistic theory, its purpose to increase
objectivity, 26

Subjectivists, deep down inside, 125
Subjectivists all, 32
Subjectivity: degrees of, 127; inevitable, 5
Sufficient reason, 115
Suggestions, 1 76; as examples of probability,

numerical, 8; as less precise than axioms and
rules of applications, 4; as not axioms, 115

Sun, something old under, 27
Superpopulations, 18
Support, 36; and weight of evidence, 160
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Sure-thing principle, 1 75
Surprise, xiii, 1 89; biological function of, xvi;

evolutionary value of, 145; and the galaxy's
size, 193; and information, 146; potential,
xvi, 1 73; Shackle's theory of, 1 73, 1 74, 1 76;
and simplicity, 146

Surprise indexes, xv, xvi, 20, 145, 146, 1 73; as
dependent upon grouping, 146; limited
invariance of, 145; logarithmic, xvi; and
subjective probabilities, 173, 174

SUTC (Sweeping under the Carpet), 23, 34,
125

Swamp power, 86
Sweepstakes, 65
Symmetry, logical, 66

"Tail," triple, 50
Tail-area probability, 22, 49, 134, 140;

asymptotic, good down to very small tails,
103, 104; and Bayes factor, 140-43; Bayesian
interpretation of, 51; and bimodal distribu-
tions, 50; combination of, 52, 54, 147; fixed,
diminishing value of as the sample size
increases, 141,1 42; history of, 1 38; use of,
138; as logically shaky, 136; not enough, 60;
not invariant, 49, 50; not a primitive notion,
49; one in a thousand not necessarily small
enough, 140; small, in ESP, radar, cryptanaly-
sis, and life, 51; small, not as strong evidence
as it appears, 51; and weight of evidence, 49;
when counterintuitive, 51; why introduced,
xv

"Tasuacs," 208
Tea-tasting, 62, 87, 90, 21 5
Teleprinter encoding of "milk," 87
Tensors, for invariant roughness penalties, 46
Terminology: careful choice of, 123, 1 24;

importance of in practice, 32, 125
Test, choice of in advance to protect against

bad judgment, 51, 54
Test of a hypothesis within a wider class, 134,

137, 168
Testability, 166, 167; and refutability or

falsifiability, 167
Theorem: as an explanandum, 223; prior

probability of, 90; probability of, xiv; why
true, 223

Theorems, as not enough, 27
Theory: abstract, xii; axiomatic, its need for

rules of application, 4; mathematical, xii;
mathematical, of probability and rationality,
input and output to as inequalities of various
kinds, 16; of probability and rationality,

purpose of, to increase the objectivity of
subjectivity, 6, 16, 153; of rationality, as
easily derived from a theory of probability, 7;
scientific, 4; scientific, function of, 1 73;
scientific, meaning of, 4; scientific, reason for
difficulty of, 4; as talk about talk, 64. See
also Hypotheses; Hypothesis; Probability
theory

Thunder and lightning, 221
Time-guessing game, xii, xiii
Tipsters, stock-market, xii
Titius-Bode law. See Bode's law
Tom: and the Mother Superior, 226; naughty,

225, 226; at scene of crime, 233
Transfinite sequence of axioms, 156
Tree: backtracking in, 1 09; truncation, pruning,

or pollarding, 109-16
Tricks used to cover up subjectivity, xiv
Trientropy, xiii
Truth, 165; closeness to, and loss functions, 45;

as what is said thirty-three times, 159
Turing machine, x
Turing-Good formula, a proof by scientific

induction, 28
Type-chains, 6
Tyranny of words, 1 39

Ugliness. See Complexity
UIM (ultraintelligent machine), 26, 108; and

when it will arrive, 1 5; and whether it will use
a subjectivistic theory, 26

Ultraintelligent machine. See UIM
Unbiased statistics, sometimes biased in effect,

60
Unity of statistics, science, and rationality,

reasons for aiming at, 3
Universe: as a cypher, 157; improved design of,

91
"Unknown," often a misleading term, 1 3
Upper and lower probability. See Probability,

interval-valued
Upper and lower utility. See Utility, interval-

valued
Uranus, 128
"Urbanity," and lung cancer, 188
UTC (Under the Carpet). See SUTC
Utility, 6, 8, 40, 43, 70; in chess, 1 09;

"comparative," 1 82; of a distribution, 1 89-
91 ; epistemic, xi; Fisher's implicit use of, 40;
implicit definition of, 1 75; infinite, 8;
interval-valued (partially ordered), 31, 1 52,
153; judgments: see Value judgments; large,
8; maximization of, xii; as meaning value, 7;
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of money, 177; nonmonetary, 47; non-
unique, 47; as not restricted to financial
matters, 7; as not used by all Bayesians,
21; as often not sharp, 31; private and pub-
lic, 9; statistician's versus the client's, 22;
substitutes for, 40; as vaguer than prob-
ability, 174, 175. See also Least Utility;
Loss; Value judgments

Vacillation, negative utility of, 9
Vagueness, living with, 70
Value judgments: disagreements concerning,

8; as perhaps more variable than probability
judgments, 8

Venn limit, 68

W, 1 98. See a/so Weight of evidence
Wald's theorem, 41, 190
Waterloo converence (1970), 23, 24, 87, 1 04,

139
Wave function, 217; of the universe, 91. See

also "State"
Weather forecasts, 1 0, 11
Weber-Fechner law, 1 25
Weight of evidence, x, xv, 20, 132, 186, 198;

additive property of, 160, 221; and amount
of information, 160, 161; as capturing or-
dinary meaning, 38; and chess, 109; and chi-
squared, 146, 147; and coding theorems,
161, 187; as corroboration, 44, 124, 159,
160, 187; definition of, 36, 124, 198, 221;
and determination of authorship, 161; ex-
pected, xi, xvi, 124, 125; expected, as a
distance function, 137; expected, and in-
variant priors, 1 90, 1 91; expected, as a quasi-
utility, 43; and explicativity, 229; in favor
of Hj as compared with Ho, 1 59; and general
relativity, 161, 169; and Hempel's paradox,
119-21; as historically earlier than "amount

of information," 124; as important apart
from initial probability, 37; and information,
185; as an intelligence amplifier, xi; interac-
tions in, 189, 190; judgment of, 9, 30;
in the law, 41; and the likelihood principle,
132; and lung cancer, 188; and magistrates,
127; and medical diagnosis, 127, 161, 169,
188; merit of, 16; and Mbssbauer effect,
161; against null hypothesis, 133; num-
erous citations to, 125; as a quasiutility,
1 8, 21, 40, 160; references to, 230; relation-
ship of to amount of information, 124;
subjective, applicable, however vague the
initial probability, 37; and support, 160;
and tail-area probabilities, 49-51; and test
criteria, 140; thirty-three references to,
159; unit of (deciban), 220; and weight
of documents, 160. See a/so Bayes factor;
Corroboration; Evidence; Paradox, of con-
firmation

White shoe: qua herring, deep pink, 121;
as a red herring, 119

Window-pane, broken, and causation, 224-26
Wishful thinking, 6; protection against, 60
Word of a language, as a statistical matter,

151
"World," complete (closed physical system),

202
World outside the mind, and physical prob-

ability, 92
World War 11, xvi

X^ for multinomials, 140

"You," 73, 75, 150, 174, 181

Zener cards, xii
Zipf's law, as good enough to demand an

explanation, 151
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