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Abstract
Stochastic thermodynamics as reviewed here systematically provides a framework for
extending the notions of classical thermodynamics such as work, heat and entropy production
to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies
whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant
temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps,
polymers in external flow, enzymes and molecular motors in single molecule assays, small
biochemical networks and thermoelectric devices involving single electron transport. For such
systems, a first-law like energy balance can be identified along fluctuating trajectories. For a
basic Markovian dynamics implemented either on the continuum level with Langevin
equations or on a discrete set of states as a master equation, thermodynamic consistency
imposes a local-detailed balance constraint on noise and rates, respectively. Various integral
and detailed fluctuation theorems, which are derived here in a unifying approach from one
master theorem, constrain the probability distributions for work, heat and entropy production
depending on the nature of the system and the choice of non-equilibrium conditions. For
non-equilibrium steady states, particularly strong results hold like a generalized
fluctuation–dissipation theorem involving entropy production. Ramifications and applications
of these concepts include optimal driving between specified states in finite time, the role of
measurement-based feedback processes and the relation between dissipation and
irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed
systematically beyond the linear response regime for two classes of molecular machines,
isothermal ones such as molecular motors, and heat engines such as thermoelectric devices,
using a common framework based on a cycle decomposition of entropy production.

(Some figures may appear in colour only in the online journal)
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1. Introduction

1.1. From classical to stochastic thermodynamics

Classical thermodynamics, at its heart, deals with general
laws governing the transformations of a system, in particular,
those involving the exchange of heat, work and matter with
an environment. As a central result, total entropy production
is identified that in any such process never decreases,
leading, inter alia, to fundamental limits on the efficiency
of heat engines and refrigerators. The thermodynamic
characterization of systems in equilibrium gets its microscopic
justification from equilibrium statistical mechanics which
states that for a system in contact with a heat bath the
probability to find it in any specific microstate is given by
the Boltzmann factor. For small deviations from equilibrium,
linear response theory allows one to express transport
properties caused by small external fields through equilibrium
correlation functions. On a more phenomenological level,
linear irreversible thermodynamics provides a relation between
such transport coefficients and entropy production in terms of
forces and fluxes. Beyond this linear response regime, for a
long time, no universal exact results were available.

Over the last 20 years fresh approaches have revealed
general laws applicable to non-equilibrium system thus
pushing the range of validity of exact thermodynamic
statements beyond the realm of linear response deep into
the genuine non-equilibrium region. These exact results,

which become particularly relevant for small systems with
appreciable (typically non-Gaussian) fluctuations, generically
refer to distribution functions of thermodynamic quantities
such as exchanged heat, applied work or entropy production.

First, for a thermostatted shear-driven fluid in contact
with a heat bath, a remarkable symmetry of the probability
distribution of entropy production in the steady state was
discovered numerically and justified heuristically by Evans
et al [1]. Now known as the (steady-state) fluctuation theorem
(FT), it was first proven for a large class of systems using
concepts from chaotic dynamics by Gallavotti and Cohen [2],
later for driven Langevin dynamics by Kurchan [3] and for
driven diffusive dynamics by Lebowitz and Spohn [4]. As
a variant, a transient fluctuation theorem valid for relaxation
toward the steady state was found by Evans and Searles [5].

Second, Jarzynski proved a remarkable relation which
allows one to express the free energy difference between
two equilibrium states by a non-linear average over the work
required to drive the system in a non-equilibrium process
from one state to the other [6, 7]. By comparing probability
distributions for the work spent in the original process with
the time-reversed one, Crooks found a ‘refinement’ of the
Jarzynski relation (JR), now called the Crooks fluctuation
theorem [8, 9]. Both this relation and another refinement
of the JR, the Hummer–Szabo relation (HSR) [10], became
particularly useful for determining free energy differences and
landscapes of biomolecules. These relations are the most
prominent ones within a class of exact results (some of which
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were found even earlier [11, 12] and then rediscovered) valid
for non-equilibrium systems driven by time-dependent forces.
A close analogy to the JR, which relates different equilibrium
states, is the Hatano–Sasa relation that applies to transitions
between two different non-equilibrium steady states [13].

Third, for driven Brownian motion, Sekimoto realized that
two central concepts of classical thermodynamics, namely the
exchanged heat and the applied work, can be meaningfully
defined on the level of individual trajectories [14, 15]. These
quantities entering the first law become fluctuating ones giving
birth to what he called stochastic energetics as described in
his monograph [16]. Fourth, Maes emphasized that entropy
production in the medium is related to that part of the stochastic
action which determines the weight of trajectories that is odd
under time reversal [17, 18].

Finally, building systematically on a concept briefly
noticed previously [8, 19], a unifying perspective on these
developments emerged by realizing that in addition to the
fluctuations of the entropy production in the heat bath one
should similarly assign a fluctuating, or ‘stochastic’, entropy
to the system proper [20]. Once this is carried out, the key
quantities known from classical thermodynamics are defined
along individual trajectories where they become accessible to
experimental or numerical measurements. This approach of
taking both energy conservation, i.e. the first law, and entropy
production seriously on this mesoscopic level has been called
stochastic thermodynamics [21], thus revitalizing a notion
originally introduced by the Brussels school in the mid-1980s
where it was used on the ensemble level for chemical non-
equilibrium systems [22, 23].

1.2. Main features of stochastic thermodynamics

Stochastic thermodynamics as understood here applies to
(small) systems such as colloidal particles, (bio)polymers
(such as DNA, RNA and proteins), enzymes and molecular
motors. All these systems are embedded in an aqueous
solution. Three types of non-equilibrium situations can be
distinguished for these systems. First, one could prepare
the system in a non-equilibrium initial state and study the
relaxation toward equilibrium. Second, genuine driving can
be caused by the action of time-dependent external forces,
fields, flows or unbalanced chemical reactions. Third, if the
external driving is time-independent the system will reach
a non-equilibrium steady state (NESS). For this latter class,
particularly strong exact results exist. In all cases, even
under such non-equilibrium conditions, the temperature of
the system, which is the same as that of the embedding
solution, remains well-defined. This property together
with the related necessary time-scale separation between the
observable, typically slow, degrees of freedom of the system
and the unobservable fast ones made up by the thermal bath
(and, in the case of biopolymers, by fast internal ones of the
system) allows for a consistent thermodynamic description.

The collection of the relevant slow degrees of freedom
makes up the state of the system. Since this state changes
either due to the driving or due to the ever present fluctuations,
it leads to a trajectory of the system. Such trajectories belong

to an ensemble which is fully characterized by the distribution
of the initial state, by the properties of the thermal noise acting
on the system and by specifying the (possibly time-dependent)
external driving. The thermodynamic quantities defined along
the trajectory like applied work and exchanged heat thus follow
a distribution which can be measured experimentally or be
determined in numerical simulations.

Theoretically, the time-scale separation implies that the
dynamics becomes Markovian, i.e. the future state of the
system depends only on the present one with no memory of the
past. If the states are made up by continuous variables (such
as position), the dynamics follows a Langevin equation for an
individual system and a Fokker–Planck equation for the whole
ensemble. Sometimes it is more convenient to identify discrete
states with transition rates governing the dynamics which, on
the ensemble level, leads to a master equation.

Within such a stochastic dynamics, the exact results
quoted above for the distribution functions of certain
thermodynamic quantities follow universally for any system
from rather unsophisticated mathematics. It is sufficient to
invoke a ‘conjugate’ dynamics, typically, but not exclusively,
time reversal, to derive these theorems in a few lines.
Essentially, they lead to universal constraints on these
distributions. One inevitable consequence of these theorems
is the occurrence of trajectories with negative total entropy
production. Such events have occasionally been called
(transient) violations of the second law. In fairness to classical
thermodynamics, however, one should emphasize that this
classical theory ignores fluctuations. If the second law is
understood as referring to the mean entropy production, it
is indeed confirmed by these more recent exact relations.
Moreover, they show that the probability for such events
becomes typically exponentially small in the relevant system
size which means that one has to sample exponentially many
trajectories in order to observe these ‘violations’.

Since these constraints on the distributions are so
universal, one might suspect that they are useless for
uncovering system-specific properties. Quite to the contrary,
some of them offer a surprising relation between equilibrium
and non-equilibrium properties with the JR as the most
prominent and useful example. Moreover, such constraints can
be used as an obvious check whether the assumptions of the
model apply to any particular system. Finally, studying non-
universal features of these distribution functions and trying to
find further common aspects in these has become an important
part of the activities in this field.

Going beyond the thermodynamic framework, it turns
out that many of the FTs hold formally true for any kind
of Markovian stochastic dynamics. The thermodynamic
interpretation of the involved quantities as heat and work is
not mandatory to derive such a priori surprising relationships
between functionals defined along dynamic trajectories.

1.3. Hamiltonian, thermostatted and open quantum dynamics

Even though I will focus in the main part of this review on
systems described by a stochastic dynamics, it is appropriate
to mention briefly alternative approaches as some of the FTs
have originally been derived using a deterministic framework.
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Hamiltonian dynamics works, in principle, if the external
driving is modeled by a time-dependent potential arising, e.g.,
from a movable piston, tip of an atomic force microscope,
or optical tweezer. Conceptually, one typically requires
thermalized initial conditions, then cuts off the system from
the heat bath leading to the deterministic motion and finally
one has to reconnect the heat bath again. In a second variant,
the heat bath is considered to be part of the system but one
then has to follow all degrees of freedom. One disadvantage
of Hamiltonian dynamics is that it cannot deal with a genuine
NESS, which is driven by a time-independent external field or
flow, since such a setting inevitably heats up the system.

Thermostatted dynamics can deal with NESSs. Here,
one keeps deterministic equations of motion and introduces
a friction term making sure that on average the relevant
energy (kinetic or total, depending on the scheme) does not
change [24].

Even though a deterministic dynamics is sometimes
considered to be more fundamental than a stochastic one,
the latter has at least three advantages from the perspective
held in this review. First, from a practical point of view,
in soft matter and biophysics a description focusing on the
relevant (and measurable) degrees of freedom and ignoring
water molecules from the outset has a certain economical
appeal. Second, stochastic dynamics can describe transitions
between discrete states as in (bio)chemical reactions with
essentially the same conceptual framework used for systems
with continuous degrees of freedom. Third, the mathematics
required for deriving the exact relations and for stating their
range of validity is surprisingly simple compared with what is
required for dealing with NESSs in the deterministic setting.

Open quantum systems will not be discussed explicitly in
this review. Some of the FTs can indeed be formulated for
these systems, sometimes at the cost of requiring somewhat
unrealistic measurements at the beginning and end of a process,
as reviewed in [25, 26]. The results derived and discussed in the
following, however, are directly applicable to open quantum
systems whenever coherences, i.e. the role of non-diagonal
elements in the density matrix, can be ignored. The dynamics
of the driven or open quantum system is then equivalent to a
classical stochastic one. For the validity of the exact relations
in these cases, the quantum-mechanical origin of the transition
rates is inconsequential.

1.4. Scope and organization of this review

In writing this review, apart from focusing entirely on systems
governed by Markovian stochastic dynamics, I have been
guided by the following principles concerning format and
content.

First, I have tried to present the field in a systematic order
(and notation) rather than to follow the historical development
which has been briefly alluded to in the introductory section
above. Such an approach leads to a more concise and coherent
presentation. Moreover, I have tried to keep most of the more
technical parts (some of which are original) still self-contained.
Both features should help those using this material as a basis
for courses such as those which I have given several times at

the University of Stuttgart and at summer schools in Beijing,
Boulder and Jülich.

Second, as a consequence of the more systematic
presentation, experimental, analytical and numerical case
studies of specific systems are mostly grouped together and
typically placed after the general theory where they fit best.

Third, for the exact results the notions ‘theorem’,
‘equality’ and ‘relation’ are used here in no particular
hierarchy. I rather try to follow the practice established in
the field so far. In particular, it is not implied that a result
called here ‘theorem’ is in any sense deeper than another one
called ‘relation’.

This review starts in section 2 by introducing a paradigm
for this field which is a colloidal particle driven by a
time-dependent force as it has been realized in several
experiments. Using this system, the main concepts of
stochastic thermodynamics, such as work, heat and entropy
changes along individual trajectories, will be introduced. At
the end of this section, simple generalizations of driven
one-dimensional motion such as three-dimensional motion,
coupled degrees of freedom and motion in external flow are
discussed.

A general classification and a physical discussion of the
major FTs dealing with work and the various contributions to
entropy production follows in section 3. In section 4, I present
a unifying perspective on basically all known FTs for stochastic
dynamics using the concept of a conjugate dynamics. It
is shown explicitly how these FTs follow from one master
theorem. Section 5 contains an overview of experimental,
analytical or numerical studies of Langevin-type dynamics in
specific systems. Section 6 deals with Markovian dynamics
on a discrete set of states for which FTs hold even without
assuming a thermodynamic structure.

The second part of the review deals with ramifications,
consequences and applications of these concepts. In section 7,
the optimal driving of such processes is discussed and the
relation between irreversibility and the amount of dissipation
derived. Both concepts can then be used to discuss the role
of measurements and (optimal) feedback in these systems.
Section 8 deals with generalizations of the well-known
fluctuation–dissipation theorem (FDT) to NESSs where it is
shown that stochastic entropy plays a crucial role.

As one paradigm for more complex systems, biomolecular
systems are discussed in section 9 where special emphasis
is given to the role of time-scale separation between the fast
(unobservable) degrees of freedom making up a well-defined
heat bath for the non-equilibrium processes and the slow
variables caused by mechanical or chemical imbalances. From
a conceptual point of view the second essential new aspect
of these systems is that each of the states is composed of
many microstates which leads to the crucial notion of intrinsic
entropy that enters some of the exact relations in a non-
trivial way.

Coming back to the issues that stood at the origin of
thermodynamics, the final two sections discuss the efficiency
and optimization of nano- and micro-engines and devices
where it is useful to distinguish isothermal engines such as
molecular motors discussed in section 10 from heat engines

4
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such as thermoelectric devices treated in section 11. A brief
summary and a few perspectives are sketched in section 12.

1.5. Complementary reviews

A selection of further reviews dealing with the topics discussed
in the first part of this paper can roughly be grouped as follows.1

The influential essay [27] had an introductory character.
More recent non-technical accounts have been given by
Jarzynski [28] and van den Broeck [29] who both emphasize
the relation of the FTs with irreversibility and time’s arrow.
Other brief reviews by some of the main proponents include
[17, 30–32] and the contributions in the collection [33]. Ritort
has written a review on the role of non-equilibrium fluctuations
in small systems with special emphasis on the applications to
biomolecular systems [34]. A review focusing on experimental
work by one of the main groups working on FTs is [35].

For stochastic dynamics based on the master equation,
a comprehensive derivation of FTs has been given by Harris
and Schütz [36]. The FT in the context of thermostatted
dynamics has been systematically reviewed by Evans and
Searles [37]. From the perspective of chaotic dynamics it
is treated in Gallavotti’s monograph [38]. The links between
different approaches and rigorous mathematical statements are
surveyed in [39–42].

Stochastic thermodynamics focuses on a description of
individual trajectories as does an alternative approach by
Attard introducing a ‘second entropy’ [43]. On a more coarse-
grained level, phenomenological thermodynamic theories of
non-equilibrium systems have been developed inter alia under
the label of ‘extended irreversible thermodynamics’ [44],
‘GENERIC’ [45], ‘mesoscopic dynamics of thermodynamic
systems’ [46] and ‘steady-state thermodynamics’ [47, 48].

Nice reviews covering related recent topics in non-
equilibrium physics are [49, 50].

2. Colloidal particle as paradigm

The main concepts of stochastic thermodynamics can be
introduced using as a simple model system a colloidal particle
confined to one spatial dimension, which can arguably serve
as the paradigm for the field.

2.1. Stochastic dynamics

The overdamped motion x(τ) of a colloidal particle (or any
other system with a single continuous degree of freedom)
can be described using three equivalent but complementary
descriptions of stochastic dynamics, the Langevin equation,
the path integral and the Fokker–Planck equation.

The Langevin equation reads

ẋ = µF(x, λ) + ζ = µ(−∂xV (x, λ) + f (x, λ)) + ζ. (1)

The systematic force F(x, λ) can arise from a conservative
potential V (x, λ) and/or be applied to the particle directly as

1 Relevant reviews for the more specific topics treated in the second part of
this review will be mentioned in the respective sections.

f (x, λ). In one dimension, a force f (x, λ) can always be
written as the gradient of a global potential except for the
important case of motion on a ring which imposes periodic
boundary conditions. Still, from a physical point of view
the two contributions to the total mechanical force should be
distinguished as will become clear when discussing the first
law below. Moreover, in two or more dimensions, there are
forces which cannot even locally be written as a gradient. Both
contributions to the force may be time-dependent through an
external control parameter λ(τ) varied from λ(0) ≡ λ0 to
λ(t) ≡ λt according to some prescribed protocol.

The thermal noise is Gaussian with correlations

〈ζ(τ )ζ(τ ′)〉 = 2Dδ(τ − τ ′). (2)

In equilibrium, D becomes the diffusion constant, which is
related to the mobility µ by the Einstein relation

D = T µ (3)

where T is the temperature of the surrounding medium with
Boltzmann’s constant kB set to unity throughout this review to
make entropy dimensionless. In stochastic thermodynamics,
one assumes that the strength of the noise as given by D still
obeys the Einstein relation (3) and is thus not affected by the
presence of a time-dependent force. The range of validity
of this crucial assumption can be tested experimentally or in
simulations by comparing with theoretical results derived on
the basis of this assumption.

The Langevin dynamics generates trajectories x(τ)

starting at x(0) ≡ x0 with a weight

p[x(τ)|x0] = N exp[−A([x(τ), λ(τ )])] (4)

where

A([x(τ), λ(τ )]) ≡
∫ t

0
dτ [(ẋ − µF)2/4D + µ∂xF/2] (5)

is the ‘action’ associated with the trajectory. The last term
arises from the Stratonovich convention for the discretization
in the Jacobian when the weight for a noise history [ζ(τ )]
is expressed by [x(τ)]. This symmetric discretization is used
implicitly throughout this review. Path-dependent observables
�[x(τ)] can then be averaged using this weight in a path
integral which requires a path-independent normalization N
such that summing the weight equations (4), (5) over all paths
is 1. Throughout the review averages using this weight and a
given initial distribution p0(x) will be denoted by 〈. . .〉 as in

〈�[x(τ)]〉 ≡
∫

dx0

∫
d[x(τ)]�[x(τ)]p[x(τ)|x0]p0(x0) (6)

for any functional �[x(τ)].
Equivalently, the Fokker–Planck equation for the

probability p(x, τ ) to find the particle at x at time τ is

∂τp(x, τ ) = − ∂xj (x, τ )

= − ∂x (µF(x, λ)p(x, τ ) − D∂xp(x, τ )) , (7)

where j (x, τ ) is the probability current. This partial differen-
tial equation must be augmented by a normalized initial distri-
bution p(x, 0) ≡ p0(x). For further calculations, it is useful
to define a (time-dependent) mean local velocity

ν(x, τ ) ≡ j (x, τ )/p(x, τ ). (8)

5
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Figure 1. Colloidal particle driven along a periodic potential
V (x, λ) by a non-conservative force f (λ). In a NESS, the external
parameter λ is independent of time.

More technical background concerning these three
equivalent descriptions of Markovian stochastics dynamics of
a continuous degree of freedom is provided in the monographs
[51–54].

2.2. Non-equilibrium steady states

For a time-independent control parameter λ, any initial
distribution will finally reach a stationary state ps(x, λ). For
f = 0, this stationary state is the thermal equilibrium2,

peq(x, λ) = exp[−(V (x, λ) − F(λ))/T ], (9)

with the free energy

F(λ) ≡ −T ln
∫

dx exp[−V (x, λ)/T ]. (10)

A non-conservative force acting on a ring as shown in
figure 1 generates a paradigm for a genuine NESS with a
stationary distribution

ps(x, λ) ≡ exp[−φ(x, λ)], (11)

where φ(x, λ) is the ‘non-equilibrium’ potential. In one
dimension, ps(x, λ) can be obtained explicitly by quadratures
[52] or by an intriguing mapping to an equilibrium problem
[55]. Characteristic for such a NESS is a steady current

j s(x) = µF(x)ps(x) − D∂xp
s(x) ≡ νs(x)ps(x) (12)

with the stationary mean local velocity νs(x). Even for time-
dependent driving, one can express the total mechanical force

F(x, λ) = [νs(x, λ) − D∂xφ(x, λ)]/µ (13)

through quantities refering to the corresponding stationary
state which is sometimes helpful.

Occasionally, we will use 〈. . .〉eq and 〈. . .〉s to emphasize
when averages or correlation functions are taken in genuine
equilibrium and in a NESS, respectively.

2 Strictly speaking, one has to exclude the case where boundary conditions
on a finite interval for x impose a stationary current.

2.3. Stochastic energetics

2.3.1. The first law. Sekimoto suggested to endow the
Langevin dynamics with a thermodynamic interpretation by
applying the notions appearing in the first law

d̄w = dE +d̄q (14)

to an individual fluctuating trajectory [14, 15]. Throughout the
paper, we use the convention that work applied to the particle
(or more generally system) is positive as is heat transferred or
dissipated into the environment.

It is instructive first to identify the first law for a particle
in equilibrium, i.e. for f = 0 and constant λ. In this
case, no work is applied to the system and hence an increase
in internal energy, defined by the position in the potential,
dE = dV = (∂xV ) dx = − d̄q, must be associated with
heat taken up from the reservoir.

Applying work to the particle either requires a time-
dependent potential V (x, λ(τ)) and (or) an external force
f (x, λ(τ)). The increment in work applied to the particle then
reads

d̄w = (∂V/∂λ) dλ + f dx, (15)

where the first term arises from changing the potential at fixed
particle position. Consequently, the heat dissipated into the
medium must be identified with

d̄q = d̄w − dV = F dx. (16)

This relation makes physical sense since in an overdamped
system the total mechanical force times the displacement
corresponds to dissipation. Integrated over a time interval t ,
one obtains the expressions

w[x(τ)] =
∫ t

0
[(∂V/∂λ)λ̇ + f ẋ] dτ (17)

and

q[x(τ)] =
∫ t

0
dτ q̇ =

∫ t

0
F ẋ dτ (18)

and the integrated first law

w[x(τ)] = q[x(τ)] + 	V = q[x(τ)] + V (xt , λt ) − V (x0, λ0)

(19)
on the level of an individual trajectory.

The expression for the heat requires a prescription of how
to evaluate F ẋ. As above in the path integral, one has to use the
mid-point, i.e. Stratonovich rule for which the ordinary rules
of calculus for differentials and integrals apply.

The expression for the heat dissipated along the trajectory
x(τ) can also be written in the form

q[x(τ)] = −T (A([x(τ), λ(τ )]) − A([x(t − τ), λ(t − τ)])

= T ln
p[x(τ), λ(τ )]

p[x̃(τ ), λ̃(τ )]
(20)

as a ratio involving the weight (5) for this trajectory given
its initial point x0 compared with the weight of the time-
reversed trajectory x̃(τ ) ≡ x(t−τ) under the reversed protocol
λ̃(τ ) ≡ λ(t−τ) for x̃0 = x(t) ≡ xt . This formulation points to
the deep relation between dissipation and time reversal which
repeatedly shows up in this field.
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2.3.2. Housekeeping and ‘excess’ heat. Motivated by
steady-state thermodynamics, it will be convenient to split the
dissipated heat into two contributions [13, 47]

q ≡ qhk + qex. (21)

The housekeeping heat is the heat inevitably dissipated
in maintaining the corresponding NESS. For a Langevin
dynamics, it reads

qhk ≡
∫ t

0
dτ ẋ(τ )µ−1νs(x(τ ), λ(τ )). (22)

The ‘excess’ heat

qex = − (D/µ)

∫ t

0
dτ ẋ(τ )∂xφ(x, λ)

= T [−	φ +
∫ t

0
dτ λ̇∂λφ] (23)

is the heat associated with changing the external control
parameter where we have used (13) and (18).

2.3.3. Heat and strong coupling. This interpretation of
the first law and, in particular, of heat relies on the implicit
assumption that the unavoidable coupling between particle
(or, more generally, system) described by the slow variable
x and the degrees of freedom making up the heat bath neither
depends crucially on x nor on the control parameter λ. Such
an idealization may well apply to a colloidal particle in a
laser trap but will certainly fail for more complex systems like
biomolecules. In the following, we first continue with this
simple assumption. In section 9.2, we discuss the general case
and point out which of the results derived in the following will
require a ramification. Roughly speaking, most of the FTs hold
true with minor modifications whereas inferring heat correctly
indeed requires one more term compared with (16).

2.3.4. Alternative identification of work. The definition of
work (15) has been criticized for supposedly being in conflict
with a more conventional view that work should be given by
force times displacement, see [56] and, for rebuttals, [57–59].
In principle, such a view could be integrated into the present
scheme by splitting the potential into two contributions,

V (x, λ) = V 0(x, λ0) + V ext(x, λ), (24)

the first being an intrinsic time-independent potential, and
the second one a time-dependent external potential used to
transmit the external force. If one defines work as

d̄wext ≡ (−∂xV
ext(x, λ) + f ) dx, (25)

it is trivial to check that the first law then holds in the form

d̄wext = dEext +d̄q (26)

with the corresponding change in internal energy dEext ≡
dV 0 = ∂xV

0 dx and the identification of heat (16) unchanged.
Clearly, within such a framework, it would be appropriate

to identify the internal energy with changes in the intrinsic
potential only. Integrated over a trajectory, this definition
of work differs from the previous one by a boundary term,
	w = 	wext + 	V ext.

It is crucial to appreciate that exchanged heat as a physical
concept is, and should be, independent of the convention
regarding how it is split into work and changes in internal
energy. The latter freedom is inconsequential as long as
one stays within one scheme. A clear disadvantage of this
alternative scheme, however, is that changes in the free energy
of a system are no longer given by the quasi-static work
relating two states. In this review, we will keep the definitions
as introduced in section 2.3.1 and only occasionally quote
results for the alternative expression for work introduced in
this section.

2.4. Stochastic entropy

Having expressed the first law along an individual trajectory, it
seems natural to ask whether entropy can be identified on this
level as well. For a simple colloidal particle, the corresponding
quantity turns out to have two contributions. First, the heat
dissipated into the environment should obviously be identified
with an increase in entropy of the medium

	sm[x(τ)] ≡ q[x(τ)]/T . (27)

Second, one identifies as a stochastic or trajectory dependent
entropy of the system the quantity [20]

s(τ ) ≡ − ln p(x(τ), τ ) (28)

where the probability p(x, τ ) obtained by first solving the
Fokker–Planck equation is evaluated along the stochastic
trajectory x(τ). Thus, the stochastic entropy depends not only
on the individual trajectory but also on the ensemble. If the
same trajectory x(τ) is taken from an ensemble generated by
another initial condition p(x, 0), it will lead to a different value
for s(τ ).

In equilibrium, i.e. for f ≡ 0 and constant λ, the
stochastic entropy s(τ ) just defined obeys the well-known
thermodynamic relation, T S = E − F , between entropy,
internal energy and free energy in the form

T s(τ ) = V (x(τ), λ) − F(λ), (29)

now along the fluctuating trajectory at any time with the free
energy defined in (10) above.

Using the Fokker–Planck equation the rate of change of
the entropy of the system (28) follows as [20]

ṡ(τ ) = −∂τp(x, τ )

p(x, τ )

∣∣∣∣
x(τ)

+

(
j (x, τ )

Dp(x, τ )
− µF(x, λ)

D

)
x(τ)

ẋ.

(30)

Since the very last term can be related to the rate of heat
dissipation in the medium (18), using D = T µ, one obtains
a balance equation for the trajectory-dependent total entropy
production as

ṡ tot(t) ≡ ṡm(t) + ṡ(τ ) = − ∂τp(x, τ )

p(x, τ )

∣∣∣∣
x(τ)

+
j (x, τ )

Dp(x, τ )

∣∣∣∣
x(τ)

ẋ.

(31)
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The first term on the right-hand side (rhs) signifies a change in
p(x, τ ) which can be due to a time-dependent λ(τ) or, even for
a constant λ0, due to relaxation from a non-stationary initial
state p0(x) �= ps(x, λ0).

As a variant on the trajectory level, occasionally φ(x, λ) =
− ln ps(x, λ) has been suggested as a definition of system
entropy. Such a choice is physically questionable as the
following example shows. Consider diffusive relaxation of
a localized initial distribution p0(x) in a finite region 0 � x �
L. Since ps(x) = 1/L, φ(x) will not change during this
process. On the other hand, such a diffusive relaxation should
clearly lead to an entropy increase. Only in cases where one
starts in a NESS and waits for final relaxation, the change in
system entropy can also be expressed by a change in the non-
equilibrium potential according to 	s = 	φ.

2.5. Ensemble averages

Upon averaging, the expressions for the thermodynamic
quantities along the individual trajectory should become
the ensemble quantities of non-equilibrium thermodynamics
derived previously for such Fokker–Planck systems, see,
e.g., [19].

Averages for quantities involving the position x(τ) of
the particle are most easily performed using the probability
p(x, τ ). Somewhat more delicate are averages over quantities
such as heat that involve products of the velocity ẋ and a
function g(x). These can be performed in two steps. First, one
can evaluate the average 〈ẋ|x, τ 〉 conditioned on the position
x in the spirit of the Stratonovich discretization as

〈ẋ|x, τ 〉 ≡ lim
	τ→0

(〈x(τ + 	τ) − x(τ)|x(τ) = x〉
+ 〈x(τ) − x(τ − 	τ)|x(τ) = x〉) /(2	τ). (32)

The averages in the brackets on the rhs can be evaluated by
discretizing the path integral (equations (4) and (5)) for one
step. The first term straightforwardly yields µF(x, τ )	τ . In
the second one, the end-point conditioning is crucial which
leads to an additional contribution if the distribution is not
uniform3. The final result is [20]

〈ẋ|x(τ) = x〉 = µF(x, τ ) − D∂x ln p(x, τ ) ≡ ν(x, τ ). (33)

Any subsequent average over position is now trivial leading to

〈g(x)ẋ〉 = 〈g(x)ν(x, τ )〉 =
∫

dxg(x)j (x, τ ). (34)

With these relations, one obtains, e.g., for the averaged
total entropy production rate from (31) the expression

Ṡ tot(τ ) ≡ 〈ṡ tot(τ )〉 =
∫

dx
j (x, τ )2

Dp(x, τ)
= 〈ν(x, τ )2〉/D � 0,

(35)

3 Specifically, using Bayes’ theorem, with

p[x(τ − 	τ) = x − y | x(τ) = x)] = p[x(τ) = x | x(τ − 	τ) = x − y]

×p(x − y, τ − 	τ)/p(x, τ )

≈ p[x(τ) = x | x(τ − 	τ) = x − y]

×(1 − y∂x ln p(x, τ ) − 	τ∂τ ln p(x, τ )),

the conditioned probability becomes an ordinary forward term. The
conditioned mean value of the increment y = x(τ) − x(τ − 	τ) now follows
easily as 〈y|x(τ) = x〉 = [µF(x, τ ) − 2D∂x ln p(x, τ )]	τ + O(	τ 2).

where equality holds in equilibrium only. In a NESS,
ν(x, τ ) = νs(x) which thus determines the mean dissipation
rate. Averaging the increase in entropy of the medium along
similar lines leads to

Ṡm(τ ) ≡ 〈ṡm(t)〉 =
∫

dxF(x, τ )j (x, τ )/T . (36)

Hence upon averaging, the increase in entropy of the system
proper becomes Ṡ(τ ) ≡ 〈ṡ(τ )〉 = Ṡ tot(τ ) − Ṡm(τ ). On
the ensemble level, this balance equation for the averaged
quantities can also be derived directly from the ensemble
definition of the system entropy

S(τ) ≡ −
∫

dx p(x, τ ) ln p(x, τ ) = 〈s(τ )〉 (37)

using the Fokker–Planck equation (7).

2.6. Generalizations

2.6.1. Underdamped motion. For some systems, it is
necessary to keep the inertial term which leads with mass m

and damping constant γ to the Langevin equation

mẍ + γ ẋ = −∂xV (x, λ) + f (λ) + ξ (38)

with the noise correlations 〈ξ(τ )ξ(τ ′)〉 = 2γ T δ(τ − τ ′).
The internal energy now must include the kinetic energy,

dE = dV + mv dv, with v ≡ ẋ. Since the identification of
work (15) remains valid, the first law becomes

d̄q = d̄w − dE = F dx − mv dv. (39)

Evaluating the stochastic entropy

s(τ ) ≡ − ln p(x(τ), v(τ ), τ ) (40)

now requires a solution of the corresponding Fokker–Planck
equation

∂τp = −∂x(vp) − ∂v[[(−γ v + F)/m] − T (γ /m2)∂v]p (41)

for p = p(x, v, τ ) with an appropriate initial condition
p0(x, v).

2.6.2. Interacting degrees of freedom. The framework
introduced for a single degree of freedom can easily be
generalized to several degrees of freedom x obeying the
coupled Langevin equations

ẋ = µ[−∇V (x, λ) + f(x, λ)] + ζ, (42)

where V (x, λ) is a potential and f(x, λ) a non-conservative
force. The noise correlations

〈ζ(τ ) : ζ(τ ′)〉 = 2T µδ(τ − τ ′), (43)

where : denotes a dyadic product, involve the mobility tensor µ.

Simple examples of such system comprise a colloidal particle
in three dimensions, several interacting colloidal particles, or
a polymer where x labels the positions of monomers. If
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hydrodynamic interactions are relevant, the mobility tensor
will depend on the coordinates x.

The corresponding Fokker–Planck equation becomes

∂τp(x, τ ) = −∇j = −∇(µ(−∇V + f)p − T µ∇p) (44)

with the local (probability) current j.
In particular for a NESS, there are two major formal

differences compared with the one-dimensional case. First, the
stationary current js(x) becomes x dependent and, second, the
stationary distribution ps(x) ≡ exp[−φ(x)] or, equivalently,
the non-equilibrium potential is not known analytically except
for the trivial case that the total forces are linear in x.

The path integral for such a multivariate process has
been pioneered by Onsager and Machlup for linear processes
[60, 61] and by Graham for non-linear processes including a
spatially dependent diffusion constant [62, 63]. On a formal
level, all expressions discussed above for the simple colloidal
particle can easily be generalized to this multidimensional case
by replacing scalar operations by the corresponding vector or
matrix ones.

2.6.3. Systems in external flow. So far, we have assumed that
there is no overall hydrodynamic flow imposed on the system.
For colloids, however, external flow is a common situation.
Likewise, as we will see, colloids in moving traps can also
be described in a co-moving frame as being subject to some
flow. We therefore recall the modifications required for the
basic notions of stochastic thermodynamics in the presence of
an external flow field u(r) [64].

The Langevin equations for k = 1, . . . , N coupled
particles at positions rk reads

ṙk = u(rk) +
∑

l

µ
kl
(−∇lV + fl) + ζk (45)

with the usual noise correlations

〈ζk(τ ) : ζ l(τ
′)〉 = 2T µ

kl
δ(τ − τ ′). (46)

In such a system, the increments in external work and
dissipated heat are given by

d̄w ≡ ([∂τ + u(rk)∇k]V + fk[ṙk − u(rk)]) dt (47)

and

d̄q =d̄w − dV = ([ṙk − u(rk)][−∇kV + fk]) dt, (48)

respectively. Compared with the case without flow, the two
modifications involve replacing the partial derivative by the
convective one and measuring the velocity relative to the
external flow velocity. These expressions guarantee frame
invariance of stochastic thermodynamics [64].

For the experimentally studied case of one-dimensional
colloid motion in a flow of constant velocity u discussed in
section 5.2.2, the Langevin equation simplifies to

ẋ = u + µ(−∂xV + f ) + ζ (49)

and the ingredients of the first law become

d̄w = (∂τV + u∂xV ) dt + f (ẋ − u) dt (50)

and
d̄q = (ẋ − u)[−∂xV + f ] dt. (51)

2.6.4. Inhomogeneous temperature. So far, it has been
assumed that the temperature of the surrounding heat bath is
uniform. The present formalism can be extended to a system
embedded in an externally imposed stationary temperature
gradient. In this case, the quantity T in (43) must be evaluated
at the instantaneous position of the corresponding particle.4

The same ramification has to be applied to all relations linking
exchanged heat with entropy changes of the medium. For
studying heat transport, similar models for particles on a lattice
coupled at the boundaries to heat baths of different temperature
using Langevin equations have been investigated as reviewed
in [65].

Thermophoresis of particles and thermodiffusion of
molecules (Soret effect) as reviewed in [66, 67] are further
effects of an inhomogeneous temperature. These phenomena
require a direct microscopic interaction between the molecule
or colloidal particle and the solvent which give rise to an
effective force that needs to be included in the Langevin or
Fokker–Planck description since in the absence of external
forces and interactions, a temperature gradient is not sufficient
to generate biased diffusion, i.e. a non-uniform distribution.

Finally, an even more subtle case is the phenomenon of
‘hot Brownian motion’ where a diffusing particle heated by
a laser acts as a local heat source [68–71]. The resulting
temperature field is now coupled to the motion of the particle.
It will be interesting to see whether and how the concepts of
stochastic thermodynamics and the FTs to be discussed next
can be adapted to this type of system.

3. Fluctuation theorems

Fluctuation theorems express universal properties of the
probability distribution p(�) for functionals �[x(τ)],
like work, heat or entropy change, evaluated along the
fluctuating trajectories taken from ensembles with well-
specified initial distributions p0(x0). In this section, we give
a phenomenological classification into three classes according
to their mathematical appearance and point out some general
mathematical consequences. The most prominent ones will
then be discussed in physical terms with references to their
original derivation. For proofs of these relations within
stochastic dynamics from the present perspective, we provide
in section 4 the unifying one for all FTs that also shows that
there is essentially an infinity of such relations.

3.1. Phenomenological classification

3.1.1. Integral fluctuation theorems. A non-dimensionalized
functional �[x(τ)] with probability distribution function p(�)

obeys an integral fluctuation theorem (IFT) if

〈exp(−�)〉 ≡
∫

d� p(�) exp(−�) = 1. (52)

The convexity of the exponential functions then implies the
inequality

〈�〉 � 0 (53)
4 Obviously, a complication occurs if hydrodynamically induced non-local
interactions between the particles are included since then it is not clear at
which of the two positions the temperature should be evaluated.
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which often represents a well-known thermodynamic
inequality related to the second law. With the exception of
the degenerate case, p(�) = δ(�), the IFT implies that
there are trajectories for which � is negative. Such events
have sometimes then been characterized as ‘violating’ the
second law. Such a formulation is controversial since classical
thermodynamics, which ignores fluctuations from the very
beginning, is silent on issues beyond its range of applicability.
The probability of such events quickly diminishes for negative
�. Using (52), it is easy to derive for ω > 0 [72]

prob[� < −ω] �
∫ −ω

−∞
d� p(�) e−ω−� � e−ω. (54)

This estimate shows that relevant ‘violations’ occur for � of
order 1. Restoring the dimensions in a system with N relevant
degrees of freedom, � will typically be of order NkBT which
implies that in a large system such events are exponentially
small, i.e. occur exponentially rarely. This observation
essentially reconciles the effective validity of thermodynamics
at the macro-scale with the still correct mathematical statement
that even for large systems, in principle, such events must
occur.

An IFT represents one constraint on the probability
distribution p(�). If it is somehow known that p(�) is a
Gaussian, the IFT implies the relation

〈(� − 〈�〉)2〉 = 2〈�〉 (55)

between variance and mean of �.

3.1.2. Detailed fluctuation theorems. A detailed fluctuation
theorem (DFT) corresponds to the stronger relation

p(−�)/p(�) = exp(−�) (56)

for the pdf p(�). Such a symmetry constrains ‘one half’ of
the pdf which means, e.g., that the even moments of � can be
expressed by the odd ones and vice versa. A DFT implies the
corresponding IFT trivially. Further statistical properties of
p(�) following from the validity of the DFT (and some from
the IFT) are derived in [73].

Depending on the physical situation, a variable obeying
the DFT has often been called to obey either a TFT or a steady-
state FT (SSFT). These notions will be explained below for the
specific cases.

3.1.3. (Generalized) Crooks fluctuation theorems. These
relations compare the pdf p(�) of the original process one is
interested in with the pdf p†(�) of the same physical quantity
for a ‘conjugate’ (mostly the time-reversed) process. The
general statement then is that

p†(−�) = p(�)e−� (57)

which implies the IFT (but not the DFT) for � since p† is
normalized.

3.2. Non-equilibrium work theorems

These relations deal with the probability distribution p(w) for
work spent in driving the system from a (mostly equilibrium)
initial state to another (not necessarily equilibrium) state. They
require only a notion of work defined along the trajectory but
not yet the concept of stochastic entropy.

3.2.1. Jarzynski relation. In 1997, Jarzynski showed that the
work spent in driving the system from an initial equilibrium
state at λ0 via a time-dependent potential V (x, λ(τ)) for a time
t obeys [6]

〈exp(−w/T )〉 = exp(−	F/T ), (58)

where 	F ≡ F(λt ) − F(λ0) is the free energy difference
between the equilibrium state corresponding to the final value
λt of the control parameter and the initial state. In the
classification scheme proposed here, it can technically be seen
as the IFT for the (scaled) dissipated work

wd ≡ (w − 	F)/T . (59)

The paramount relevance of this relation—and its
originally so surprising feature—is that it allows one to
determine the free energy difference, which is a genuine
equilibrium property, from non-equilibrium measurements (or
simulations). It represents a strengthening of the familiar
second law 〈w〉 � 	F which follows as the corresponding
inequality. It was originally derived using a Hamiltonian
dynamics but was soon shown to hold for stochastic dynamics
as well [7–9]. Its validity requires that one starts in the
equilibrium distribution but not that the system has relaxed at
time t into the new equilibrium. In fact, the actual distribution
at the end will be p(x, t) but any further relaxation at constant
λ would not contribute to the work anyway.

Within stochastic dynamics, the validity of the JR (as of
any other FT with a thermodynamic interpretation) essentially
rests on assuming that the noise in the Langevin equation (1)
is not affected by the driving. A related issue arises in the
Hamiltonian derivation of the JR which requires some care in
identifying the proper role of the heat bath during the process,
and, for the strongly coupled case, an appropriately defined
free energy [74, 75].

The JR has been studied for many systems analytically,
numerically and experimentally. Specific case studies for
stochastic dynamics will be classified and quoted in section 5.
As an important application, based on a generalization
introduced by Hummer and Szabo [10], the JR can be used
to reconstruct the free energy landscape of a biomolecule as
discussed in section 9.3.

3.2.2. Bochkov–Kuzovlev relation. The JR should be
distinguished from an earlier relation derived by Bochkov
and Kuzovlev [11, 12]. For a system initially in equilibrium
in a time-independent potential V0(x), which is for 0 �
τ � t subject to an additional space and time-dependent
force (possibly arising from an additional potential), the work
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(25) integrated over a trajectory obeys the Bochkov–Kuzovlev
relation (BKR)

〈exp[−wext/T ]〉 = 1. (60)

In contrast to some claims, the BKR is different from the
JR since they apply a priori to somewhat different situations
[21, 76, 77]. The JR as discussed above applies to processes
in a time-dependent potential, whereas the BKR applies to a
process in a constant potential with some additional force. If,
however, in the latter case, this explicit force arises from a
potential as well, both the BKR and the JR (58) hold for the
respective forms of work.

3.2.3. Crooks fluctuation theorem. In the Crooks relation, the
pdf for work p(w) spent in the original (the ‘forward’) process
is related to the pdf for work p̃(w) applied in the reversed
process where the control parameter is driven according to
λ̃(τ ) = λ(t − τ) and one starts in the equilibrium distribution
corresponding to λ̃0 = λt . These two pdfs obey [8, 9]

p̃(−w)/p(w) = exp[−(w − 	F)/T ]. (61)

Hence, 	F can be obtained by locating the crossing of the
two pdfs which for biomolecular applications turned out to be
a more reliable method than using the JR. Clearly, the Crooks
relation implies the JR since p̃(w) is normalized. Technically,
the Crooks relation is of the type (57) for � = wd with the
conjugate process being the reversed one.

3.2.4. Further general results on p(w). Beyond the JR
and the CFT, further exact results on p(w) are scarce. For
systems with linear equations of motion, the pdf for work
(but not for heat) is a Gaussian for arbitrary time-dependent
driving [78, 79]. For slow driving, i.e. for trel/t 	 1 where
trel is the typical relaxation time of the system at fixed λ and t

the duration of the process, an expansion based on this time-
scale separation yields a Gaussian for any potential [80]. Such
a result has previously been expected [81, 82] or justified by
invoking arguments based on the central limit theorem [83].
Two observations show, however, that such an expansion is
somewhat delicate. First, even in simple examples there occur
terms that are non-analytic in trel/t [80]. Second, for the
special case of a ‘breathing parabola’, V (x, λ) = λ(τ)x2/2,
any protocol with λ̇ > 0 leads to p(w) ≡ 0 for w < 0 which
is obviously violated by a Gaussian. How the latter effectively
emerges in the limit of slow driving is investigated in [84].

From another perspective, Engel [85, 86] investigated the
asymptotic behavior of p(w) for small T using a saddle point
analysis. The value of this approach is that it can provide
exact results for the tail of the distribution. Specific examples
show an exponential decay. Saha et al [87] suggest that the
work distribution for quite different systems can be mapped to
a class of universal distributions.

3.3. FTs for entropy production

3.3.1. Integral fluctuation theorem. The total entropy
production along a trajectory as given by

	s tot ≡ 	sm + 	s, (62)

with
	s ≡ − ln p(xt , λt ) + ln p(x0, λ0) (63)

and 	sm defined in (27), obeys the IFT [20]

〈exp(−	s tot)〉 = 1 (64)

for arbitrary initial distribution p(x, 0), arbitrary time-
dependent driving λ(τ) and an arbitrary length t of the process.

Formally, this IFT can be considered as a refinement of
the second law, 〈	s tot〉 � 0, which is the corresponding
inequality. Physically, however, it must be stressed that by
using the Langevin equation a fundamental irreversibility has
been implemented from the very beginning. Thus, this IFT
should definitely not be considered to constitute a fundamental
proof of the second law.

3.3.2. Steady-state fluctuation theorem. In a NESS with fixed
λ, the total entropy production obeys the stronger SSFT

p(−	s tot)/p(	s tot) = exp(−	s tot) (65)

again for arbitrary length t . This relation corresponds to the
genuine ‘fluctuation theorem’. It was first found in simulations
of two-dimensional sheared fluids [1] and then proven by
Gallavotti and Cohen [2] using assumptions about chaotic
dynamics. For stochastic diffusive dynamics as considered
specifically in this review, it has been proven by Kurchan [3]
and Lebowitz and Spohn [4]. Strictly speaking, in these early
works the relation holds only asymptotically in the long-time
limit since entropy production had been associated with what is
here called entropy production in the medium. If one includes
the entropy change of the system (63), the SSFT holds even
for finite times in the steady state [20].

3.3.3. Transient fluctuation theorem. The TFT pioneered by
Evans and Searles applies to relaxation toward a steady state
[5, 37, 88]. The ‘dissipation function’ �t , which as defined
more precisely in section 4.4.5 is related to, but, in general,
different from total entropy production 	s tot, obeys

p(−�t)/p(�t) = exp(−�t) (66)

for any length of trajectories t .

3.3.4. Hatano–Sasa relation. The Hatano–Sasa relation ap-
plies to systems with steady states ps(x, λ) = exp[−φ(x, λ)].
With the splitting of the dissipated heat into a housekeeping
and excess one (21), the IFT [13]

〈exp[−(	φ + qex/T )]〉 = 1 (67)

holds for any length of trajectory with 	φ ≡ φ(xt , λt ) −
φ(x0, λ0). The corresponding inequality

〈	φ〉 � −〈qex〉/T (68)

allows an interesting thermodynamic interpretation. The
left-hand side (lhs) can be seen as the ensemble entropy
change of the system in a transition from one steady state
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to another. Within the framework discussed in this review,
this interpretation is literally true provided one waits for final
relaxation at constant λt since then 	s = 	φ. A recent
generalization of the HS relation leads to a variational scheme
for approximating the stationary state [89].

With the interpretation of the lhs as entropy change
in the system, the inequality (68) provides for transitions
between NESSs what the famous Clausius inequality does for
transitions between equilibrium states. The entropy change in
the system is at least as big as the excess heat flowing into the
system. For transitions between NESSs, the inequality (68)
is sharper than the Clausius one (which still applies in this
case and becomes just 〈	s〉 � −q/T ) since q scales with
the transition time whereas qex can remain bounded and can
actually approach equality in (68) for quasi-static transitions.

Experimentally, the Hatano–Sasa relation has been
verified for a colloidal particle pulled through a viscous liquid
at different velocities which corresponds to different steady
states [90].

3.3.5. IFT for housekeeping heat. Finally, it should be noted
that the second contribution to heat, the housekeeping heat,
also obeys an IFT [91]

〈exp[−qhk/T ]〉 = 1 (69)

for arbitrary initial state, driving and length of trajectories.

4. Unification of FTs

Originally, the FTs have been found and derived on a case by
case approach. However, it has soon become clear that within
stochastic dynamics a unifying strategy is to investigate the
behavior of the system under time reversal. Subsequently, it
turned out that comparing the dynamics with its ‘dual’ one
[13, 92, 93], eventually also in connection with time reversal,
allows a further unification. In this section, we outline this
general approach and show how the prominent FTs discussed
above (and a few further ones mentioned below) fit into, or
derive from, this framework. Even though this section is
inevitably somewhat technical and dense, it is self-contained.
It could be skipped by readers not interested in the proofs or
systematics of the FTs. For related mathematically rigorous
approaches to derive FTs for diffusive dynamics, see [94–97].

4.1. Conjugate dynamics

FTs for the original process with trajectories x(τ), 0 �
τ � t , an initial distribution p0(x0) and a conditional weight
p[x(τ)|x0] are most generally derived by formally invoking
a ‘conjugate’ dynamics for trajectories x†(τ ). These are
supposed to obey a Langevin equation

ẋ† = µ†F †(x†, λ†) + ζ † (70)

with 〈ζ †(τ )ζ †(τ ′)〉 = 2µ†T †δ(τ − τ ′). The trajectories with
weight p†[x†(τ )|x†

0 ] run over a time t and start with an initial
distribution p†(x

†
0). Averages of the conjugate dynamics will

be denoted by 〈. . .〉†.

This conjugate dynamics is related to the original process
by a one-to-one mapping

{x(τ), λ(τ ), F, µ, T } → {x†(τ ), λ†(τ ), F †, µ†, T †} (71)

which allows one to express all quantities occurring in the
conjugate dynamics in terms of the original ones.

The crucial quantity leading to the FTs is a master
functional given by the log-ratio of the unconditioned path
weights

R[x(τ)] ≡ ln
p[x(τ)]

p†[x†(τ )]

= ln
p0(x0)

p
†
0(x

†
0)

+ ln
p[x(τ)|x0]

p†[x†(τ )|x†
0 ]

≡ R0 + R1 (72)

that consists of a ‘boundary’ term R0 coming from the two
initial distributions and a ‘bulk’ term R1.

Three choices for the conjugate dynamics and the
associated mapping have been considered so far. In all
cases, neither the temperature nor the functional form of the
mobilities have been changed for the conjugate dynamics, i.e.
T † = T and µ† = µ.

(i) Reversed dynamics: this choice corresponds to ‘time
reversal’. The mapping reads

x†(τ ) ≡ x(t −τ) and λ†(τ ) ≡ λ(t −τ) (73)

with no changes at the functional dependence of the force
from its arguments, i.e. F †(x†, λ†) = F(x†, λ†).
The weight of the conjugate trajectories is easily
calculated using the mapping (73) in the weight
(equations (4), (5)) leading to

R1 = A([x†(τ ), λ†(τ )]) − A([x(τ), λ(τ )])]

= 	sm = q/T , (74)

which is the part of the action A([x(τ), λ(τ )]) that is odd
under time reversal.
This relation allows a deep physical interpretation. For
given initial point x0 and final point xt , the log-ratio
between the probability to observe a certain forward
trajectory and the probability to observe the time-reversed
trajectory is given by the heat dissipated along the forward
trajectory.

(ii) Dual dynamics: this choice alters the equations of motion
for the x†(τ ) trajectories such that (i) the stationary
distribution remains the same for both processes and that
(ii) the stationary current for the dual dynamics is minus
the original one. Specifically, this mapping reads [92]

F †(x†, λ†) = F(x†, λ†) − 2νs(x†, λ†)/µ (75)

which enters the conjugate Langevin equation (70) and
no modification for x and λ, i.e. x†(τ ) ≡ x(τ) and
λ†(τ ) ≡ λ(τ).
Calculating the action for the dual dynamics (70), the
functional R1 becomes

R1 = qhk/T ≡ 	shk. (76)
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(iii) Dual-reversed dynamics: for this choice, the dual
dynamics is driven with the time-reversed protocol, i.e.
the mapping of the force (75) is combined with the time
reversal (73). In this case, the functional R1 becomes [92]

R1 = qex/T ≡ 	sex. (77)

In summary, depending on the form of the conjugate
dynamics, different parts of the dissipated heat form the
functional R1. For later reference, we have introduced in the
last two equations for the scaled contributions to the dissipated
heat the corresponding entropies.

4.2. The master FT

4.2.1. Functionals with definite parity. The FTs apply to
functionals Sα[x(τ)] of the original dynamics that map with a
definite parity εα = ±1 to the conjugate dynamics according to

S†
α

(
[x†(τ )], λ†, F †

) = εαSα ([x(τ)], λ, F ) (78)

such that S†
α[x†(τ )] represents the same physical quantity for

the conjugate dynamics as Sα[x(τ)] does for the original one.
Examples for such functionals are work and heat that both

are odd (εα = −1) for the reversed dynamics. For dual
or dual-reversed dynamics, however, these two functionals
have no definite parity since both cases involve a different
dynamics. Explicitly, the heat behaves under time reversal as
q† ≡ ∫ t

0 dτ ẋ†F † = − ∫ t

0 dτ ẋF = −q. For dual dynamics, the
heat transforms as q† ≡ ∫ t

0 dτ ẋ†F † = ∫ t

0 dτ ẋ(F − 2νs/µ) =
q −2qhk which has, in general, no definite parity. On the other
hand, the housekeeping heat is odd for the dual dynamics and
even for both the reversed and the dual-reversed dynamics.

The stochastic entropy 	s, in general, has no definite
parity under time reversal since s(τ ) is defined through the
solution p(x, τ ) of the Fokker–Planck equation which is not
odd under time reversal. In particular, p(x, t − τ) does
not solve the Fokker–Planck equation for the time-reversed
process even if one starts the reversed process with the final
distribution p(x, t) of the original process. The change in
the non-equilibrium potential 	φ, however, is odd under time
reversal. This difference between 	s and 	φ implies that 	φ

occurs more frequently in FTs.

4.2.2. Proof. With these preparations, one can easily derive
the master FT

〈g({εα S†
α[x†(τ )]})〉†

=
∫

dx
†
0

∫
d[x†(τ )]p†

0(x
†
0)p[x†(τ )|x†

0 ]g({εαS†
α})

=
∫

dx
†
0

∫
d[x†(τ )]p0(x0)p[x(τ)|x0] exp[−R]g({Sα})

=
∫

dx0

∫
d[x(τ)]p0(x0)p[x(τ)|x0] exp[−R]g({Sα})

= 〈g({Sα[x(τ)]}) exp(−R[x(τ)])〉 (79)

for any function g depending on an arbitrary number of such
functionals Sα . For the second equality, we use the definitions
(72) and the parity relation (78); for the third we recognize

that summing over all daggered trajectories is equivalent to
summing over all original ones both for x†(τ ) = x(τ) and
x†(τ ) = x(t − τ). With the choice g ≡ 1, this FT leads to the
most general IFT 〈e−R〉 = 1 from which all known IFT-like
relations follow, as shown in section 4.3.

By choosing for g the characteristic function, one obtains
a generalized FT for joint probabilities in the form

p†({S†
α = εαsα})

p({Sα = sα}) = 〈 exp(−R)|{Sα} = {sα}〉 (80)

that relates the pdf for the conjugate process to the pdf of the
original one and a conditional average. Basically all known
DFTs for stochastic dynamics follow as special cases of this
general theorem as shown in section 4.4. The key point is to (i)
select the appropriate conjugate process for which the quantity
of interest � has a unique parity, which is most often just the
reversed dynamics, (ii) identify for the generally free initial
distribution p

†
0(x) an appropriate function and (iii) express

the functional R using physical quantities, preferentially the
quantity of interest �.

4.3. General IFTs

The simplest choice for the function g in (79) is the identity,
g = 1, leading to the IFT 〈e−R〉 = 1. Explicitly, one obtains
for the three types of conjugate dynamics.

(i) By choosing the reversed dynamics (73) and with (74),
the class of IFTs〈

p1(xt )

p0(x0)
exp[−	sm]

〉
= 1 (81)

follows for any initial condition p0(x0), any length of
trajectories t , and any normalized function p1(xt ) =
p

†
0(xt ) [20]. By specializing the latter to the solution of

the Fokker–Planck equation for τ = t one obtains the IFT
for total entropy production (64).
For a system in a time-dependent potential V (x, λ)

and by starting in an initial distribution given
by the corresponding Boltzmann factor, p0(x) =
exp[−(V (x, λ0) − F(λ0))/T ], one obtains the JR (58)
for the choice p1(xt ) = exp[−(V (x, λt ) − F(λt ))/T ]
corresponding to the Boltzmann distribution for the final
value of the control parameter.
A variety of ‘end-point’ relations can be generated
from (81) as follows. By choosing p1(x) =
p(x, t)g(x)/〈g(xt )〉, one obtains

〈g(xt ) exp[−	s tot]〉 = 〈g(xt )〉 (82)

for any function g(x) [98]. Likewise, for f ≡ 0 and
V (x, λ(τ)), by choosing p1(x) = g(x) exp[−(V (x, λt )−
F(λt ))/T ]/〈g(x)〉eq

λt
, one obtains

〈g(xt ) exp[−(w − 	F)/T ]〉 = 〈g(x)〉eq
λt

(83)

which has been first derived by Crooks [9]. Here, the
average on the rhs is the equilibrium average at the final
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value of the control parameter. In the same fashion, one
can derive

〈g(xt ) exp[−wext/T ]〉 = 〈g(x)〉eq
λ0

(84)

by choosing p1(x) = g(x) exp[−(V (x, λ0) − F(λ0)))/

T ]/〈g(x)〉eq
λ0

for a time-independent potential and
arbitrary force f (x, τ ) which is the end-point relation
corresponding to the BKR (60). The latter follows trivially
by choosing g(x) = 1.
For processes with feedback control as discussed in
section 7.3, it will be convenient to exploit the end-point
conditioned average〈

1

p0(x0)
exp[−	sm]

∣∣xt = x

〉
p(x, t) = 1 (85)

valid for any x which follows from (81) by choosing
p1(xt ) = δ(xt − x). Equivalently, by choosing p1(xt ) =
p(x, t), ∫

dx0〈exp[−	sm]p(xt , t)|x0〉 = 1 (86)

holds for summing over the initial point conditioned
average.

(ii) Using the dual dynamics with p
†
0(x0) = p0(x0), the IFT

for the housekeeping heat [91]

〈exp[−qhk/T ]〉 = 1 (87)

valid for any initial distribution follows.
(iii) For the dual-reversed dynamics, one obtains the class of

IFTs from 〈
p1(xt )

p0(x0)
exp[−qex/T ]

〉
= 1 (88)

valid for any initial distribution p0(x0) and any normalized
function p1(xt ). By choosing p0(x0) = exp[−φ(x0, λ0)]
and p1(xt ) = exp[−φ(xt , λt )], one obtains the Hatano–
Sasa relation (67). Similarly, another class of end-point
relations could be generated starting from (88).

Finally, since the IFTs, 〈exp[−�]〉 = 1, do not explicitly
involve the conjugate process, one might wonder whether they
can be derived in an alternative way. Indeed, some of them
can be obtained by deriving an appropriate Fokker–Planck-
type equation for the joint pdf p(�, x, τ ) and then showing
∂τ 〈e−�〉 = ∂τ

∫
d�

∫
dx e−�p(�, x, τ ) = 0 directly, see for

the JR [7], for the housekeeping heat [91], and for another large
class of IFTs [92]. Both the JR and (82) can also be derived
by a Feynman–Kac approach [10].

4.4. FTs derived from time reversal

In this section, the FTs following from using time reversal
as conjugate dynamics are derived systematically from (80)
by specializing to the various scenarios concerning initial
conditions and type of driving. More or less reversing the
chronological development, we start with the more general
cases and end with the more specific ones, for which the
strongest constraints on these pdfs follow.

4.4.1. CFTs involving reversed dynamics. By starting
original and reversed dynamics in the respective stationary
state, the functional R becomes

R = 	φ + 	sm. (89)

Hence, one obtains from (80) the FT

p†({S†
α = εαsα})

p({Sα = sα}) = 〈 e−(	φ+	sm)|{Sα} = {sα}〉. (90)

For the special case that
∑

α Sα = 	φ + 	sm, this relation
has first been derived by Garcia-Garcia et al [99]. Note that in
general the change in stochastic entropy	s is not an admissible
choice for Sα since it lacks definite parity under time reversal.

By choosing for Sα the work w, one obtains

p†(−w) = p(w)〈e−(	φ+	sm)|w〉. (91)

From this relation, the Crooks FT (57) follows for a time-
dependent V (x, λ(τ)) and f = 0, if one samples both
processes from the respective initial equilibria, since then
	φ = 	(V − F)/T and hence R = (w − 	F)/T .

Likewise, by choosing Sα = wχA(x0)χb(xt ), where
χA,B ≡ 1(0) if x ∈ (/∈)A, B are the characteristic functions
of two regions A and B, one obtains the variants derived and
discussed in [100, 101] which allow one to extend the CFT to
‘partially equilibrated’ initial and final states. These variants
have become useful in recovering free energy branches in
single molecule experiments.

As another variant, by choosing for Sα the work wext and
by starting the reverse process in the initial equilibrium, one
obtains with 	φ = 	V 0 and R = (	V 0 + q)/T = wext the
Crooks relation for wext [77]

p†(−wext)/p(wext) = exp[−wext/T ]. (92)

4.4.2. DFTs for symmetric and periodic driving. For
symmetric driving, λ(τ) = λ(t −τ), and for p

†
0(x

†
0) = p0(x0),

the reversed dynamics becomes the original one. Hence, the
FTs (90,91) derived in the previous subsection remain valid in
this case if one replaces p† on the lhs with p. In this case,
as in those in the following subsections, the FTs no longer
involve the conjugate dynamics explicitly which thus has
become a mere mathematical tool to derive these relations most
efficiently. In particular, for starting in the initial equilibrium,
R = w/T and one obtains for the pdf of work [102, 103]

p(−w)/p(w) = exp[−w/T ]. (93)

Likewise, for a periodically driven system with an integer
number of symmetric periods of length tp, i.e. λ(tp − τ) =
λ(τ), the reversed dynamics is the original one. If the
distribution has settled into a periodic stationary state, one has
the DFT-like relation for total entropy production [104, 105].
Note that it is crucial to choose not only a periodic but also a
symmetric protocol since otherwise the reversed dynamics is
not the original one.
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4.4.3. SSFTs for NESSs. For a NESS, i.e. for time-
independent driving and starting in the stationary state, the
reversed dynamics becomes the original one and thus R =
	s tot. Then (80) implies the generalized SSFT for joint
probabilities in the form

p({Sα = εαsα})
p({Sα = sα}) = 〈e−	stot |{Sα} = {sα}〉. (94)

For this case, system entropy is indeed odd, and hence one also
has, in particular, by choosing Sα = 	s tot the genuine SSFT
(65) for total entropy production and arbitrary length t . As
variants, illustrating the potency of the general theorem, one
easily gets from (94)

p(−	s) = p(	s)e−	s〈e−	sm |	s〉 (95)

and
p(−	sm) = p(	sm)e−	sm 〈e−	s |	sm〉 (96)

involving conditional averages. Such relations seem not to
have been explored in specific systems yet.

4.4.4. Expression for the NESS distribution. Using an initial
and end-point conditioned variant of (80), Komatsu et al
manage to express the stationary distribution ps(x) in a NESS
by non-linear averages over the difference in ‘excess’ heat
required either to reach x from the steady state or to reach the
NESS starting in x [106–108] which leads to Clausius-type
relations for NESSs [109]. For a related expression for ps(x)

in terms of an expansion around a corresponding equilibrium
state, see [110] which contains a valuable introduction into the
history of such approaches. Following similar lines an exact
non-equilibrium extension of the Clausius heat theorem has
been derived in [111].

4.4.5. TFT. This relation applies to time-independent driving
and arbitrary initial condition p0(x0). If the reversed dynamics
is sampled using the same initial condition, p

†
0(x

†
0) = p0(x0),

then the functional R becomes

R = − ln[p0(xt )/p0(x0)] + q/T ≡ �t (97)

which has been called dissipation functional by Evans and
Searles [37]. Under these conditions, it is related via

�t = 	s tot − ln[p0(xt )/p(xt , t)] (98)

to total entropy production. Physically, �t corresponds to
the log-ratio between the probability to observe the original
trajectory and the one for observing the time-reversed one.
Since under these conditions �t is odd and the reversed
dynamics is equivalent to the original one, one has from (80)
the TFT (66) valid for any length t and initial condition.
Specifically, if the system is originally equilibrated in a
potential V0(x) and then suddenly subject to a force f (x) the
dissipation functional becomes �t = w/T which implies that
in this case the TFT holds for work.

4.5. FTs for variants

4.5.1. FTs for underdamped motion. For underdamped
motion as introduced in section 2.6.1, the functional R1 defined
in (72) under time reversal is still given by the dissipated
heat, i.e., by (39) integrated over the trajectory [112]. This
fact follows by directly evaluating the action for the path
integral corresponding to the underdamped Langevin equation
(38). Hence, FTs based on time reversal hold true also for
underdamped dynamics with the obvious modification that
initial (and daggered) distributions now depend on x and v.

4.5.2. FTs in the presence of external flow. In the presence
of flow, one has to specify how the flow changes in the
conjugate dynamics. For genuine time reversal, the physically
appropriate choice is u(r)† = −u(r) which leads with the
definitions of work and heat (equations (47), (48)) to an odd
parity for these two functionals. Consequently, the FTs then
hold as in the case without flow. Formally, however, one could
also keep the flow unchanged for the conjugate dynamics,
u(r)† = u(r), which would lead to another class of FTs. For
a specific example illustrating this freedom, see the discussion
in [64] for a dumbbell in shear flow first investigated in [113].

4.5.3. FT with magnetic field. In the presence of a (possibly
time-dependent) magnetic field, the FTs hold true essentially
unchanged as proven in great generality for the JR and the CFT
for interacting particles on a curved surface [114]. This work
generalized earlier case studies on the validity of the JR for
specific situations involving a magnetic field as mentioned in
section 5.2. A second motivation for this work was to refute
earlier claims based on simulations that the Bohr–van-Leeuven
theorem stating the absence of classical diamagnetism could
fail for a closed topology [115].

4.5.4. Further ‘detailed theorems’. Esposito and van den
Broeck have derived what they call DFTs for 	s tot, 	shk,
(called ‘adiabatic’ entropy change 	sad) and for the ‘non-
adiabatic’ entropy change 	sna ≡ 	sex +	s under even more
general conditions [116–118]. Their relations are beyond the
realm of the present systematics since they compare the pdf for
different physical quantities for the original and the conjugate
process whereas we always compare the pdfs of the same
physical quantities5. A unification of FTs within this broader
sense involving joint distributions of these decompositions of
entropy production is achieved in [93] and a generalization of
the Hatano–Sasa relation in [119]. The crucial role of odd
variables in such a scheme is emphasized in [120, 121].

4.6. FTs for athermal systems

4.6.1. General Langevin systems. The derivation of the
master FT in section 4.2 shows that for obtaining these
mathematical relations the main requirement is the existence
of a conjugate dynamics such as time reversal. Therefore,
imposing a relation between the strength of the noise and the

5 The IFT 〈exp[−	sna]〉 = 1, however, follows directly from (88) by
choosing p1(xt ) = p(x, t).
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mobility as carried out in section 2.1 for colloidal particles
is not really necessary. Neither is it necessary to interpret
the Langevin equation using concepts of work and heat. We
therefore sketch in this section the general FT for a system of
Langevin equations

ẋ = K(x, λ) + ζ (99)

with arbitrary ‘force’ K and noise correlations

〈ζ(τ ) : ζ(τ ′)〉 = 2Dδ(τ − τ ′). (100)

The corresponding Fokker–Planck equation becomes

∂τp(x, τ ) = −∇j = −∇(Kp − D∇p) (101)

and the local (probability) current j(x, λ). For constant λ, one
has the local mean velocity

νs(x, λ) ≡ js(x, λ)/ps(x, λ) = K(x, λ) − D∇ ln ps.

(102)
For time reversal as conjugate dynamics, by evaluating

the corresponding weight one obtains for the master
functional (74)

R1 =
∫ t

0
dτ ẋD−1K ≡ 	sm (103)

where the identification with 	sm is now purely formal. If one
adds the stochastic entropy change along a trajectory

	s ≡ − ln[p(xt , λt )/p(x0, λ0)] (104)

one obtains the total entropy production 	s tot. Likewise, in
analogy to the colloidal case, 	sm can be split into

	shk ≡
∫ t

0
dτ ẋD−1νs (105)

and

	sex ≡ 	sm−	shk =
∫ t

0
dτ ẋ∇ ln ps = −	φ+

∫ t

0
dτ λ̇∂λφ.

(106)
With these identifications all FTs involving the various forms
of entropy production derived and discussed in sections 3.3
and 4 hold true for such Langevin systems as well.

The identification of a generalized work makes immediate
sense only if K = −(D/T )∇V (x, λ) with some potential
V (x, λ) and effective temperature T in which case one is
back to the thermal model with interacting degrees of freedom
introduced in section 2.6.2. If K cannot be derived in this
way from a gradient field there seems to be no gain by trying
to impose a genuine thermodynamic interpretation without
further physical input.

4.6.2. Stochastic fields. The generalization of the results
in the previous section for coupled Langevin equations to
stochastic field equations is trivially possible [21]. Consider a
scalar field �(r, τ ) that obeys

∂τ�(r, τ ) = K[�(r, τ ), λ(τ )] + ζ(r, τ ) (107)

with some functional K[�(r, τ ), λ(τ )] and

〈ζ(r, τ )ζ(r′, τ ′)〉 = 2D(r − r′)δ(τ − τ ′) (108)

with arbitrary spatial correlation D(r − r′). The expressions
for the entropy terms can easily be inferred; e.g. the analogy
of the entropy change in the medium becomes

	sm ≡
∫ t

0
dτ

∫
dr

∫
dr′∂τ�(r, τ )D−1(r − r′)

× K[�(r′, τ ), λ(τ )]. (109)

By now, it should be obvious how to derive the corresponding
FTs and how to generalize all these also to the case when
�(r, τ ) is a multi-component field. Likewise, it would be a
trivial task to specialize all this to driven or relaxing ‘thermal’
field theories for which K includes the derivative of some
Landau–Ginzburg type free energy and where the noise obeys
an FDT [122].

An interesting application concerns enstrophy dissipation
in two-dimensional turbulence [123]. Field-theoretic
techniques are used in [124] to derive generalized JRs and
to explore the role of supersymmetry in this context. Quite
generally, it will be interesting to investigate stochastic
versions of the field equations of active matter [125] from this
perspective.

4.6.3. FTs in evolutionary dynamics. The framework of
FTs has recently been applied to the stochastic evolution of
molecular biological systems where it leads to an IFT for fitness
flux [126].

5. Experimental, analytical and numerical work for
specific systems with continuous degrees of freedom

5.1. Principal aspects

The various relations derived and discussed above have the
status of mathematically exact statements. As such they
require neither a ‘test’ nor a ‘verification’. The justification for,
and the value of, the large body of experimental and numerical
work that has appeared in this field over the last decade rather
arises from the following considerations.

First, experimental and numerical measurements of the
distributions p(�) entering the theorems provide non-trivial
information about the specific system under consideration.
Integral and detailed theorems give only one constraint on,
and constrain only one half of, the distribution, respectively.
Beyond the constraints imposed by the exact relations, the
distributions are non-universal in particular for short times.

Second, the theorems involve non-linear averages. The
necessarily limited number of data entering experimental or
numerical estimates can cause deviations from the predicted
exact behavior. It is important to get experience of how large
such statistical errors are. Systematic theoretical investigations
concerning the error due to finite sampling are mentioned in
section 9.3.

Third, the thermodynamic interpretation of the mathemat-
ical relations in terms of work, heat and entropy rests on the
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crucial assumption that the noise in the Langevin equation is
not affected by the driving. While this condition can trivially
be guaranteed in simulations, it could be violated in exper-
iments. A statistically significant deviation of experimental
results from a theoretical prediction could be rooted in the vi-
olation of this assumption.

These remarks apply to systems where one expects at least
in principle that a stochastic description of the relevant degrees
of freedom well-separated in time-scale from an equilibrated
heat bath is applicable. There are, however, systems that
a priori do not belong to this class like sheared molecular
fluids, shaken granular matter and alike. The proof of FTs
given above will not apply to such systems. Still, FTs have
been proved for other types of dynamics and experimentally
investigated in such systems.

In the following we first focus on a review of experimental
and numerical work of the first category and then briefly
mention systems for which it is less clear whether they comply
with the assumptions of a stochastic dynamics. When referring
to the experiments and the numerical work, we will use the
notions and notations established in this review, which may
occasionally differ from those given by the original authors.

5.2. Overdamped motion: colloidal particles and other
systems

5.2.1. Equilibrium pdf for heat. Even in equilibrium, explicit
calculations of the pdf for heat are typically non-trivial. In
the long time t → ∞, low temperature T → 0 limit, it
has been calculated for an arbitrary potential with multiple
minima [127]. For a harmonic potential and any t and T , it is
given by an expression involving a Bessel function [128]. It
has also been derived analytically in the presence of a magnetic
field [129].

5.2.2. Moving harmonic traps and electric circuits. Wang
et al [130] measured the distribution of what amounts to work
(called �t in their equation (2)) for a colloidal particle initially
in equilibrium in a harmonic trap which was then displaced
with constant velocity. The authors found that the pdf obeys
a relation corresponding to the TFT which is strictly speaking
the correct interpretation only within the co-moving frame.
Interpreted in the lab frame, the driving is time-dependent.
However, since for linear forces the work distribution is a
Gaussian which moreover has to obey the JR with 	F = 0, it
is clear that such a Gaussian also obeys the TFT formally.

In a sequel, Wang et al [131] considered the same set-
up for a quasi-steady-state situation at constant velocity. The
authors showed in particular that a quantity (�t(r) as defined
in their equation (19)) which is equal to 	s tot obeys the DFT
also for short times as it should since this set-up seen in the
co-moving frame corresponds to a genuine NESS.

For traps moving with constant velocity, explicit
expressions for the Gaussian work distribution, i.e. for its
mean and variance, have been calculated in [78, 132]. In all
cases, the DFT type relation is fulfilled. In contrast, the pdf
for the dissipated heat is non-Gaussian with exponential tails.
An explicit expression is not available, but its characteristic

function and in consequence its large deviation form can be
determined analytically [133, 134]. The pdf for work in a
moving trap (and the pdf for heat in a stationary trap) was also
measured and compared with theoretical results by Imparato
et al [135]. For a harmonically bound particle subject to
a time-dependent force, Saha et al calculated pdfs for total
entropy production, in particular, for non-equilibrated initial
conditions [136].

For a charged particle in a harmonic trap, work fluctuations
and the JR have been studied theoretically for a time-
independent magnetic field and a moving trap or time-
dependent electric field in [137–141], and for a time-dependent
magnetic field in [142], respectively.

Trepagnier et al [90] studied experimentally the transition
from one NESS to another by changing the speed of the moving
trap. If interpreted in the co-moving frame, their experiment
constituted the first experimental verification of the Hatano–
Sasa relation (67).

Simple electric circuits can formally be mapped to the
dragged colloidal particle. Corresponding FTs and pdfs have
been investigated by Ciliberto and co-workers [143–145], by
Falcon and Falcon [146] and by Bonaldi et al [147] for actively
cooled resonators used in a gravitational wave detector. A
similar mapping was used by Berg to study the JR applied to
gene expression dynamics [148].

5.2.3. Harmonic traps with changing stiffness. Carberry
et al [149] investigated the motion of a colloidal particle in
a harmonic trap whose stiffness is suddenly changed from
one value to another thus verifying the TFT (66). For
strongly localized initial conditions, this TFT has been verified
experimentally in [150]. Gomez-Solano et al inferred the
fluctuations of the heat exchanged between a colloidal particle
and an aging gel which bears some similarity to a time-
dependent stiffness [151].

5.2.4. Non-linear potentials. Blickle et al [152] measured
the work distribution for a colloidal particle pushed
periodically by a laser toward a repulsive substrate. This
experimental set-up was the first one for colloidal particles that
used effectively non-harmonic potentials. The pdf for work
is distinctly non-Gaussian but still in good agreement with
theoretical predictions based on solving the Fokker–Planck
equation. This agreement justifies a posteriori the crucial
assumption that the noise correlations are not affected by the
time-dependent driving. Moreover, a DFT for p(w) (93) was
checked for this periodic driving with a symmetric protocol.
Sun determines p(w) for a potential that switches between a
single well and a double well [153].

5.2.5. Stochastic resonance. For a colloidal particle in
a double-well potential that is additionally subject to a
modulated linear potential to generate conditions of stochastic
resonance [154], distributions for work, heat and entropy were
measured and calculated in [155, 156]. Other numerical work
using the concepts of stochastic thermodynamics to investigate
stochastic resonance includes [157–159].
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Figure 2. Distribution of entropy production p(	s tot) for a colloidal
particle driven along a periodic potential for two different values
of external force f . The insets show the total potential V(x) − f x.
The different histograms refer to different trajectory lengths.
Reproduced with permission from [160]. Copyright 2007 European
Physical Society.

5.2.6. NESS in a periodic potential. In an experiment for this
paradigmatic geometry shown in figure 1 which corresponds to
the Langevin equation (1), the pdf for total entropy production
has been measured and compared with theoretical predictions
[160], see figure 2. Characteristically, for short times, this
pdf exhibits several peaks corresponding to the number of
barriers the particle has surmounted. Examples for the pdf
for entropy production have also been calculated in [161]. For
long times, the asymptotic behavior of this pdf in the form
of a large deviation function has been calculated numerically
in [162] where an interesting kink-like singularity was found.
The same quantity has also been derived using a variational
principle [163].

5.3. Underdamped motion

5.3.1. Torsion pendulum as experimental realization. A
driven torsion pendulum differs fundamentally from colloidal
particles since here the inertia term becomes accessible. In
a series of experiments reviewed in [35], Ciliberto and co-
workers have investigated the pdf for various quantities with
the aim of checking which ones obey FT-like relationships.

In [164, 165], the JR and the Crooks relation were used to
determine the ‘free energy difference’ for the torsion pendulum
for linear and periodic forcing. In [166], pdfs for the external
work were determined for three different types of protocols
for the time-dependent force in (38). (i) For a linearly ramped
force, the pdf for starting in equilibrium was found to obey
a TFT relation even for short times. Since a linear ramp
corresponds to a time-dependent driving, one would, in fact,

not expect a TFT. It is found here only because the work
distribution for this linear system is Gaussian and should obey
the JR which constrains mean and variance such that the TFT
is valid. Alternatively, an explicit calculation of the pdf shows
the same result. (ii) Starting in a quasi-steady state of the linear
ramp, the pdf for wext no longer obeys the TFT for short times
as expected. (iii) Likewise, for periodic driving, a DFT type
for the work distribution is found only in the long-time limit as
expected. For the latter two cases, the finite time corrections
have been calculated.

The same group investigated the pdf for the heat for
similar protocols [167]. In agreement with both the general
theoretical expectations and their explicit calculations the pdf
for heat neither obeys a TFT for short times nor even the DFT
asymptotically for long times since the internal energy is not
bounded for a harmonic oscillator.

The pdf for changes in the stochastic entropy and the total
one were reported for periodic driving of this system in [145].
Once the system has settled in the periodic steady state, for
an integer multiple of the period the functional R becomes
the total entropy change which thus fulfills a DFT as found
experimentally.

5.3.2. General theoretical results. Using path integral
techniques, Farago determined the statistics of the power
injected by the thermal forces into an underdamped particle
and found it to be independent of an underlying confining
potential [168].

In a series of papers for a moving trap, Taniguchi and
Cohen investigated pdfs for work and heat as well as various
FTs using the path integral representation [169–172]. They
also point out the ambiguity (or freedom) to define time reversal
in this particular system.

For both a moving and a breathing trap, Minh et al
calculated work weighted propagators for underdamped
motion [173]. FTs for underdamped Brownian motion
were studied by Lev and Kiselev by transforming from the
momentum to the energy variable [174], by Fingerle for the
relativistic version [175] and by Iso et al for motion near black
holes [176]. Sabhapandit determined the work fluctuations of
a randomly driven harmonic oscillator [177] which was studied
experimentally in [178].

5.3.3. Heat transport. Underdamped Langevin equations
have been used to study heat transport through harmonic chains
or lattices coupled at the end to heat reservoirs of different
temperatures [65]. Relevant in our context is work concerning
not only the average heat current but also the distribution
of exchanged heat and the corresponding FT. These issues
have been studied for a single particle attached to two heat
baths in [179–181], for two coupled particles attached to two
different baths in [182], for harmonic chains in [183–185] and
an anharmonic lattice in [186].

5.4. Other systems

Ever since the DFT for entropy production was formulated,
there have been attempts to show whether it is fulfilled in a
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specific system both numerically and experimentally. Beyond
the ‘clean’ cases discussed above for which the dynamics of
the relevant degrees of freedom is clearly compatible with
a stochastic Markovian dynamics, there are a number of
studies for other systems where a theoretical understanding
is more challenging. Such studies include an early theoretical
work with three simple dissipative deterministic models [187],
experimental [188–192] and numerical [193–200] work for
granular matter or dense colloids, experimental work for
turbulence [201–203], numerical work for a shell model
in turbulence [204] and one on the role of hydrodynamic
interactions [205], and experimental work for liquid crystals
[206, 207], a vibrating plate [208] and self-propelled particles
[209]. Characteristically for the experimental systems just
mentioned, one cannot necessarily expect that these can
be described by a stochastic Markovian dynamics for the
relevant variables. Similarly, in the numerical works either
the equations of motion are not of the Langevin type (or
deterministic thermostatted ones) or, if they are, not all
variables are monitored which effectively amounts to some
coarse graining. Since for these cases, the FTs have not been
proven, such tests give valuable hints on possible extensions
beyond their established realm of validity.

Two general aspects for putting results of such case studies
in perspective are the following ones. First, the putative
validity of a DFT for the quantity R is typically cast in
the form of checking for a constant slope of the quantity
limt→∞[ln[p(ρt )/p(−ρt )]/t where ρt is the time averaged
rate corresponding to the quantity R = tρt for which we
have formulated the FT. Since such a plot is necessarily
antisymmetric in ρt [194], for a non-trivial statement the
contribution of higher order terms such as ρ3

t must be shown
to be negligible which requires a large enough range of
studied ρt -values. Moreover, a large enough t is necessary.
Second, in bulk systems often only ‘local’ quantities can
be investigated which would require local forms of the FTs.
From the perspective of a stochastic dynamics, this amounts
to integrating out other slow degrees of freedom or some type
of coarse graining under which one cannot expect the FTs to
hold necessarily. We will come back to this issue at the very
end of this review.

6. Dynamics on a discrete set of states

6.1. Master equation dynamics

The derivation of the FTs in section 4 is based on the behavior
of the weight for a stochastic trajectory under time reversal
or the other operations generating the conjugate dynamics.
Therefore, they hold for any kind of stochastic dynamics, in
particular, for a master equation type of dynamics [210, 211]
on a discrete set of states {n}, see figure 3.

Examples of such systems include random walks and,
more generally, diffusive processes on a lattice, birth–death
processes, growth processes on a lattice, conformational
changes between discrete states of a biomolecule or chemical
reaction networks. The latter two classes of systems differ
from the previous ones since they typically occur in a well-
defined thermal environment. This feature imposes additional

Figure 3. Network with five states comprising three cycles (1245),
(234), and (12345) and the corresponding transition rates. Without
the state 3, this network would be a unicyclic one.

constraints on the dynamics as discussed in section 9. In this
section, we focus on the stochastic dynamics with arbitrary
transition rates.

6.1.1. Transition rates and probability currents. Transitions
from a state m to a state n occur with a rate wmn(λ) which may
be time-dependent according to the external protocol λ(τ).
For ease of notation, we will write wmn(τ) or wmn(λ) for the
more explicit wmn(λ(τ)). In principle, one could distinguish
different transitions or ‘channels’ connecting the same two
states from which we refrain here for notational simplicity.

The probability pn(τ) to find the system at time τ in state
n evolves according to the master equation

∂τpn(τ ) =
∑
m �=n

[pm(τ)wmn(τ) − pn(τ)wnm(τ)] (110)

given an initial distribution pn(0). To each link (mn) one can
associate a (directed) probability current

jmn(τ ) = pm(τ)wmn(τ) − pn(τ)wnm(τ) = −jnm(τ). (111)

6.1.2. Two classes of steady states. For time-independent
λ, the system eventually reaches a steady state provided the
network is ‘ergodic’, i.e. any two states are connected through
a series of links as we will always assume in the following. The
time-independent stationary probabilities can be written as

ps
n(λ) ≡ exp[−φn(λ)] (112)

which defines the analog of the non-equilibrium potential.
For small networks, there is an elegant graphical method to
determine ps

n from given rates [211, 212].
Steady states fall into two classes depending on whether

or not the detailed balance condition (DBC),

ps
n(λ)wnm(λ) = ps

m(λ)wmn(λ), (113)

is fulfilled. The first case corresponds to genuine equilibrium,
the second one to a NESS. In the latter case, there are non-
vanishing steady-state probability currents

j s
mn ≡ ps

mwmn − ps
nwnm = −j s

nm. (114)

Since knowing ps
n is not sufficient to distinguish a genuine

equilibrium from a NESS, Zia and Schmittmann [213, 214]

19



Rep. Prog. Phys. 75 (2012) 126001 U Seifert

Figure 4. Trajectory n(τ) of total length t jumping at discrete times
{τj } between states.

suggested to characterize a NESS by its stationary distribution
ps

n and its stationary currents j s
mn. Then the same NESS could

be generated by a whole equivalence class of possible rates
wmn since any two sets of rates with

ps
m(wmn − w′

mn) = ps
n(wnm − w′

nm) (115)

would lead to the same NESS, i.e. the same stationary
distribution and currents. In the following, we will adapt the
view that a system is characterized by a definite set of rates
wmn(λ) and a protocol λ(τ) from which all other quantities
can, in principle, be derived.6

A ‘distance’ from equilibrium quantifying the amount
of violation of the DBC has been introduced in [220]. A
Lyapunov function for relaxation toward a NESS is discussed
in [221]. Master equation dynamics as a gauge theory is
formulated in [222]. A mapping to a dynamics in the dual
space of cycles is discussed in [223].

6.1.3. Path weight and dynamical action. We first
characterize the fluctuating trajectories. A trajectory n(τ) with
0 � τ � t starts at n0 and jumps at times τj from n−

j to n+
j

ending up at state nt after J jumps, see figure 4. Defining for
each state the instantaneous total exit rate

rn(τ ) ≡
∑
m �=n

wnm(τ) (116)

the conditional weight for a trajectory exhibiting no jump at
all is given by

p[n(τ) = n0|n0] = exp[−
∫ t

0
dτrn0(τ )]. (117)

The weight for a trajectory with J � 1 jumps at times {τj } is
given by

p[n(τ)|n0] = exp[−
∫ τ1

0
dτrn0(τ )]

×
J∏

j=1

wn−
j n+

j
(τj ) exp

[
−

∫ τj+1

τj

dτrn+
j
(τ )

]
(118)

with τJ+1 ≡ t . Averages with these weights will be denoted
by 〈. . .〉 in the following.

6 For completeness, we mention a complementary approach where rates are
derived by imposing mean currents as constraints [215–218]. For a relation to
the minimum entropy production principle, see [219] and references therein.

In analogy with the continuous case (5), these expressions
define an ‘action’

A[n(τ)] ≡ − ln p[n(τ)|n0] =
∫ τ1

0
dτrn0(τ )

−
J∑

j=1

[
ln wn−

j n+
j
(τj ) −

∫ τj+1

τj

dτrn+
j
(τ )

]
. (119)

6.2. Entropy production

6.2.1. Stochastic entropy. The concept of stochastic entropy
can be transferred immediately from the Langevin case to the
discrete one as [20]

s(τ ) ≡ − ln pn(τ)(τ ). (120)

It is obtained by first solving the master equation (110) for
pn(τ) with a given initial distribution and then plugging into
it the specific trajectory n(τ) taken from this ensemble.

The equation of motion for stochastic entropy becomes

ṡ(τ ) = − ∂τpn(τ )

pn(τ )

∣∣∣∣
n(τ)

−
∑

j

δ(τ − τj ) ln
pnj

+(τj )

pnj
−(τj )

. (121)

The first term shows that even if the system remains in the same
state, stochastic entropy will change whenever the ensemble
is time-dependent either due to a non-equilibrated initial state
or due to time-dependent rates. The second term shows the
contributions from each transition. The change in stochastic
entropy during time t is given by

	s =
∫ t

0
dτ ṡ(τ ) = − ln pnt

(t) + ln pn0(0). (122)

6.2.2. Time reversal. Time reversal as a choice for the
conjugate dynamics works analogously to the Langevin case
with n†(τ ) = n(t − τ) and λ†(τ ) = λ(t − τ). Using the
weights (equations (117) and (118)), it is trivial to check that

R1 ≡ ln
p[n(τ)|n0]

p†[n†(τ )|n†
0]

=
∑

j

ln
wn−

j n+
j
(τj )

wn+
j n

−
j
(τj )

≡ 	sm. (123)

There are two justifications for identifying R1 with the
entropy change of the surrounding medium 	sm. The first is
the analogy to the Langevin case, where this term turned out to
be the dissipated heat (divided by temperature). In the absence
of a first law for the master equation dynamics, which would
require further physical input not available at this general stage,
this identification is by analogy only. Second, it turns out that
the sum of the system entropy change as defined in (122) and
the so identified medium entropy,

	s tot ≡ 	s + 	sm, (124)

will obey the same FTs as discussed above for the Langevin
dynamics. In fact, for 	sm Lebowitz and Spohn had derived
the SSFT in the long-time limit [4].
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From the expression (123) an instantaneous entropy
production rate in the medium can be identified as

ṡm(τ ) =
∑

j

δ(τ − τj ) ln
wn−

j n+
j
(τj )

wn+
j n

−
j
(τj )

(125)

that makes the contributions from the individual jumps
obvious. Combining this relation with (121), one obtains

ṡ tot(τ ) = − ∂τpn(τ )

pn(τ )

∣∣∣∣
n(τ)

+
∑

j

δ(τ − τj ) ln
pnj

−(τj )wn−
j n+

j
(τj )

pnj
+(τj )wn+

j n
−
j
(τj )

. (126)

6.2.3. Ensemble level. By averaging these trajectory-
dependent contributions for entropy production, one obtains
expressions derived much earlier within the ensemble approach
[23, 211, 212, 224]. On a technical level, using〈∑

j

δ(τ − τj )dnj
−nj

+(τ )

〉
=

∑
mn

pm(τ)wmn(τ)dmn(τ ) (127)

valid for any set of quantities {dmn}, one obtains

Ṡ tot(τ ) ≡ 〈ṡ tot〉 =
∑
mn

pm(τ)wmn(τ) ln
pm(τ)wmn(τ)

pn(τ )wnm(τ)
, (128)

and

Ṡm(τ ) ≡ 〈ṡm〉 =
∑
mn

pm(τ)wmn(τ) ln
wmn(τ)

wnm(τ)
(129)

which should be compared with (35) and (36), respectively.

6.2.4. Splitting entropy production. Following the Langevin
case, we can split the entropy production in the medium (123)
into two contributions

	sm = 	shk + 	sex (130)

with

	shk ≡
∑

j

ln
ps

n−
j

(λj )wn−
j n+

j
(λj )

ps
n+

j
(λj )wn+

j n
−
j
(λj )

(131)

where λj ≡ λ(τj ) and

	sex ≡ −
∑

j

ln
ps

n−
j

(λj )

ps
n+

j
(λj )

(132)

characterizing the entropy change associated with maintaining
the corresponding steady state and the one associated with
time-dependent driving, respectively. It is simple to rewrite
	sex as the discretized version of −	φ + ∂λφ as in (23). This
excess entropy production has a nice geometrical interpretation
along a path in the parameter space analogous to the Berry
phase in quantum mechanics [225].

A somewhat different splitting of total entropy production
on the trajectory level was introduced in [116–118] writing

	s tot = 	sad + 	sna (133)

with the adiabatic entropy change 	sad ≡ 	shk and the non-
adiabatic one 	sna ≡ 	sex + 	s.

6.2.5. Dual dynamics. The dual dynamics is defined by rates

w†
mn(λ) ≡ wnm(λ)ps

n(λ)/ps
m(λ). (134)

These rates lead to the same stationary state as the original
dynamics, p†s

m = ps
m. However, the stationary currents are

reversed according to

j †s

mn(λ) = −j s
nm(λ). (135)

In complete analogy to the Langevin case, by comparing the
weights for the original with the dual and the dual-reversed
dynamics, one obtains

R1 = 	shk and R1 = 	sex, (136)

respectively.

6.3. FTs for entropy production and ‘work’

6.3.1. General validity. With these identifications, all FTs
from sections 3.3 and 4 involving the various forms of entropy
changes apply under exactly the same conditions as stated there
provided the occasional x (and x0, xt ) is trivially replaced by
n (and n0, nt ).

The only variable not defined yet is the analog of work.
For networks that at constant λ fulfill the DBC (113), one
can identify a (dimensionless) internal energy as φn(λ) ≡
− ln ps

n(λ) that plays the role of the potential V (x, λ)/T in
the Langevin case with a free energy identical to zero. At this
stage, there is indeed no point in identifying a non-trivial λ-
dependent free energy. Consequently, work along a trajectory
corresponds to dissipated work and can be identified in analogy
to (15) with

w ≡
∫ t

0
dτ∂λφn(λ)|n(τ)λ̇. (137)

With this identification of work, the FTs from sections 3.2 and
4 involving work hold for this master equation dynamics as
well (setting there T = 1). It should be stressed, however,
that without a more physical microscopic understanding of
the network, this concept of work (and heat, if one wanted to
promote 	sm to this status) is a purely formal one without real
physical meaning.

For networks that do not fulfill the DBC (113), there
is no unique way of assigning internal energy to a state
without further physical input, and, hence, no sensible way
of identifying work even formally. Naively keeping (137), as
sometimes suggested [226], fails as the counter-example of a
discretized version of the driven overdamped motion on a flat
ring easily shows, since φn = const implies w = 0.

The statistics of rare events contributing to these FTs can
also be studied through a ‘mapping’ of the master equation to
a Schrödinger equation and then analyzing the corresponding
path integral [227, 228]. Finally, a somewhat formal general
IFT was derived in [229].
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Figure 5. Probability distribution for the ‘work’ (137), denoted
here R, in a driven two-level system for two different lengths of
trajectories. The histogram shows experimental data, the full curve a
theoretical calculation; for more details, see [102]. Reproduced with
permission from [102]. Copyright 2005 American Physical Society.

6.3.2. Experimental case studies. Experimental work
measuring the distributions of these quantities with the
perspective of ‘testing’ the FTs is yet scarce. The arguably
simplest non-trivial network is a two-state system with time-
dependent rates. Any such two-state system necessarily
obeys the DB condition. Such a two-state system was
realized experimentally by driving an optical defect center
into diamond with two lasers. The distributions for work
(137) and for the entropy change of system, medium and total,
were measured and compared with the theoretical predictions
[102, 104]. Characteristically, for comparably short times
these distributions show quite intricate, distinctively non-
Gaussian, features, see figure 5.

6.3.3. Analytical and numerical case studies. Entropy
production and the FT for the simplest discrete system which is
in essence a random walk biased in one direction by applying
an external field was studied quite generally in [230], in
the context of a ratchet model in [231], for a rotary motor
in [232, 233] and for transport through a membrane channel
in [234]. Simple three and four state systems were investigated
in [235, 236]. The statistics of dissipated heat for a driven
two-level system modeling single electron transport has been
calculated in [237].

Entropy production on a lattice model both for a simple
reaction–diffusion scheme and for transport was investigated
in [238] with an attempt to clarify the occurrence of a kink in the
rate function at zero entropy production. In another variant of
the reaction–diffusion scheme, the violation of an FT caused
by breaking microscopic reversibility in the sense that some
backward transitions are forbidden were studied in [239, 240].
Entropy production for a model of cyclic population dynamics
was investigated in [241] and for effusion of a relativistic ideal
gas in [242]. FTs in the presence of local heating have been
studied in [243].

The analog of work distributions for a spin system in time-
dependent magnetic fields was investigated in [244, 245] and
for time-dependent coupling constants in [246]. The surface
tension in the three-dimensional Ising model is determined
through simulations using the analogy of the JR in [247].

The interplay between a non-equilibrium phase transition
and singularities in the entropy production has been

investigated for a majority vote model [248], for driven
lattice gases [249, 250], for wetting [251] and for kinetically
constrained lattice models [252]. For the latter, the FT was
investigated in [253, 254].

6.4. FT for currents

For a network in a NESS, currents obey an FT as
derived by Gaspard and Andrieux [255–258] exploiting the
decomposition of such a network in cycles as introduced by
Schnakenberg [211] and using concepts from large deviation
theory [259]. For a concise derivation of the current FT using
the formalism developed in section 4, we write the total entropy
production along a trajectory in the form

	s tot =
∑

a

na	Sa + 	sr. (138)

Here, na is the number of times a cycle a has been completed
in clockwise (na > 0) or anti-clockwise (na < 0) direction
during this trajectory leading to a fluctuating current J a ≡ na/t

for each cycle, see figure 3 for an example of cycles in a
network. The entropy production associated with each cycle

	Sa =
∑

(mn)∈a

ln
wmn

wnm

(139)

is also called the affinity of this cycle. The remainder 	sr

collects the contributions arising from those parts of the
trajectory that do not contribute to a full cycle. Clearly, the
current J a is odd under time reversal and hence qualifies as a
possible variable Sα with εα = −1 for the general SSFT (94)
which thus becomes

p({−J a})
p({J a}) = exp[−t

∑
a

	SaJ a]〈e−	sr |{J a}〉. (140)

For large t , 	sr and hence the second factor remains of order
1. It can thus be ignored when taking the logarithm in the
long-time limit leading to the current FT

lim
t→∞

1

t
ln

p({J a})
p({−J a}) =

∑
a

	SaJ a. (141)

For a network coupled to different reservoirs at different
temperatures or chemical potentials, the cycle affinities 	Sa

arise from externally imposed affinities Fk as discussed in more
detail in section 10.2. These affinities give rise to mesoscopic
currents

J k =
∑

a

J ad
k
a (142)

where dk
a are a generalized distance counting how much each

cycle contributes to the respective current. Expressed in these
currents, the FT reads

lim
t→∞

1

t
ln

p({J k})
p({−J k}) =

∑
k

FkJ k. (143)

In this derivation, it is crucial that all currents that contribute
to the entropy production (either on the cycle or on the
mesoscopic level) are included.
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Generalizations of such an FT have been derived for just
one current in [260], for networks with multiple transitions
between states in [261], to currents not related to entropy
production in [262–264]. Geometrical and topologial aspects
were studied in [265–268]. Periodically driven systems were
investigated in [269] and a relation to supersymmetry is made
in [270]. In another extension, Hurtado et al have derived an
‘isometric fluctuation relation’ that compares pdfs for currents
with different orientations [271].

The FT for entropy production has been discussed for
various chemical reaction networks in the papers by Gaspard
and Andrieux quoted above, and, more recently, has been
applied to transport in mesoscopic devices which, despite their
quantum character, can often still be described by a master
equation whenever coherences can be, or are, ignored. For a
few recent examples, see, e.g., [227, 228, 272–282].

There is a large literature arising from the recent progress
of understanding current fluctuations in NESSs in general, not
necessarily related to the FT, for which the review by Derrida
could serve as a point of departure [283].

7. Optimization, irreversibility, information and
feedback

7.1. Optimal protocols

7.1.1. General aspects. The IFTs such as the JR hold
for any external protocol λ(τ) and any time interval t . An
optimal protocol λ∗(τ ) is the one that extremizes the mean
of a functional of the trajectory like work or heat for given
initial value λi ≡ λ(0) and final value λf ≡ λ(t) of a control
parameter and a fixed total time t allocated to this process.

Mean work and total entropy production as objective
functions are arguably the most relevant cases. For t → ∞,
the minimal mean work required for a transition is given by
the free energy difference 	F ≡ F(λf ) − F(λi). For any
finite time t , the mean work should be larger and the question
for the optimal protocol becomes non-trivial. Understanding
this problem will allow one to extract the maximum amount of
work from a given free energy difference in finite time.

Formulated as a variational problem, the optimal protocol
obeys a quite complicated Euler–Lagrange equation which is
non-local in time since changing the control parameter at time
t1 affects the work increment at all later times t2. Crucial
insight into general features of the solution, however, has
been obtained by investigating case studies involving harmonic
potentials [284]. As a general feature, jumps of the optimal
protocol were found that are absent in a linear response
treatment [285].

A second motivation for minimizing the work could be
an attempt to improve convergence of the Jarzynski estimate
to obtain free energy differences since one might expect that
a small mean work may also to lead to a smaller variance.
Due to the non-linearity of exp[−w/T ], however, one should
rather find the optimal protocol for minimizing 〈exp[−2w/T ]〉
which turns out to have jumps as well [286].

7.1.2. Overdamped dynamics. The generic jumps in the
optimal protocol were first found in case studies involving
harmonic potentials [284]. The simplest case is a process
where the center of a harmonic potential V (x, λ) = (x−λ)2/2
is shifted from λi = 0 to λf in a finite time t . Such a shift does
not involve any free energy difference. Hence, the mean work
required for this task will approach 0 for t → ∞. For a finite
time, the optimal protocol can be calculated analytically by
expressing the mean work as a functional of the mean position
of the particle which renders the problem local in time. The
optimal protocol (in dimensionless units for time)

λ(τ) = λf (τ + 1)/(t + 2) (144)

involves two jumps

	λ ≡ λ(0+) − λ0 = λf − λ(t−) = λf /(t + 2) (145)

at the beginning and the end of the process. The physical
reason for, e.g., the first jump is the fact that with this jump the
dissipation rate is constant throughout the process. If the trap
moved with constant speed without initial jump, the friction
would slowly build up at the beginning of the process which
ultimately would imply stronger dissipation. The size of the, in
this case, symmetric jumps at the beginning and end vanishes
as t → ∞.

Similar jumps have also been found in a second case
study where the stiffness of a harmonic potential V (λ, x) =
λx2/2 is changed in finite time from an initial value λi

to λf [284]. For overdamped motion of a dipole in a
magnetic field that switches the orientation, the optimal
protocol can even show a degeneracy [287]. Further examples
for optimal protocols involving non-linear potentials were
studied numerically in [286].

An intriguing mapping of this optimization problem to
deterministic optimal transport like mass transport by a Burgers
velocity field has been discussed in [288, 289]. For total
entropy production as objective function, turning an earlier
scaling argument [290] into a mathematical proof, a general
bound can thus be derived, 	S tot � C/t valid for any t , where
C depends on the given initial and final distributions [291].
The key point is that this optimization takes place in the space
of all probability distributions rather than in a restricted space
of driving potentials with a few variational parameters. In the
latter case, the ∼ 1/t behavior will hold only for long times.

7.1.3. Underdamped dynamics. For underdamped
dynamics, the optimal protocol involves even stronger
singularities at the beginning and end of the process given
by additional δ-peaks in the protocol [292]. Physically, these
terms guarantee that the particle at the beginning acquires,
and at the end loses, a finite mean momentum instantaneously
which minimizes total dissipation.

7.1.4. Discrete dynamics. Optimal protocols can also be
investigated for master equation dynamics on a discrete set of
states. A simple case has been studied as a model for a quantum
dot with a single energy level E connected to a reservoir with
chemical potential µ ≡ E − ε(τ ). The optimal protocol for
an externally controllable gap ε(τ ) and given ε(0) and ε(t)

minimizing the mean work W ≡ ∫ t

0 dτp(τ)ε̇(τ ), where p(τ)
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is the probability that the energy level is occupied, shows jumps
in the optimal ε∗(τ ) at beginning and end which are nicely
explained in physical terms in [293]. A more general approach
to the optimal protocol connecting arbitrary given initial and
final distributions is given in [294].

7.2. Quantifying irreversibility

The concepts developed for deriving the FTs can also lead
to a more quantitative understanding of irreversibility. In
section 4, the time-reversed process was introduced as a mere
tool for deriving the FTs. By considering such a time-reversed
process seriously and comparing it with the original time-
forward process, one can indeed derive an interesting relation
between dissipation and irreversibility. An essential tool in this
analysis is the relative entropy or Kullback–Leibler distance

D[p||q] ≡
∫

dyp(y) ln[p(y)/q(y)] � 0 (146)

between two distributions p(y) and q(y). Essentially, this
quantity measures how distinct the two distributions are [295].

We present here the stochastic version of the basic idea
first introduced using Hamiltonian dynamics [296, 297]. For a
process with a time-dependent potential V (x, λ) and its time
reversal, which start and end in the respective equilibrium
states, the quantity R in the generalized FT (80) becomes
R = w − 	F . This FT thus implies

〈exp[−(w − 	F)]|sα〉 = p†(εαsα)/p(sα) (147)

where the average is conditioned on the value sα of an arbitrary
functional Sα[x(τ )] along the trajectory with a definite parity
εα under time reversal. By choosing Sα = w−	F , averaging
the logarithm of (147) yields

〈w〉 − 	F = D[p(w − 	F)||p†(−(w − 	F)]. (148)

This relation, which can be seen as a consequence of the CFT
(61), shows that the dissipated work determines how different
the distributions for this quantity along the forward and the
backward paths are. Likewise, a large difference of these two
distributions implies a substantial dissipated work.

By choosing Sα = x(t1) = x†(t − t1), i.e. the state of the
system at any intermediate time t1, one obtains from (147) the
lower bound

〈w〉 − 	F � D[p(x(t1))||p†(x†(t1))] (149)

on the dissipated work. In contrast to this stochastic case, for a
Hamiltonian dynamics, one obtains an equality in (149) due to
Liouville’s theorem [296]. For both types of dynamics, further
coarse graining, i.e. looking at the distributions for a variable
y = y(x(t1)), leads to a lower bound on the dissipated work
since relative entropy decreases under coarse graining [295] as
nicely illustrated in the present context in [298].

Similarly, by choosing t1 = t , one immediately obtains
the inequality

〈w〉 − 	F � D[p(x(t))||peq(x(t))] (150)

which bounds dissipation by the distinguishability of the
instantaneous distribution with the corresponding equilibrium
distribution as derived and discussed in [299].

It is trivial to derive similar relations for processes
involving genuine steady states that at constant control
parameters reach a NESS rather than equilibrium as pointed
out in [300]. Essentially, in (147)–(150), one has to replace
both 〈w〉−	F by 〈	sm +	φ〉 where φ is the non-equilibrium
potential (11) and peq by ps .

Related inequalities have been discussed for transitions
between specified initial and final states [301]. Relations
between other information-theoretic measures and non-
linear averages of work and entropy along non-equilibrium
trajectories have been derived in [302–304]. An intriguing
relation between generating information and dissipation has
been made for DNA replication in [305] with a corresponding
pedagogical introduction in [306] and an analysis in terms of
a thermodynamic machine in [307].

7.3. Measurement and feedback

7.3.1. Feedback and the second law. According to
the Kelvin–Planck formulation of the second law, one
cannot extract work from an equilibrated system at constant
temperature without leaving any traces of this process
somewhere else. The situation becomes apparently different
if information about the state of the system during this
process becomes available through a measurement as the
classical example of Maxwell’s demon and the Szilard engine
reviewed in [308, 309] demonstrate.7 Based on the result of a
measurement, one can choose a particular protocol for a control
parameter which will indeed allow either to extract work in a
cyclic process or, in a non-cyclic process, to extract more work
than the corresponding free energy difference of initial and
final equilibrium state. These statements are still compatible
with the second law since erasing the information acquired will
cost free energy according to Landauer’s principle. Taking
this additional effect into account, the ordinary second law
is restored. Typically, for discussing these processes within
stochastic thermodynamics the cost of measurement and
erasure process is first ignored in the problem of how to convert
the acquired information into work (most efficiently) as it also
will be ignored in the following discussion of the main concept
where we use an approach based on FTs. Related earlier work
will be briefly mentioned in section 7.3.5.

7.3.2. Measurement and information. For a quantitative
description, we assume a system evolving according to a
master equation as introduced in section 6. If the system
at time t1 is in state n1 = n(t1), a measurement at this
time yields a result y1 with the probability p(y1, t1|n1) =
p(n1, t1|y1)p(y1, t1)/p(n1, t1). Here, p(n, t) is the ordinary
solution of the master equation for the given initial condition
and p(y1, t1) the probability for obtaining the result y1

irrespective of n1. The (trajectory-dependent) information
acquired in this measurement is [311]

I(n1, y1) ≡ ln[p(n1, t1|y1)/p(n1, t1)]

= ln[p(y1, t1|n1)/p(y1, t1)]. (151)

7 For an instructive criticism of one of the assumptions of the Szilard engine,
see [310].

24



Rep. Prog. Phys. 75 (2012) 126001 U Seifert

Upon averaging with p(y1|n1), this trajectory-dependent infor-
mation becomes the relative entropy D[p(n1, t1|y1)||p(n1, t1)]
which still depends on the result y1 of the measurement. Fur-
ther averaging over y1 leads to the mutual information

I ≡
∫

dy1p(y1, t1)D[p(n1, t1|y1)||p(n1, t1)] (152)

=
∫

dy1

∫
dn1p(n1, y1, t1)I(n1, y1). (153)

7.3.3. Sagawa–Ueda equality and a generalization. After
a measurement, the control parameter λ(τ, y1) for the
subsequent evolution t1 � τ � t is assumed to depend
uniquely on the outcome y1 leading to the probability
distribution p1(n, τ |y1). For a system with a time-dependent
potential V (n, λ), i.e. a system that at any fixed λ reaches a
genuine equilibrium state, Sagawa and Ueda have generalized
the JR (58) to this feedback-driven process in the form
[311, 312]

〈exp[−(w − 	F + I)]〉 = 1 (154)

which implies for the maximal mean extractable work W out ≡
−〈w〉 the bound

W out � −	F + I (155)

with I ≡ 〈I〉. Thus, acquiring information through a
measurement allows one to extract more work than what one
would get from a process without feedback.

The original formulation of the SUE requires the notion
of a free energy difference for initial and final state. For
transitions involving genuine non-equilibrium states, i.e.
those that at constant control parameters reach a NESS, the
analogous relation

〈exp[−(	s tot + I)]〉 = 1 (156)

with the inequality
〈	s tot〉 � −I (157)

holds true as well.8

A concise proof of (156), which will be valid with a
minor modification for (154) as well9, not requiring explicit
time reversal follows from exploiting the IFTs (equations (85)
and (86)) [313]. Using 	s tot = 	s + 	sm, splitting the
last term into the two contributions associated with the two
time intervals i = (0 � τ < t1) and ii = (t1 � τ � t),
making the total entropy change of the system explicit with
	s = − ln p(nt , t |y)+ln p0(n0, 0), and the specific expression
for the information (151), the lhs of (156) can be written as〈

1

p0(n0)
e−	sm

i
p(n1, t1)

p1(n1, t1|y1)
e−	sm

ii p1(nt , t |y1)

〉

=
∑
m1

〈
1

p0(n0)
e−	sm

i |n1 = m1

〉
i

p(n1, t1)

× 〈
e−	sex

ii p1(nt , t |y1)|n1
〉
ii

= 1. (158)

Introducing conditioned averages on the two intervals i and ii

eliminates the explicit factor 1/p1(n1, t1|y1). The underlined

8 Note that even for detailed balanced systems, the equalities (154) and (156)
are different since, in general w − 	F �= 	stot .
9 For proving the SUE (154), one only needs to replace p1(nt , t |y1) by
peq(nt , t |y1) in (158).

term is 1 for any m1 due to (85). Likewise, the subsequent
summation over m1 is 1 due to (86). The SUE thus holds
for trajectory-averages still conditioned on the results y1. Of
course, further averaging over all possible outcomes y1 is
allowed. This proof (as the original one) is easily extended
to multiple measurements. Thus, the Sagawa–Ueda equality
(SUE) and its variant (156) with the corresponding inequalities
hold for any number of measurements [312–316].

For processes involving genuine non-equilibrium states,
the generalization of the Hatano–Sasa relation (67) to
processes with feedback in the form [313]

〈exp[−(	s tot − 	shk + I)]〉 = 1 (159)

with the inequality

〈	s tot〉 � 〈	shk〉 − I (160)

follows as easily starting with conditioned variants of (88).
The bound (160) is much stronger than (157) since 〈	shk〉
will typically scale with the total time t . For systems that at
constant λ exhibit detailed balance, 	shk = 0, in which case
(159) and (160) become (156) and (157).

7.3.4. Efficiency of Brownian information machines.
For a cyclically operating information machine, where
measurements are repeated at regular intervals separated by
tm [317], the inequality (157) implies that one can extract at
most a mean power Ẇ out bounded by

Ẇ out � İ, (161)

where İ is the rate with which information is acquired.
Likewise, for processes involving transitions between genuine
non-equilibrium states, the inequality (160) implies

Ẇ out � Ẇ in − 〈q̇hk〉 + İ. (162)

If the rate of acquiring information is large enough, i.e. if İ >

〈q̇hk〉, the extracted power can exceed the power Ẇ in required
to sustain these non-equilibrium steady states as demonstrated
explicitly with a simple example in [313]. Characteristically,
the power extracted from such a machine becomes larger, the
smaller the intervals tm between the measurements are.

A quite natural definition for the efficiency [317, 318] of
such a Brownian information machines obeying 0 � η � 1 is
in the first case

η ≡ Ẇ out/İ (163)

and, analogously,

η ≡ Ẇ out/[Ẇ in − 〈q̇hk〉 + İ] (164)

for the second case.

7.3.5. Further theoretical work and case studies. Several
theoretical studies have investigated various aspects of such
feedback-driven processes for stochastic dynamics. Kim and
Qian have considered an underdamped particle controlled by
a velocity-dependent force [319, 320]. This problem has been
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analyzed from the perspective of total entropy production
in [321]. Suzuki and Fujitani investigate Brownian motion
both under a time-dependent force [322] and for linear systems
more generally [323]. Similarly, Sagawa and Ueda illustrated
their concept using a particle that is transported in a movable
harmonic trap and can still extract work from the surrounding
heat bath [311]. Feedback-driven transport for ratchet-type
systems has been optimized in [324–326]. Maximum power
for such a model has been studied in [327]. Information-
theoretic and thermodynamic concepts have been combined in
[318, 328–331]. The thermodynamic cost of a measurement
has been modeled in [332]. Recent reviews on the relation
between information and feedback control are [333, 334].

The optimal protocol for extracting the maximal work
from cyclic processes for particles in harmonic traps with
adjustable center and stiffness based on imperfect positional
measurements has been calculated in [335] where it was shown
that the bound (155) cannot be saturated if only the center
of the trap is under control. Only by additionally adjusting
the stiffness can all the information be recovered provided an
infinite time is allocated to the process. For such a machine,
the efficiency at finite cycle time has been calculated in [317].
The issue of saturating this bound has been investigated in
more depth introducing the notion of ‘reversible’ feedback by
Horowitz and Parrondo [336, 337]. A model for the cost of
erasing information using a Brownian particle in a double-well
potential was discussed in [338].

7.3.6. Experimental illustrations. Experimentally, the SUE
has been demonstrated using an ingenious set-up involving
electric fields that upon measuring the position of a colloidal
particle on a ‘stair’ prevent that the particle slides down a
step that it has just climbed by thermal excitation [339]. In
another experiment, Landauer’s principle has been illustrated
using a colloidal particle trapped in a modulated double-well
potential. The mean dissipated heat indeed saturates at the
Landauer bound in the limit of long erasure cycles [340].

7.3.7. Hamiltonian dynamics for microcanonical initial
conditions. Deviating from the restriction to stochastic
dynamics as applied generally in this review, I mention a few
recent studies that use Hamiltonian dynamics and feedback
since they provide an additional perspective on what has
just been described. The Kelvin–Planck statement of the
second law does not hold for microcanonical initial conditions
which indeed allow one to extract work, i.e. to decrease the
mean energy from a Hamiltonian system by manipulating an
external control parameter [341]. Specific examples have
been given for a harmonic oscillator [342], for a particle
between movable walls [343] and for motion in a double-
well potential [344]. While for such microcanonical initial
conditions no measurement is necessary, these results could be
applied to an initially canonical ensemble if the energy of the
system is measured with subsequent adaptation of the protocol
of the control parameter in a feedback process. As shown
explicitly in [344], the full analysis including the cost of erasing
information exorcizes this ‘demon’ and restores the ordinary
second law.

8. FDT in a NESS

8.1. Overview

8.1.1. FDT in equilibrium. Equilibrium systems react
to small perturbations in a quite predictable way formally
expressed by the FDT, see, e.g., [345]. The response of an
observable A at time τ2 to a perturbation h applied at time
τ1 can be written in the form of an equilibrium correlation
function as

T δ〈A(τ2)〉/δh(τ1)|h=0 ≡ T R
eq
A (τ2−τ1) = ∂τ1〈A(τ2)B(τ1)〉eq,

(165)
where the conjugate variable

B = −∂hE (166)

follows from the energy E(h) of the system. Here it is
assumed that for any small fixed h the energy of the system
is still well-defined. This FDT is the formalization and
generalization of Onsager’s regression hypothesis that states
that the decay of an excitation is independent of whether
it has been generated externally by a force (or field) h or
by a thermal fluctuation. This theorem is of great practical
significance since it allows one to predict the response to a
perturbation without ever applying one just by sampling the
corresponding equilibrium fluctuations either in experiments
or in simulations. Characteristically, the same B holds for any
A and any time difference τ2 − τ1.

8.1.2. FDT in a NESS. Whether a similarly universal
relation exists for NESSs has been addressed using various
approaches since the seventies. For an underlying stochastic
dynamics, Agarwal has expressed the response function
by a correlation function involving the typically unknown
stationary distribution [346]. Bochkov and Kuzovlev [12, 347,
348] and Hänggi and Thomas [349] have derived a variety of
formal expressions for stochastic processes. A comprehensive
review of the general relation between fluctuations and
response including, in particular, deterministic chaotic systems
is given in [350].

More recently, taking up a theme introduced earlier [351],
Harada and Sasa derived a relation where the ‘violation’ of the
equilibrium FDT in a NESS was related to the rate of energy
dissipation for a Langevin system [352, 353] later generalized
to a description in terms of a density field [354]. For the special
case of a driven colloidal particle it was shown in [355] that the
FDT in the NESS could be obtained from the equilibrium FDT
(165) by subtracting from the rhs a second correlation function
involving the local mean velocity. This result suggested that in
the locally co-moving frame the Onsager hypothesis could be
restored which was later extended to sheared systems [356] and
proven for general diffusive dynamics in [357, 358]. Thus, for
these systems, the decay of an excitation around a local NESS
is still the same whether generated externally or by the thermal
fluctuations still present in the NESS.

A concise formal derivation and discussion of the general
FDT in a NESS has been given by Baiesi et al [359–361].
The response of particular observables was treated at the same
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time by Prost et al [362]. In [363], it was then shown that the
latter result holds indeed for any observable and that the FDT
for a NESS becomes particularly transparent when using the
concept of stochastic entropy with its splitting into a total and
a medium one. In this latter work, the apparent multitude of
FDTs in a NESS was rationalized in terms of an equivalence
relation holding for observables in NESS correlation functions.

An elegant synthesis using mathematically somewhat
more demanding concepts has just been given in [364]. An
extension of these concepts to obtain an FDT around non-
stationary non-equilibrium states is derived in [365]. A
connection with gauge fields is made in the geometrical
approach of [366]. For a nice review on the FDT for NESSs,
see the recent [367].

8.1.3. Effective temperature. The derivation of recent exact
versions of the FDT for a NESS which as a result typically
express the response function by a sum of two correlation
functions should be distinguished from the phenomenological
concept of an effective temperature that has been reviewed
in [368]. Originally introduced in the context of aging systems,
it can be formulated also for a NESS. Simply stated, guided
by the equilibrium form (165) an effective temperature is
defined as

T eff(A, τ2 − τ1) ≡ ∂τ1〈A(τ2)B(τ1)〉s/RA(τ2 − τ1), (167)

where RA is now taken in the NESS. In general, T eff will
depend on both the observable A and the time difference τ2−τ1

which upon Fourier transformation corresponds to frequency
ω. Obviously, this concept can become meaningful only if
these dependences are not very pronounced.

From a theoretical point of view, a strictly observable and
frequency-independent T eff follows for a Langevin system
like (42) with f = 0 if the non-equilibrium conditions are
caused by an additional ‘active’ noise η with correlations
〈η(τ2)η(τ1)〉 = 2(T eff − T )µδ(τ2 − τ1). For a linear system

and active noise correlated on a scale τ ac, T eff will depend
on frequency. For ωτ ac  1, one obtains the ordinary
temperature, whereas for ωτ ac 	 1 the enhanced fluctuations
lead to a larger T eff .

On the other hand, if the non-equilibrium is generated by
a non-conservative force or field, such a simple reasoning is
no longer possible. Still, in interacting systems one often finds
numerically good agreement with the concept of an effective
temperature as briefly mentioned in section 8.4 below for
sheared suspensions. A fundamental understanding of when
and why this is the case in general seems still to be missing.

For insight into the frequency and observable dependence
for specific models and systems, see, e.g., [369, 370] for a
binary Lennard-Jones mixture in a simple shear flow, [371]
for a glassy model system, [372–375] for simple interacting
model systems, [376–378] for simple Langevin systems, and
[379] for field-theoretical models. For the phenomenon of
‘hot Brownian motion’ mentioned in section 2.6.3, various
‘effective temperatures’ were determined in simulations [380].

Examples of investigating biophysical systems using
an effective temperature include [381] for hair bundle

oscillations, [382, 383] for the cytoskeleton, [384, 385] for
filament oscillations in an active medium, [386] for self-
propelled particles, [387] for vesicle and [388, 389] for red-
blood-cell fluctuations. If the response of such a system acts
effectively ‘against’ the perturbation, the effective temperature
becomes negative as occasionally found in these studies. Such
an observation shows that this concept should not be taken very
literally.

8.2. Derivation and discussion

In this section, we sketch the derivation of the various forms
of the FDT in a NESS from a unifying perspective for a
general Markovian dynamics on a discrete set of states. Since
overdamped Langevin systems can always be discretized, this
case is a very general one. We follow the concepts introduced
in [359, 363] which were briefly reviewed in their continuum
version in [390]. Earlier related work for a Markovian
dynamics on a discrete set of states making somewhat more
explicit assumptions on observable and rates for spin models
include [391–398] and for aging in supercooled liquids [399].

8.2.1. Equivalent correlation functions in a NESS. We
consider a class of NESSs with rates wmn(h) that depend on
a perturbation h. The stationary distribution of the master
equation dynamics (110) obeys∑

n

Lmn(h)ps
n(h) = 0 (168)

with the generator

Lmn(h) ≡ wnm(h) − δmn

∑
k

wmk(h). (169)

For fixed h, any dynamic information is fully contained in the
propagator

Gkl(τ ) ≡ p[n(τ) = k|n(0) = l] (170)

for which the master equation (110) implies the evolution

∂τGkl(τ ) =
∑
m

LkmGml(τ ) =
∑
m

Gkm(τ)Lml. (171)

In a NESS, denoted in the following with 〈. . .〉s , two-point
correlation functions for state variables of the form A(τ) =∑

m Amδn(τ)m are given by

〈A(τ2)B(τ1)〉s =
∑
mn

AmGmn(τ2 − τ1)Bnp
s
n (172)

if τ2 > τ1. Using (169) and (171), a time derivative with
respect to the earlier time can thus be written as an ordinary
two-point correlation function

∂τ1〈A(τ2)B(τ1)〉s = 〈A(τ2)C(τ1)〉s (173)

with

Cn = Bn

∑
m

wnm −
∑
m

Bmwmnp
s
m/ps

n

=
∑
m

(Bn − Bm)ps
mwmn/p

s
n. (174)
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In addition to state variables as observables we will also
need current variables of the type

D(τ) ≡
∑

j

δ(τ − τj )dnj
−nj

+ (175)

that yield dnj
−nj

+ whenever a corresponding transition takes
place. Their NESS average is given by 〈D(τ)〉s =∑

mn ps
mwmndmn. If D(τ) shows up in a correlation function

at the earlier time τ1, we obtain

〈A(τ2)D(τ1)〉s =
∑
mkl

AmGml(τ2 − τ1)p
s
kwkldkl (176)

= 〈A(τ2)E(τ1)〉s (177)

with
En =

∑
k

ps
kwkndkn/p

s
n. (178)

These relations imply, in particular, that the formal current
variable

Ḃ(τ ) ≡
∑

j

δ(τ − τj )(Bnj
+ − Bnj

−) (179)

obeys
〈A(τ2)Ḃ(τ1)〉s = ∂τ1〈A(τ2)B(τ1)〉s (180)

which demonstrates, quite expectedly, that even in this discrete
case time derivatives can be pulled in and out of a NESS
correlation function straightforwardly.

The fact that NESS correlation functions can have the
same value if the variable at the earlier time is written
differently gives rise to an equivalence relation denoted by

O(1)(τ ) ∼= O(2)(τ ) (181)

if
〈A(τ2)O

(1)(τ1)〉s = 〈A(τ2)O
(2)(τ1)〉s (182)

holds for all A and times τ1 < τ2 [363]. For the variables
defined above we obviously have

D(τ) ∼= E(τ) and Ḃ(τ ) ∼= C(τ) (183)

which summarizes how current variables and time derivatives
can be replaced by state variables in NESS correlation
functions. This freedom will explain why apparently so
different looking FDTs can be derived for a NESS.

8.2.2. Equivalent forms of the FDT. The apparent plethora of
FDTs can be rationalized by starting with an expression for the
response function using the path weight (119). In the presence
of a time-dependent perturbation h(τ), the mean value of the
observable A(τ) is given by [359, 363]

〈A(τ)〉 =
∑
n(τ)

A(τ)p[n(τ); h(τ)|n0]ps
n0

=
∑
n(τ)

A(τ)
p[n(τ); h(τ)|n0]

p[n(τ)|n0]
p[n(τ)|n0]ps

n0
.

(184)

The response function

RA(τ2 − τ1) ≡ δ〈A(τ2)〉/δh(τ1)|h=0 ≡ 〈A(τ2)B
p(τ1)〉s

(185)

can be expressed by a two-point correlation function in the
unperturbed NESS by evaluating (184) with the action (119) as

Bp(τ1) = − δA[n(τ); h(τ)]/δh(τ1)|h=0 (186)

= −
∑

k

wn(τ)kαn(τ)k +
∑

j

δ(t − τj )αn−
j n+

j
(187)

where
αmn ≡ ∂h ln wmn(h)|h=0. (188)

This form of the conjugate variable (with the superscript
p alluding to the derivation through the path weight) is
convenient since it allows one to determine the response
function by measuring a correlation function that requires
only knowledge about how the rates depend on the control
parameter which is easily available in simulations. The more
formal aspect that the first term in (187) arises from the time-
symmetric part of the action and the second one from its
time-antisymmetric one is emphasized and further exploited
in [359–361].

A second equivalent representation of the conjugate
variable is obtained by replacing (by following the scheme
(175)–(178)) the second (current) part in Bp by its equivalent
state variable form which leads to Bp ∼= Ba with

Ba
n = −

∑
k

wnkαnk +
∑

k

wknαknp
s
k/p

s
n (189)

=
∑

k

∂hLnk(h)|h=0 ps
k/p

s
n. (190)

The last equality follows from expanding (169) in h and
the definition (188). This expression for the conjugate
variable involving only state variables can also be derived
by straightforward time-dependent perturbation theory of the
Fokker–Planck equation as originally derived by Agarwal
(hence, the superscript a) [346]. Using this expression,
however, requires knowledge of the stationary distribution
which for interacting systems with many degrees of freedom
is not easily available in either simulations or experiments.

Finally, as a third, arguably physically most transparent
form of the conjugate variable, it is easy to check explicitly that
−∂hṡ ∼= Ba by expanding (168) in h and following the recipe
of how to pull a time derivative into a correlation function given
in the previous subsection. Consequently, one has [363]

RA(τ2 − τ1) = − 〈A(τ2)∂hṡ(τ1)〉s (191)

= 〈A(τ2)∂hṡ
m(τ1)〉s − 〈A(τ2)∂hṡ

tot(τ1)〉s . (192)

The first form expresses the response function as a time
derivative of a correlation function where the observable A(τ2)

is correlated with the h-derivative of the stochastic entropy at
τ1. This form of the conjugate variable is actually unique if
one wants to write the response function as a time derivative
of a correlation function. Moreover, it allows a physically
transparent interpretation by splitting it into the sum of medium
and total entropy production as shown in the second line.
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8.2.3. Comparison with equilibrium FDT. For a comparison
with the equilibrium FDT, assume that the steady state is a
genuine equilibrium state for h = 0. In fact, two classes of
such systems should be distinguished.

First, if the system is not only in equilibrium at h = 0
but also at small h, the stationary distribution is given by the
Boltzmann distribution

peq
n (h) = exp{−[En(h) − F(h)]/T }, (193)

where En(h) is the internal energy and F(h) the h-dependent
free energy of the system. The stochastic entropy obeys
sn(h) = − ln p

eq
n (h) = [En(h) − F(h)]/T . Along an

individual trajectory, F(h) is constant and hence we have

T ∂hṡn(h)|h=0 = ∂hĖn(h)|h=0. (194)

Inserting this equivalence into (191), the FDT acquires its well-
known equilibrium form (equations (165) and (166)) involving
the observable conjugated to h with respect to energy.

Second, a system may be in equilibrium at h = 0 but
driven into a NESS even at constant small h. The paradigmatic
example is a perturbation through shear flow for which there
is no corresponding E(h) for any h �= 0. For such systems,
the equilibrium FDT can still be written in the form (191) but
also in the pure state form with Ba from (equations (189) and
(190)).

8.2.4. Systems with local-detailed balance. A further
comparison between the equilibrium and the NESS-FDT is
instructive for systems for which the perturbation enters the
ratio of the rates in the form of a local-DBC

wmn(h)

wnm(h)
= wmn(0)

wnm(0)
exp[hdmn/T ], (195)

where dmn = −dnm is the distance conjugate to the field
covered by the transition m → n. For h = 0, the system is
supposed to be in genuine equilibrium with averages denoted
by 〈. . .〉eq; for h = h0 �= 0 a genuine NESS denoted by
〈. . .〉s is reached. In equilibrium, using the global DBC
(113), one easily verifies ∂hṡ

m ∼= Ba and hence one has the
equilibrium FDT

T R
eq
A (τ2 − τ1) = 〈A(τ2)B

a(τ1)〉eq = 〈A(τ2)∂hṡ
m(τ1)〉eq.

(196)
On the other hand, the NESS-FDT in the form (192) always
holds. Since for such systems

∂hṡ
m =

∑
j

δ(τ − τj )dnj
−,nj

+/T (197)

is independent of h, the recipe for getting the FDT in a
NESS from the equilibrium FDT is to keep as a first term
the observables showing up in the correlation function but to
evaluate the latter under NESS conditions and to subtract an
expression involving the total entropy production [363].

8.2.5. Generalized Green–Kubo relations. In equilibrium,
the Green–Kubo relations express transport coefficients like
conductivity or viscosity by time-integrals over equilibrium
correlation functions of the corresponding currents. Based on
the FDT derived above, it is possible to derive similar relations
between transport coefficients in a NESS and appropriate
current–current correlation functions [400] as illustrated for a
simple model of molecular motors in [401]. This approach of
studying the linear response of a NESS should be distinguished
from extensions of the Onsager symmetry relations to the non-
linear response coefficients of an equilibrium system [402].

8.3. Colloidal particle on a ring as paradigm

The overdamped particle driven along a periodic potential, see
figure 1, as discussed in section 2.2 can serve as paradigm for
illustrating the different versions of the FDT [363].

8.3.1. Equivalent correlation functions. The equivalence
relation introduced in section 8.2.1 for variables occurring in
correlation functions in a NESS exists for continuous variables
as well. For a discretized position variable, jump rates can
easily be derived from discretizing the path integral. Going
then through the steps as in section 8.2.2 shows that the
equivalence

ẋ ∼= 2νs(x) − µF(x) (198)

can be used in a NESS correlation function at the earlier time.10

The mean local velocity νs(x) has been introduced in (12).
Sometimes, the generalization

g(x)ẋ ∼= g(x)[2νs(x) − µF(x)] − µT ∂xg(x) (199)

is useful which can be derived similarly11.

8.3.2. Three equivalent forms. First, consider a NESS
generated by a force f0 which is further perturbed by an
additional delta-like force impulse acting at time τ1. The
response function can be written as a correlation function in
the three equivalent forms
T RA(τ2 − τ1)|f0 �=0 = 〈A(τ2)[ẋ − µF(x)]|τ1/2〉s (200)

= 〈A(τ2)[ν
s(x) − µF(x)]|τ1〉s (201)

= 〈A(τ2)[ẋ − νs(x)]|τ1〉s . (202)
The first form follows from applying perturbation theory to
the path integral expression. The advantage of this expression
is that it does not require explicit knowledge of the stationary
distribution. By replacing the velocity with the corresponding
state variable as shown in (198) one obtains the second
form. This expression can also easily be obtained from
perturbation theory of the Fokker–Planck equation as in the
original derivation [346]. Finally, a simple linear combination
of the first two lines leads to the third form originally first
derived in [355]. In this form, both the additive correction to
the equilibrium form T RA(τ2 − τ1) = 〈A(τ2)ẋ(τ1)〉eq and the
significance of a locally co-moving frame become apparent.
10 In equilibrium, this equivalence becomes ẋ ∼= µ∂xV (x) where the crucial
sign difference compared with naively ignoring the noise in the Langevin
equation (1) should be noted.
11 Applied to a NESS correlation function with A(τ2) = 1, this relation leads
to 〈g(x)ẋ〉s = 〈g(x)[2νs(x) − µF(x)]〉s − µT 〈∂xg(x)〉s = 〈g(x)νs(x)〉s
which corresponds to (34) applied to a NESS.
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8.3.3. Generalized Einstein relation. The Einstein relation
(3) connecting the bare mobility µ of a particle embedded
in a viscous fluid with its diffusion constant D has arguably
been the first form of an FDT which was based on a
microscopic understanding of thermal motion. This relation
has many manifestations in more complex soft matter systems
as reviewed in [49]. If such a particle is in a periodic potential
V (x), the diffusion coefficient

D[V (x)] = lim
t→∞[〈x2(t)〉 − 〈x(t)〉2]/2t (203)

and the effective mobility

µ[V (x)] = ∂f 〈ẋ〉|f =0 (204)

still obey D[V (x)] = T µ[V (x)] even though both terms are
exponentially suppressed if the barriers exceed the thermal
energy.

In the presence of a non-zero base force, an effective
diffusion constant D[V (x), f ] and a mobility µ[V (x), f ] as in
(203) and (204) evaluated at a finite force, respectively, are still
defined. The effective mobility is the time-integrated response
function. Hence, the generalized Einstein relation between
D[V (x), f ] and µ[V (x), f ] follows from integrating (202)
from τ2 = τ1 to τ2 = ∞ as [355]

T µ[V (x), f ] = D[V (x), f ]

+
∫ ∞

0
dτ [〈ẋ(τ ) − 〈ẋ〉][νs(x(0)) − 〈ẋ〉〉s] (205)

which shows how the ‘violation’ of the usual Einstein relation
can be expressed as an integral over velocity correlation
functions. This relation is a simple example of a Green–Kubo
relation generalized to a NESS [400]. Another form of this
generalized Einstein relation has been studied in [403] for two-
dimensional motion in the presence of a magnetic field and
for a discrete model showing anomalous diffusion in [404],
respectively.

8.3.4. Experiments. The generalized Einstein relation (205)
has been measured experimentally in [405]. Significantly,
in this experiment, the extra integral term in (205) can be
about four times as big as T µ[V (x), f ] which shows clearly
that this experiment probes a genuine NESS far from any
linear response regime of an equilibrium system. Still, the
description of the colloidal motion by a Markovian Brownian
motion with unaltered thermal noise and a drift obviously
remains a faithful representation. The very fact that around
a critical force f � max|∂xV (x)| the diffusion coefficient
becomes quite large is known as giant diffusion [406, 407].

The time-resolved version of this FDT has been studied
experimentally in [408] where it was shown that even though
the different correlation functions (equations (200)–(202))
are theoretically equivalent their statistics can be vastly
different. Not surprisingly, the variant (201) involving only
state functions shows better convergence properties than the
ones requiring ẋ. The response not to a force but to a
change in the amplitude of the periodic potential was studied
experimentally in [409, 410].

8.4. Sheared suspensions

For studying the relation between fluctuations and response in
interacting non-equilibrium systems, a colloidal suspension in
shear flow provides a paradigmatic case. Such a system follows
a dynamics as introduced in section 2.6.3 with u(r) = γ̇ yex

(or the corresponding underdamped version) and some pair
interaction V .

One obvious question is to investigate the generalized
Einstein relation between the self-diffusion coefficient Dij (γ̇ )

and the mobility µij (γ̇ ) of a tagged particle which both become
tensorial quantities in such an anisotropic system. Szamel
[411] studied these quantities analytically using the memory-
function formalism. Krüger and Fuchs [412] have studied this
relation analytically and numerically near the glass transition.
Our numerical study in the fluid phase [413] revealed that for
moderate densities the results can surpringly well be expressed
as an effective temperature since the ratios Dii(γ̇ )/µii(γ̇ )

of the diagonal elements become isotropic with a roughly
quadratic increase with shear rate. This effective temperature
which turns out to be the kinetic one can be rationalized
by comparing this interacting system with a harmonically
bound single particle in shear flow [414]. The response to
a perturbation in the shear rate has been investigated in [356]
and the one to a static external long wave-length perturbation
in [415, 416].

Further studies of the general FDT for sheared suspensions
include the integration through transient formalism [417, 418].
One advantage of this approach is that all quantities can
be expressed in terms of (albeit complicated) equilibrium
correlation functions. The response to a time-dependent
additional shear strain has been studied numerically in [356]
using essentially the form (191) that makes the excess
compared with the equilibrium case explicit. The relation
between the violation of the equilibrium FDT and energy
dissipation using field variables has been addressed in [354].

9. Biomolecular systems

9.1. Overview

Single molecules and (small) biomolecular networks constitute
a paradigmatic class of systems to which the concepts of
stochastic thermodynamics can be applied. Conformational
changes of single molecules have become observable through
a variety of methods often summarized as single molecule
techniques [419–421]. There are essentially two ways
of exposing such a molecule that is embedded in an
aqueous solution of well-defined temperature containing
different solutes at specified concentrations to non-equilibrium
conditions. First, one can apply a (possibly time-dependent)
mechanical force if one end is connected via polymeric spacers
to the tip of an AFM or to beads in an optical tweezer. This
set-up allows one to study, e.g., force-induced unfolding of
proteins. Another source of non-equilibrium are unbalanced
chemical reactions catalyzed by the enzyme under study. In
combination with a mechanical force, this set-up allows one
in particular to resolve individual steps of a molecular motor
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and to measure force–velocity curves of such a molecular
machine [422, 423].

The fluctuating conformations of biomolecules in non-
equilibrium can be described in two ways [34, 424, 425]. First,
one can model the observable degrees of freedom like the
end to end-distance of a protein by a continuous degree of
freedom subject to a Langevin equation. Such an approach
is particularly appropriate for studying force-induced un- and
refolding of biopolymers, in particular, with the perspective of
recovering free energy differences and even landscapes from
non-equilibrium experiments as reviewed in section 9.3.

Second, one can identify discrete, distinguishable states
between which (sudden) transitions take place as has often
been carried out to model molecular motors [426–442]. In
most of these works the focus has been put on elucidating
the cycles involved in the action of the motor and on deriving
force–velocity curves and their dependence on ATP and ADP
concentrations. A combination of both types of models has
been used for describing molecular motors by a Langevin
dynamics in a ratchet potential that depends explicitly on the
current chemical state of the motor as reviewed in [443–446].

From the perspective of stochastic thermodynamics, one
would like to formulate a first law, discuss entropy production
and derive the corresponding fluctuation theorems on the
single molecule level. Within a discrete state description,
a first law along an individual trajectory has been discussed
for single enzymes in [98, 232, 447], for molecular motors in
[430, 434–439], and for small biochemical reaction networks
in [255, 448, 449]. Fluctuation theorems without explicit
reference to a first law were discussed for such systems in
[431, 440, 450–456].

From a theoretical point of view, there are essentially
two new aspects that enter the stochastic thermodynamics
of biomolecular systems beyond a naive combination of
the stochastic thermodynamics of colloids as developed in
section 2 and the discrete dynamics as introduced in section 6.
First, the rates are not arbitrary as in section 6 but are rather
constrained by thermodynamic consistency [211, 212, 457]
as discussed in detail below. Second, each of the states
visited along a stochastic trajectory contains many microstates.
Transitions between these (unobserved) microstates are fast
so that thermal equilibrium is reached within each state.
Transitions between the states, however, are slower, observable
and can be driven by external forces, flows or chemical
gradients. As a consequence, each of the states described by
stochastic thermodynamics carries an intrinsic entropy arising
from the coupling to the fast polymeric degrees of freedom and
to those of the heat bath. This effect must be taken into account
in any consistent identification of heat on the single trajectory
level [98, 438, 458, 459]. Some of the earlier studies quoted
above missed this contribution and, hence, failed to identify
the dissipated heat correctly.

How these systems can be described from the perspective
of a thermodynamic engine will be pursued in section 10.

9.2. Role of fast hidden degrees of freedom

In this section, we show how for a system with a separation
of time-scales the first law and entropy production along a

trajectory as well as the FTs can be formulated by extending
to this case the formalism developed for systems without
relevant internal degrees of freedom like the colloidal particle
of section 2. Whether for any specific system such as the
paradigmatic biomolecule used here as illustration such a
separation is a realistic assumption would have to be studied
on a case by case basis by investigating its specific molecular
dynamics. We first use a description with continuous degrees
of freedom and address the discrete case in section 9.4.

9.2.1. Thermodynamic states from a microscopic model. A
biopolymer contains a large number of coupled microscopic
degrees of freedom most of which will not be accessible in
experiments. Still, these microscopic degrees of freedom
affect processes on a larger scale that are described by
stochastic thermodynamics. The microscopic configurational
degrees of freedom collectively denoted by ξ are subject
to a microscopic potential energy �(ξ, λ) containing the
interactions within the molecule (and possibly with some of the
surrounding solvent and solute molecules). The dependence
on λ allows for an external potential arising from an AFM or an
optical tweezer whose positions can be controlled through λ.

Under non-equilibrium conditions, an external force
(or field or flow) is applied to the molecule leading to
conformational changes apparent through, e.g., a changing
end-to-end distance. Such a quantity is an example of a meso-
scale description that involves a certain number of variables
denoted by x. Each such state effectively comprises many
microstates. Formally, one can split all microstates {ξ} in
classes Cx such that each ξ belongs to exactly one Cx. The
dynamics of x is supposed to be slow and observable whereas
equilibration among the microstates making up one state
x is fast. Under this crucial assumption, the conditioned
probability p(ξ |x, λ) that a microstate is occupied is given by

p(ξ |x, λ) = exp[−(�(ξ, λ) − F(x, λ))/T ] (206)

with the constrained free energy

F(x, λ) ≡ E(x, λ) − T S(x, λ)

≡ −T ln
∑
ξ∈Cx

exp[−�(ξ, λ)/T ], (207)

the constrained intrinsic entropy

S(x, λ) ≡ −∂T F (x, λ) = −
∑
ξ∈Cx

p(ξ |x, λ) ln p(ξ |x, λ)

(208)

and constrained internal energy

E(x, λ) =
∑
ξ∈Cx

�(ξ, λ)p(ξ |x, λ). (209)

This model includes but is more general than a more
conventional description of the configurational potential in the
additive form

�(x, ξ, λ) = �0(x, λ) + �int(x, ξ, λ) + �med(ξ, λ) (210)

made up, respectively, by a system, a coupling (of arbitrary
strength) and a potential for the degrees of freedom of the
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Figure 6. Schematic view of a protein stretched by a bead in a laser
trap. In a meso-scale description, the configuration is characterized
by the positions x = {x1, x2, x3, x4, x5, x)} where x is the position
of the bead. The control parameter λ denotes the center of the trap.

medium, which all may depend on the control parameter. Here,
all degrees of freedom are split into those of the system x and
those of the heat bath ξ . By replacing �(ξ, λ) in (206) and
(207) with �(x, ξ, λ) and summing without constraint over all
ξ , the relations (206)–(209) remain true for the potential (210).

9.2.2. First law. For a time-dependent λ(τ), representing,
e.g., the center of a moving laser trap, the increment in applied
work reads

d̄w =
∑
ξ∈Cx

∂λ�(ξ, λ)p(ξ |x, λ) dλ (211)

= ∂λF (x, λ) dλ = dF(x, λ) − ∇F(x, λ) dx. (212)

In the first equality, for a changing external parameter the work
arising from the microscopic interaction �(x, λ) is expressed
as an average over all microstates contributing to the state with
(fixed) x. The second equality follows with (206). Compared
with the expression in the colloidal case (15), the essential
difference here is that F(x, λ) is a free energy rather than a
bare potential, i.e. internal energy. Consequently, the first law
that, of course, should involve internal energies becomes

d̄w = dE(x, λ) +d̄q = dF(x, λ) + T dS(x, λ) +d̄q. (213)

This relation together with (212) implies for the increment in
heat

d̄q = −∇F(x, λ) dx − T dS(x, λ), (214)

which makes the contribution to heat that arises from the
intrinsic entropy S(x, λ) clear.

For a practical evaluation of the work, one would have
to know F(x, λ), which, in general, has a complicated λ-
dependence if the microscopic potential �(ξ, λ) is genuinely
λ-dependent. However, if the external potential couples only
to the slow degrees of freedom x as typically assumed, see
figure 6, a significant simplification occurs. In this case, one
can write

F(x, λ) = F 0(x) + V (x, λ) = E0(x) − T S0(x) + V (x, λ),

(215)
where the quantities with superscript 0 are the thermodynamic
potentials (207)–(209) of the molecule for constrained slow

variables x in the absence of the external potential. As a
consequence

d̄w = ∂λV (x, λ)dλ, (216)

which becomes trivial for the typical case of a harmonic
potential V (x, λ) = k(xi − λ)2/2, with xi the relevant
coordinate for the coupling and k the effective stiffness of the
AFM tip or optical trap centered at λ(τ).

9.2.3. Dynamics. For the dynamics of the slow degrees of
freedom one has the Langevin equation

ẋ = µ[−∇F(x, λ)] + ζ (217)

with the noise correlations as in (43). Likewise, the Fokker–
Planck equation reads

∂τp(x, τ ) = ∇(µ∇F(x, λ)p(x, τ ) + T µ∇p(x, τ )). (218)

Compared with the discussion in section 2.6.2 the key
point here is that whenever states carry intrinsic entropy, the
gradient of the free energy (rather than of internal energy) has
to show up in the Langevin and Fokker–Planck equations since
for any fixed λ, the system has to reach equilibrium with the
Boltzmann factor

peq(x, λ) = exp[−(F (x, λ) − F(λ)/T ] (219)

with the λ-dependent free energy

F(λ) ≡ −T ln
∫

dx exp[−F(x, λ)/T ]. (220)

9.2.4. Entropy production. The stochastic entropy along the
trajectory x(τ ) becomes

s(τ ) ≡ − ln p(x(τ ), τ ) (221)

where p(x, τ ) follows from solving the Fokker–Planck
equation (218) with an appropriate initial condition. For such
a system with intrinsic entropy, the total entropy production
along a trajectory during time t

	s tot ≡
∫ t

0
dτ ṡ tot =

∫ t

0
dτ [ṡ(τ ) + Ṡ(x, λ) + q̇/T ] (222)

contains three contributions rather than two as in the case
without relevant intrinsic degrees of freedom.

9.2.5. Fluctuation theorems. In principle, the FT hold true
in the presence of intrinsic entropy as well provided the latter
is taken into account properly. The crucial point is that the
master functional R1 defined in (72) when using as conjugate
process the time-reversed one becomes

R1 = 	s int + q/T (223)

where
	s int ≡ S(xt , λt ) − S(x0, λ0) (224)

is the change in intrinsic entropy along the forward trajectory.
This result follows from evaluating the action in the path weight
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corresponding to the Langevin equation (217) and using the
first law (213) integrated along the trajectory.

As a consequence, the FTs involving entropy production
discussed in sections 3.3 and 4 essentially hold true with the
replacement

	sm → 	sm + 	s int. (225)

All FTs involving total entropy production hold true
unmodified.

The FTs involving work as defined in (212) hold true as
well. In particular, the JR stands with 	F = F(λt ) − F(λ0)

where the free energies have been defined in (220). The
reason why the intrinsic entropy does not spoil these relations
is the fact that both the work and the force in the Langevin
equation are determined by the free energy F(x, λ) very much
in the same way as the bare potential V (x, λ) determines
the corresponding quantities in the colloidal case. Loosely
speaking, the results of the simpler case hold true provided one
replaces the potential V (x, λ) by the free energy (i.e. potential
of mean force) F(x, λ).

In the presence of intrinsic entropy, the FDT (192) must
be modified accordingly by replacing ṡm by ṡm + ṡ int.

9.3. Free energy recovery from non-equilibrium data

9.3.1. HSR and variants. From a practical perspective,
arguably the most relevant FT for biomolecules is the HSR
[10, 460]. As a kind of JR resolved along a reaction coordinate,
it allows one to determine the free energy landscape F 0(x)

from non-equilibrium work measurements through an external
potential V (x, λ) conditioned on a fixed value of x. It reads

exp[−F 0(x)/T ] = exp[(V (x, λt ) − F(λ0))/T ]

×〈exp[−w/T ]δ(xt − x)〉. (226)

The rhs is evaluated by measuring the accumulated work w as
a function of position xt irrespective of the particular t .

A concise derivation [21] of the HSR starts with the
IFT (81). With the necessary replacement (225), the initial
equilibrium distribution p0(x, λ0) = exp[−(F (x0, λ0) −
F(λ0)/T ], the free choice p1(xt ) = δ(xt − x), the first law
(213) and the assumption (215), it follows within a couple of
lines.

A variant of the HSR not requiring the position histograms
in (226) can be derived for a harmonic coupling V (x, λt )

[461]. Moreover, similarly as the CFT generalizes the JR
by including information from the time-reversed process,
bidirectional variants of the HSR have been derived and tested
in model calculations [462, 463].

9.3.2. Experiments. The first experimental application of the
JR to biomolecules was the determination of the free energy
involved in partially unfolding RNA hairpins [464]. The CFT
was first applied in another experiment measuring the free
energies in RNA hairpins and RNA three-helix junctions [465].
In a series of experiments, Ritort and co-workers have used
the CFT to determine the free energy involved in unfolding
DNA hairpins [101, 466–468]. The free energy involved in
unfolding the multidomain protein, titin, has been measured
in [469] using a simplified variant of the JR leading to some

criticism [470, 471]. The CFT has been used to determine free
energy changes induced by mechanically unfolding coiled-coil
structures [472, 473] and different topological variants of a
protein [474]. Axis-dependent anisotropy in protein unfolding
was investigated using the HSR in [475]. The free energy
landscape derived from the HSR has been compared with
equilibrium measurements in [476].

9.3.3. Numerical work. As relatively scarce as real
experimental studies using the FTs still are, as large is
the number of ‘numerical’ experiments illustrating the use
of the HSR and its variants for recovering free energy
landscapes. The following brief list is necessarily incomplete.
Model calculations for a single coordinate deal with the
advantage of applying a periodic force protocol [477], with
random forcing [478], comparison with ‘inherent structures’
[479], with motion in a periodic potential [480], and with
recovering an unknown spatially dependent mobility [481].
Multidimensional landscapes were reconstructed in [482].
Monte-Carlo or molecular dynamic simulations were used for
an off-lattice model protein [483], for a protein domain in [484]
and for a membrane protein in [485].

An important line of research in this context is to find
methods for dealing with the error caused by having only finite
(and even noisy) data for evaluating the non-linear averages
involved in the JR and the HSR. Some of the papers dealing
with this issue are [100, 153, 486–512].

9.4. Enzymes and molecular motors with discrete states

In this section, we show how the general framework for a
Markovian dynamics on a discrete set of states can be adapted
to describe the stochastic thermodynamics of enzymes and
molecular motors in a thermal environment starting again from
a microscopic model. Apart from keeping track of the intrinsic
entropy of the states the essential point is to incorporate the
enzymatic reactions involving solute molecules consistently.

9.4.1. Thermodynamic states. The enzyme is in an
aqueous solution which consists of molecules of type i with
concentrations {ci} and chemical potentials {µi} enclosed in
a volume V at a temperature T . It exhibits a set of states
such that equilibration among microstates corresponding to the
same state is fast whereas transitions between these states are
assumed to be slower and observable. Under these conditions,
one can assign to each state n of the enzyme a free energy
F enz

n , an internal energy Eenz
n , and an intrinsic entropy Senz

n . As
explicitly discussed in [459], these quantities follow from any
microscopic model that specifies the energy of the microstates
of enzyme and solution. They obey the usual thermodynamic
relation

F enz
n = Eenz

n − T Senz
n (227)

despite the fact that the enzyme is small. Moreover, there is
no need to assume that the interaction between enzyme and
solution is somehow weak. In general, these thermodynamic
variables of the enzyme depend on the concentrations of the
various solutes.
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9.4.2. First law. In this section, we discuss the first law
for the three classes of (i) pure conformational changes, (ii)
enzymatic reactions including binding and release of solutes
and (iii) motor proteins.

(i) Conformational changes: if the enzyme jumps from state
m to state n, the change in internal energy

	Eenz ≡ Eenz
n − Eenz

m = −q (228)

must be identified with an amount q of heat being released
into (or, if negative, being taken up from) the surrounding
heat bath since there is no external work involved.

(ii) Enzymatic reactions: the more interesting case are
enzymatic transitions that involve binding of solute
molecules Ai , their transformation while bound, and
finally their release from the enzyme. Quite generally,
one considers transitions written as

n−
ρ +

∑
i

r
ρ

i Ai � n+
ρ +

∑
i

s
ρ

i Ai (229)

where 1 � ρ � Nρ labels the possible transitions. Here,
n−

ρ and n+
ρ denote the states of the enzyme before and

after the reaction, respectively. For s
ρ

i = 0, this scheme
describes pure binding of solutes, and for r

ρ

i = 0 release
of bound solutes. A transformation (such as bound ATP
to bound ADP + Pi) can also be described by the above
scheme with r

ρ

i = s
ρ

i = 0 and the understanding that the
enzyme states contain the bound solutes, see [459] for a
more detailed discussion.
The free energy difference involved in such a transition

	Fρ = 	Eρ − T 	Sρ ≡ 	F enz
ρ + 	F sol

ρ (230)

has two contributions where

	F enz
ρ = 	Eenz

ρ − T 	Senz
ρ ≡ F enz

n+
ρ

− F enz
n−

ρ
(231)

denotes the free energy change of the enzyme and

	F sol
ρ = 	Esol

ρ − T 	Ssol
ρ ≡

∑
i

(s
ρ

i − r
ρ

i )µi ≡ 	µρ

(232)
denotes the free energy change attributed to the solution
in this reaction. Both free energy contributions can as
usually be split into internal energy and intrinsic entropy.
As in the case of pure conformational changes, one assigns
a first law type energy balance to each reaction of type
ρ (229). Once an initial state is prepared, in the closed
system (enzyme plus solution) there is obviously no source
of external work. Neither does the system perform any
work. Hence, the heat released in this transition is given
by minus the change of internal energy of the combined
system [459]

qρ = −	Eρ = −	Eenz
ρ − 	µρ − T 	Ssol

ρ . (233)

This relation shows that the enzyme and the solution are
treated on the same footing since only their combined
change in internal energy enters. Since the heat is
released into the solution acting as a thermal bath, the
configurational change of the enzyme as well as binding
and releasing solute molecules contribute to the same bath.

(iii) Molecular motors: essentially the same formalism applies
to an enzyme acting as a molecular motor often described
by such discrete states. Most generally, if the motor
undergoes a forward transition of type ρ as in (229) it may
advance a distance dρ in the direction of the applied force
f (or, if f < 0, opposite to it). The special cases dρ = 0
(pure chemical step) or s

ρ

i = r
ρ

i = 0 (pure mechanical
step) are allowed. For dρ �= 0, the mechanical work

wmech
ρ ≡ f dρ (234)

is applied to (or, if negative, delivered by) the motor.

The motor operates in an environment where the
concentration of molecules such as ATP, ADP or Pi are
essentially fixed. The first law for a single transition of type ρ

becomes [459]

qρ = wmech
ρ −	Eρ = f dρ −	Eenz

ρ −	µρ −T 	Ssol
ρ . (235)

9.4.3. Role of chemiostats: genuine NESS conditions.
The more recent form (235) of the first law differs from
an expression discussed previously for molecular motors
[430, 434–438]. There, in the present notation and sign
convention, the first law for a step like in (229) reads

q̄ρ = wmech
ρ − 	Eenz

ρ − 	µρ. (236)

The difference between the two expressions for the heat

q̄ρ − qρ = T 	Ssol
ρ (237)

involves the entropy change in the solution resulting from the
reaction.

The physical origin of the two different forms arises from
the fact that in the older work the enzyme is thought to be
coupled to ‘chemiostats’ providing and accepting molecules at
an energetic cost (or benefit) given by their chemical potential.
Introducing the notion of a ‘chemical work’

wchem
ρ ≡ −	µρ (238)

the first law is then written in the form

wmech
ρ + wchem

ρ = 	Eenz
ρ + q̄ρ . (239)

The concept of chemiostats is supposed to guarantee
that the concentration of solute molecules remains strictly
constant. Physically, it could be implemented by an ATP
buffer of ATP-regeneration scheme that involves additional
enzymes. From the perspective of stochastic thermodynamics
as long as one focuses on single transitions, however, it would
be more appropriate to treat these additional enzymes and
the chemical reactions they catalyze in the same way as the
reaction involving the motor protein. It turns out that if
these additional reactions operate quasistatically, then q̄ρ is the
dissipated heat that under steady-state conditions would enter
an ensemble average [459]. Therefore, choosing the heat q̄ρ

is appropriate whenever one deals with strict NESS conditions
while not wanting to consider the heat involved in enforcing
these conditions explicitly as an extra contribution. On the
trajectory level for a single motor protein, there seems to be
no sensible way for assigning q̄ρ instead of qρ to an individual
transition.
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9.4.4. Stochastic trajectory and ensemble. A trajectory of the
enzyme can be characterized by the sequence of jump times
{τj } and the sequence of reactions {ρσj

j } where ρj denotes the
corresponding reactions (229) and σj = ± characterizes the
direction in which the reaction takes place.

An ensemble is defined by specifying (i) the initial
probability pn(0) for finding the enzyme in state n and (ii)
the set of rates w±

ρ with which the reactions (229) take place
in either direction. Both inputs will then determine the
probability pn(τ) to find the enzyme in state n at time τ .

9.4.5. Rates and local-detailed balance. An identification
of entropy production along the trajectory requires some input
from the rates determining the transitions. For the simple case
of pure conformational changes, m � n, choosing rates that
obey

wmn

wnm

= exp[−(F enz
n − F enz

m )/T ] (240)

is required by thermodynamic consistency. Indeed, only this
choice guarantees that irrespectively of the initial conditions
the ensemble will eventually reach thermal equilibrium,

pn(τ) → peq
n ≡ exp[−(F enz

n − F enz)/T ], (241)

with the free energy of the enzyme

F enz ≡ −T ln
∑

n

exp[−F enz
n /T ]. (242)

Fixing the ratio of the rates still leaves one free parameter per
pair of states which can only be determined from knowing the
dynamics of the underlying more microscopic model.

The corresponding relation for transitions that involve
enzymatic reactions (229),

w+
ρ

w−
ρ

= exp[−	Fρ/T ] = exp[−(	F enz
ρ + 	µρ)/T ], (243)

and for transitions of molecular motors,

w+
ρ

w−
ρ

= exp[−(	F enz
ρ + 	µρ − wmech

ρ )/T ], (244)

are somewhat less obvious. Essentially, three types of
justifications for choosing such ratios can be given.

First, even though microreversibility is often invoked it
seems unclear how to obtain these ratios rigorously using this
concept if chemical reactions are involved.

Second, one can derive (243) using the following
argument. For any enzymatic reaction there will be
concentrations {ceq

i } of the solutes such that the enzyme
will reach equilibrium. For these particular equilibrium
concentrations, a choice of rates respecting (243) is mandatory
as in the case of pure conformational changes. If one now
assumes that (i) the reaction rates obey the mass action law
and that (ii) the concentrations and the chemical potentials
are related by the ideal solution expression, µi(ci) = µ

eq
i +

T ln(ci/c
eq
i ), then the form (243) follows.

Third, more recently it has been shown that by requiring
a consistent stochastic thermodynamic description on the

trajectory level, one can indeed derive these conditions on the
rates using rather mild assumptions [459].

In all cases by invoking the respective first laws
(equations (228), (233), (235)), the ratio of the rates can also
be written in the form

w+
ρ

w−
ρ

= exp[	Sρ + qρ/T ] (245)

showing that this ratio is determined by the change of intrinsic
and medium entropy involved in this transition. This important
relation should be compared with (20) in the colloidal case
where the continuum version of such a ratio involves only
the dissipated heat since there is no relevant intrinsic entropy
change given here by 	Sρ . Similarly, for a biopolymer
within a continuum description, the relation (223) shows the
contribution of intrinsic entropy.

9.4.6. Entropy production and FTs. The total entropy
production involved in one forward transition ρ at time τ can
be derived from the general expression (126) and using the
ratio of the rates (245) as

	s tot
ρ (τ ) = ln

pn−
ρ
(τ )w+

ρ

pn+
ρ
(τ )w−

ρ

= 	sρ + 	Sρ + qρ/T . (246)

It consists of three contributions. The first is the change in
stochastic entropy,

	sρ(τ) = − ln[pn+
ρ
(τ )/pn−

ρ
(τ )]. (247)

The second denotes the change in the intrinsic entropy (230)
of the system which consists here of enzyme and surrounding
solution. The third term arises from the dissipated heat
(equations (233) and (235)).

Summing over all reactions taking place up to time t

and adding the concomitant change in stochastic entropy,
	s = − ln pnt

(t) + ln pn0(0), one obtains the total entropy
production along a trajectory

	s tot = 	s +
∑

j

σj [	Sρj
(τj ) + qρj

(τj )/T ], (248)

where σj = ±1 denotes the direction in which the transition
ρj takes place at time τj .

The arguably most relevant situation for an enzyme
modeled by discrete states is a NESS generated by non-
equilibrated solute concentrations and/or an applied external
force in the case of a motor protein. In such a NESS, one
has the SSFT (65) for the total entropy production as defined
in (248).

9.4.7. Time-dependent rates and work. So far, it was
implicitly assumed that the rates are time-independent. Time-
dependent rates could arise either since the concentrations of
the solutes are externally modulated (or, in a finite system,
depleted due to the action of the enzymes) or since the forces
applied to motor proteins are time-dependent. The ratio of the
rates is then still constrained by equations (243) and (244).
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However, under such time-dependent external conditions
characterized by a parameter λ(τ), the thermodynamic state
variables En, Sn and Fn can become time-dependent as well.
In consequence, there are contributions to the first law and to
entropy production even if the enzyme remains in the same
state. Specifically, if the enzyme remains in state n, in analogy
to (212) the first law becomes

d̄wn = ∂λFn dλ = (∂λEn − T ∂λSn) dλ = ∂λEn dλ +d̄qn.

(249)

Hence, there is exchanged heat, d̄qn = −T dSn, even if
the system remains in the same state whenever the intrinsic
entropy depends on a changing external parameter (such as
the concentration of the solutes).

These expressions of heat and work resemble those of
quasi-static processes as they should since it is implicitly
assumed that the distribution of microstates that contribute
to the state n adapts (almost) instantaneously to thermal
equilibrium. Consequently, these contributions to work and
heat enter the FTs trivially.

9.4.8. Experiments: F1-ATPase. Apart from free energy
reconstructions described above, experimental work using the
concepts of stochastic thermodynamics is still scarce. For the
F1-ATPase, two groups have published work pointing in this
direction. In an intriguing example of exploiting the SSFT, the
torque exerted by the F1-ATPase on a bead in an optical trap
could be measured without knowing the friction constant of
the bead [513]. The implicit assumption, however, with this
type of analysis is that no further dissipative mechanisms exist.
In another study of this molecule [514, 515], it was inferred
that this motor transfers almost the full free energy from ATP
hydrolysis into loading the elastic element connecting the
motor with the bead.

9.4.9. Biochemical reaction networks. The formalism
described above for a single enzyme can easily be extended
to networks involving several types of (different) enzymes
[98] or ordinary chemical reaction networks using chemical
master equations [255, 449]. Specific examples for which
the distribution of entropy production has been calculated are
[516–518].

10. Autonomous isothermal machines

10.1. General aspects

Enzymes and molecular motors as described in section 9
from the stochastic thermodynamics perspective provide a
paradigm for isothermal machines. In contrast to heat
engines, which in their classical form are the archetypical
thermodynamic machines and which in their stochastic version
will be described in section 11, isothermal machines do not
transform heat but rather chemical energy into mechanical
work (or vice versa) while the temperature of the surrounding
medium remains constant. For an overall scheme introducing
the classifications relevant to the content of the next two
sections, see figure 7.

Figure 7. This scheme shows two pairs of classification (isothermal
versus heat engines and autonomous versus cyclically driven), a few
key notions (power, efficiency and efficiency at maximum power
(EMP)) and a possible approximation (linear response) applicable to
machines. The overlap of the white boxes with these alternatives
indicates which case will be relevant to the respective sections.

An important classification is whether or not a machine
operates autonomously. In the stochastic setting, an
autonomous machine will typically correspond to a NESS
generated by externally imposed time-independent boundary
conditions. Any molecular motor is a typical example
of such an autonomous isothermal machine, since single
molecule assays typically provide conditions of constant non-
equilibrium concentrations of ‘fuel’ molecules such as ATP.
For a non-autonomous machine, some time-dependent external
control is required that ‘leads’ the machine through its cycle.
Building reliable artificial molecular motors in the lab still
constitutes a major challenge as reviewed in [519–524].

In this section, we present a systematic theory for
isothermal autonomous machines in the discrete state version
based on the representation of the NESS in terms of cycles
of the underlying network as introduced in section 6.4. As
a main ingredient, a local-DBC as introduced in (195) and
(245) is imposed on the rates thus guaranteeing thermodynamic
consistency. Even though we focus on the discrete case,
this approach includes earlier models based on continuous
coordinates diffusing in a ratchet potential that depends on
the chemical state of the motor since any continuum model
can be discretized.

An important quantity for any type of machine is
its efficiency defined as the ratio between the power
delivered by the machine and the rate of ‘fuel’ consumption.
Thermodynamics constrains this efficiency by 1 for isothermal
machines and by the Carnot efficiency for thermal heat
engines operating between heat baths of different temperatures.
In both cases working at the highest possible efficiency
comes at the cost of zero delivered power since reaching the
thermodynamic bound requires a quasi-static, i.e. infinitely
slow operation. A practically more relevant question then is
about efficiency at maximum power (EMP). We will see that
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Table 1. Affinities and generalized distance for isothermal
machines.

Process Affinity Fk Gen. distance dk

Linear motion Force f/T Linear distance d
Rotation Torque N/T Angle 	φ
Particle transport −	µ/T (typically) 1
Chemical reaction −	µ/T (typically) 1

in this thermodynamic framework rather general expressions
for power, efficiency and EMP emerge.

It would be interesting to pursue these issues also
for periodically driven machines, which are one step more
complex than the autonomous ones. While there is a vast
literature on how to generate transport by periodic modulation
of system parameters as reviewed in [445, 525–527] the
problem of efficiency and EMP, however, seems not to have
been addressed systematically for such stochastic machines.
One reason is that even making explicit statements about the
periodic steady state is much harder than for the NESS engine
at constant external parameters.

10.2. General framework for autonomous machines: Cycle
representation and entropy production

An autonomously operating device or machine can be modeled
as a Markov process on a network in a steady state. Transitions
between different states in this NESS depend on rates that
reflect both the coupling of the machine to reservoirs with
different chemical potentials for solutes or particles and
external forces or loads. These non-equilibrium conditions
can be expressed by generalized thermodynamic forces or
‘affinities’ Fk as listed in table 1.

For a systematic presentation it is useful first to recall the
representation of a NESS in terms of cycle currents [211, 212],
see figure 3. Rather than summing over the individual
transitions (mn) or reactions ρ as we have carried out so far, in
a NESS probability currents can be expressed by a sum over
directed cycle currents

ja ≡ j+
a −j−

a = j+
a (1−j−

a /j+
a ) = j+

a (1−
∏
ρ∈a

w−
ρ /w+

ρ) (250)

where a labels the cycles and j+
a and j−

a denote the inverse
mean times required for completing the cycle in forward
and backward directions, respectively12. These forward
and backward (probability) currents can be expressed in a
diagrammatic way by the transition rates of the whole network
(not just those of the respective cycle). However, the ratio
j−
a /j+

a , is given by the ratio between the product of all backward
rates and the product of all forward rates contributing to the
cycle a.

Thermodynamic consistency as formulated in (139) or
(245) allows one to express this ratio∏

ρ∈a

w−
ρ /w+

ρ = exp(−	Sa) (251)

12 The directed cycle current ja ≡ 〈J a〉 is the mean of the fluctuating current
J a introduced in section 6.4.

by the sum

	Sa ≡
∑
ρ∈a

(
qρ/T + 	Sρ

) ≡ qa/T +
∑
ρ∈a

	Sρ = q̄a/T

(252)
of the entropy changes in the reservoirs and heat baths
associated with this cycle. The last equality recalls the
definition of heat under strict steady-state conditions which
includes the quasi-static refilling of the reservoirs as discussed
in section 9.4.3. With the first law (239) summed along a cycle,
this entropy change can also be written as

	Sa = (wmech
a + wchem

a )/T . (253)

This representation alluding to the definition of a ‘chemical
work’ introduced in section 9.4.3 becomes convenient when
discussing the efficiency.

Alternatively, expressed in terms of affinities, the entropy
change associated with a cycle becomes

	Sa =
∑

k

dk
aFk, (254)

where dk
a is a generalized distance conjugate to the force Fk

as listed in table 1. To each affinity Fk , there corresponds a
conjugate flux or current

Jk ≡
∑

a

(j+
a − j−

a )dk
a =

∑
a

j+
a [1 − exp(−	Sa)]d

k
a (255)

describing the rate with which the respective quantity is
‘processed’ by the machine.

The mean entropy production rate can be written as

σ =
∑

a

(j+
a − j−

a )	Sa (256)

=
∑

a

j+
a [1 − exp(−	Sa)]	Sa =

∑
k

JkFk. (257)

These expressions are exact and do not imply any linear
response assumption as the final bilinear form may suggest.

10.3. Power and efficiency

10.3.1. Input and output power. A device or machine is
supposed to deliver some output from consuming some input.
Characteristically for nano-machines, the role of output and
input can easily be reversed as it depends on the signs of the
corresponding affinities. Input has to be offered to the machine
with a positive affinity Fi > 0 whereas output is associated
with a current or flux that is opposite to an applied affinity
Fo < 0.

Quite generally, for an isothermal machine in a NESS,
the total rate of production of output and input, Po and
Pi , respectively, is given by the product between a pair of
corresponding flux and affinity according to

Po,i = εo,iJo,i(T Fo,i) (258)

= εo,i

∑
a

j+
a [1 − exp(−	Sa)]d

o,i
a (T Fo,i) (259)

where εo ≡ −1 and εi ≡ 1 reflect the fact that the output is
delivered against an external load Fo < 0. Expressed in terms
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of a cycle-specific work input

wi,a ≡ Fid
i
a (260)

and work output
wo,a ≡ −Fod

o
a , (261)

the power can also be written as [528]

Po,i =
∑

a

j+
a [1 − exp(wo,a − wi,a)]T w{o,i}a. (262)

In the contribution of each cycle, the expressions (259) and
(262) separate a system-specific kinetic prefactor, j+

a =
j+
a ({Fk}), from the remaining thermodynamic quantities.

10.3.2. Efficiency and EMP. The efficiency of a machine is
defined as the ratio

η ≡ Po/Pi. (263)

It has occasionally been argued that the traditional definition
of efficiency (263) should be modified for molecular motors
pulling cargo in order to include the ‘work’ required for
overcoming Stokes friction even in the absence of an external
force [529, 530]. More recently, a ‘sustainable’ efficiency has
been suggested as an alternative concept [531, 532]. In this
review, we keep the traditional expression (263).

For the paradigmatic case of just two non-zero affinities,
the entropy production rate (257) becomes

σ = (Pi − Po)/T � 0 (264)

implying that efficiency of isothermal machines is bounded
by 0 � η � 1. Working at the highest possible efficiency
comes at the cost of zero delivered power since reaching the
thermodynamic bound requires a quasi-static, i.e. infinitely
slow operation. A practically more relevant question then is
about EMP.

The notion of EMP requires one or several parameters {λi}
with respect to the variation of which Po can become maximal,
i.e. P ∗

o ≡ max{λi } Po ≡ Po({λ∗
i }). EMP is then given by

η∗ ≡ P ∗
o /Pi({λ∗

i }). (265)

In general, the result for EMP will depend strongly both on
the choice and the allowed range of the variational parameters
{λi} [528, 533] which is a fact occasionally ignored when
statements about the EMP are made. In particular, one
should distinguish variation with respect to the externally
imposed affinities from those with respect to structural or
intrinsic parameters of the machine. Examples for the latter
are the topology of the network and common prefactors for
forward and backward rates that leave their ratio and thus the
thermodynamics invariant.

10.4. Linear response: relation to phenomenological
irreversible thermodynamics

At this point, it is instructive to consider a machine operating
close to equilibrium and to cast the results into the framework
of linear irreversible thermodynamics [534, 535]. This theory

truncates an expansion of the fluxes in the first order of the
affinities, i.e. assumes that

Jk =
∑

l

LklFl (266)

with the Onsager coefficients Lkl . By expanding (255) for
small affinities and using (254), we obtain for the Onsager
coefficients the cycle representation

Lkl =
∑

a

j+eq
a dk

adl
a. (267)

Here, j
+eq
a ≡ j+

a ({Fk} = 0) is the equilibrium forward current
of a cycle a. In this approach, the Onsager symmetry Lkl = Llk

is satisfied automatically. Similarly, the rate of total entropy
production (257) becomes

σ ≈
∑

a

j+
a (	Sa)

2 =
∑
kl

LklFkFl . (268)

In this lowest order, power input and output (259) become

Po,i = εo,iJo,i(T Fo,i) = εo,iT
∑

k

L{o,i}kFkFo,i. (269)

In the paradigmatic case of two affinities, for fixed input
affinity Fi > 0 and choosing the output affinity as variational
parameter Fo , maximum power is reached for

F∗
o = −LoiFi/2Loo (270)

leading to an EMP of [536]

η∗ = L2
oi/[4LooLii − 2LoiLio] � 1/2. (271)

The upper bound imposed by the positivity of entropy
production is realized for a degenerate matrix of Onsager
coefficients,

LooLii = LoiLio, (272)

which implies that Jo ∼ Ji. Possible realizations of this
structural condition are (i) all unicyclic machines and (ii)
tightly coupled multicyclic machines. These two classes and
the third one of weakly coupled multicyclic machines will be
defined and discussed in the next sections.

10.5. Unicyclic machines

Unicyclic machines consist of only one cycle which allows
one to drop the cycle index a in this section, see figure 3 for
an example. In general, the power delivered and used by a
unicyclic motor becomes with (262)

Po,i = Tj+[1 − ewo−wi ]wo,i. (273)

Its efficiency η ≡ wo/wi depends thus trivially only on the
externally imposed affinities Fk and the intrinsic properties
do,i but is independent of the detailed kinetics. In the regime
0 < wo < wi, the motor will work as intended. For wo = wi,
the motor has optimal efficiency η = 1 but does not deliver
any power since it then cycles as often in the forward as in the
backward direction.

38



Rep. Prog. Phys. 75 (2012) 126001 U Seifert

The concept of EMP requires one to identify the
admissible variational parameters. A simple and physically
transparent choice is to fix the input wi and vary the output
wo, e.g., by changing the applied force or torque in the case of
a molecular motor. The condition dPo/dwo = 0 leads to the
implicit relation [528]

wi = w∗
o + ln[1 + w∗

o/(1 + xow
∗
o)] (274)

for the optimal output w∗
o at fixed input wi with

xo ≡ d ln j+/dwo ≈ xeq
o + O(wi, wo). (275)

These expressions can easily be evaluated for any unicyclic
machine with specified rates which determine the non-
universal j+.

The linear response regime is defined by the condition
wo < wi 	 1. By expanding (274), one obtains

η∗ = w∗
o/wi ≈ 1/2 + (xeq

o + 1/2)wi/8 + O(w2
i ) (276)

which shows how system-specific features like the coefficient
x

eq
o enter EMP beyond the universal value 1/2. This expression

proves that, depending on the value of the non-universal
parameter x

eq
o , EMP may well rise beyond the linear response

regime as found first in a case study of molecular motors [537].
These results seem to be at variance with another study along
similar lines where a universal bound of 1/2 was found for
EMP [531]. The difference, however, is that the latter authors
constrain the optimization to a parameter space that leaves the
stationary distribution invariant which seems to be a somewhat
artificial condition. Further analytical and numerical results for
EMP of unicyclic machines using wo or both, wi and wo, as
variation parameters can be found in [528]. Bounds on EMP
on simple unicyclic machines have been derived in [538].

10.6. Multicyclic machines: strong versus weak coupling

A discussion of multicylic machines along similar lines does
not require much additional conceptual effort [528]. The
crucial distinction becomes the one between ‘strong’ (or tight)
and ‘weak’ (or loose) coupling first introduced within the
phenomenological linear response treatment in [536] and later
stressed by van den Broeck and co-workers mostly in the
context of heat engines as reviewed in the next section. In a
strongly coupled multicylic machine, any cycle containing the
input transition also contains the output transition (assuming
for simplicity that input and output affect only one transition
each). For such strongly coupled machines exactly the same
formalism as for unicyclic machines applies with the only
caveat that j+ appearing there is now given by j+ ≡ ∑

a j+
a

where the sum runs over all cycles that include input and output
transitions and the j+

a are the corresponding forward cycle
currents. Thus, such strongly coupled machines obey the same
relations for efficiency and EMP as unicyclic machines.

In the weak coupling case, there are cycles containing
the input but not the output transition. Running through such
a cycle the machine ‘burns’ the input without delivering any
output which clearly decreases the efficiency. In particular,
it turns out that in the linear response regime, EMP is less
than 1/2, but may still rise when moving deeper into the non-
equilibrium regime [528].

10.7. Efficiency and EMP of molecular motors

One important class of potential applications of the theory
just described are molecular motors that transform chemical
energy into mechanical energy (or vice versa). Traditionally,
efficiency of molecular motors has been studied within ratchet
models where the motor undergoes a continuous motion in a
periodic potential that depends on the current chemical state
of the motor [443–446, 539, 540]. Dissipation then involves
both the continuous degree of freedom which should be treated
along the lines discussed in section 2 and the discrete switching
of the potential due to an enzymatic event. Model systems of
this type have been investigated in [433, 541–544]. For a recent
study of EMP in such a continuum description, see [545].

There is a second motivation for studying such models
combining discrete with continuous dynamics. In the typical
experimental set-up for measuring the efficiency of a molecular
motor under load, an external force or torque is applied to
a micrometer-sized bead that is connected to the molecular
motor like in the recent example of the rotary motor F1-
ATPase [514, 515, 546]. The discrete nano-sized steps of the
motor become visible only through monitoring the biased
Brownian motion of the bead which clearly is continuous. For
a comprehensive description, both dissipation in the discrete
steps of the motor and the one associated with the continuous
motion of the bead should be combined [547].

For dynamics on a discrete set of states, efficiency (rather
than EMP) has been investigated recently for various models
[548, 549]. Genuine EMP has been studied for both the
simplest unicyclic and a simple multicycle network in [537].
It would be interesting to do so for more intricate models such
as the one introduced in [435], but also for artificial swimmers
such as the one discussed in [550].

11. Efficiency of stochastic heat engines

11.1. Carnot, Curzon–Ahlborn and beyond

In classical thermodynamics, a heat engine, delivering work
−W by extracting heat −Q1 from a hot bath at temperature T1

and releasing heat Q2 into a cold bath at temperature T2, has
an efficiency

η ≡ |W |/|Q1| � ηC ≡ 1 − T2/T1 (277)

limited by the Carnot efficiency ηC which provides a universal
bound that follows from combining the first and the second law.
Reaching the upper bound comes at the price of zero power
since this condition requires a quasi-static, i.e. infinitely slow
operation. A practically more relevant efficiency is the one
at maximum power (EMP), η∗, which becomes well-defined
only if the parameter space available for the maximization is
specified. For macroscopic thermodynamics, introducing this
problem is often attributed to Curzon and Ahlborn [551] even
though their result has been described earlier, see [552] and
the comment made in reference [1] of [533]. Subsequent work
for macroscopic engines pursued under the label of finite-time
thermodynamics is reviewed in [553–556].

Curzon and Ahlborn (CA) assume ordinary heat
conduction between the baths and the engine that is supposed
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to operate without further internal losses. By optimizing the
power with respect to the temperature difference responsible
for the heat exchange between the baths and the machine, or,
equivalently in their set-up, the duration of the two isothermal
steps (while fixing a constant ratio between the time allocated
to isothermal and adiabatic steps) they obtain for EMP the
expression

ηCA ≡ 1 − (T2/T1)
1/2 ≈ ηC/2 + η2

C/8 + O(η3
C), (278)

which is independent of the thermal conductivities between
baths and engine.

Whether or not the CA result can claim more universality
than under the original ‘endoreversible’ assumptions, or is even
a bound on EMP, is a subtle, if not even ill-defined, issue
since maximum power depends crucially on the admissible
parameter space. Beyond the original assumption there are
conditions like for a cascade of intermediate engines [557, 558]
and for ‘weak symmetric dissipation’ [559] where CA can be
shown to hold for a rather reasonable choice of variational
conditions. Numerical simulations of finite-time Carnot cycles
for a weakly interacting gas have been analyzed for efficiency
and EMP in [560–562].

A related question is the range of universal validity of
the expansion in (278) for EMP. For tightly coupled machines
defined by an output work flux that is proportional to the
heat flux taken from the hot reservoir, the leading term, ηC/2,
follows from simple linear irreversible thermodynamics for
fixed input and variable output [536]. Such a result will hold
both for macroscopic as for small engines.

The question of efficiency and EMP is indeed as relevant
and applicable to small engines or devices as to macroscopic
ones. The new aspect concerns the role of fluctuations not in
the sense that a fluctuating efficiency is defined which might
lead to ill-defined results given the fact that sometimes the
heat taken from the hot bath would be zero or even negative.
One rather keeps the definition (277) but now W and Q

are mean values that are determined by averaging over the
fluctuations13. A main advantage of a stochastic approach
compared with the macroscopic phenomenological one is the
fact that a thermodynamically consistent kinetics valid beyond
the linear response regime can easily be imposed.

Whether the CA result has any relevance to these small
thermal engines has been one of the main issues in the field esp-
ecially since the coefficient 1/8 in the second term of an expan-
sion of efficiency at maximum power in ηC was found in quite
different systems [290, 564]. For an autonomous machine, i.e.
in the steady-state regime, the 1/8 is indeed universal if the
system possesses an additional (left-right) symmetry [565]. It
should be stressed, however, that getting this coefficient req-
uires a second (intrinsic or structural) variational parameter
beyond the output control required for getting the 1/2. For
such steady-state machines, beyond the second term in the
expansion (278), the full CA result is irrelevant.

On the other hand, for small cyclic machines, which can
be treated formally in a spirit closer to CA’s original approach,

13 The inequality (277) is a trivial consequence of the IFT for total entropy
production, if the latter quantities are expressed by fluctuating work and heat
contributions [563].

Figure 8. In a BL ratchet, a particle preferentially climbs a potential
barrier with height E over a distance d1 while in contact with a heat
bath at T1. It slides down a distance d2 on the cold side with
T2 = T1 − 	T . This temperature-difference driven motion to the
right persists for a small enough force f < 0 pulling to the left.

obtaining the factor 1/8 requires a symmetry in the exchange
with the hot and cold baths [565]. Moreover, for such a
machine it is possible to obtain the CA result over the full
temperature range for certain conditions [290, 565].

In the following, we describe paradigmatically how small
heat engines or devices fit into the stochastic framework from
which these and further results for both autonomous (steady
state) and periodically driven machines can easily be derived.
We focus on both the formal similarities and differences with
the isothermal machines and the issue of EMP14. Even though
we restrict the following discussion to heat engines, similar
concepts can be applied to refrigerators, see, e.g., [567, 568].

11.2. Autonomous heat engines

For understanding both the general issues and the necessary
ramifications of the comparably simpler framework introduced
in section 10 for the isothermal case, it is helpful to have a few
specific examples in mind.

11.2.1. Büttiker–Landauer and Feynman ratchet. Transport
of a colloidal particle in a periodic potential can be induced
by an external force at constant temperature as discussed in
section 2. As an alternative, in the absence of an external
force, a spatially periodic temperature profile (out of phase
with the potential) will also lead to net motion as discussed
by Büttiker [569], van Kampen [570] and Landauer [571].
This set-up is one example of noise-induced transport which
is comprehensively reviewed by Reimann [445]. From a
more thermodynamic perspective, and in the presence of an
additional opposing external force, such a Büttiker–Landauer
(BL) ratchet is a simple example for a stochastic heat engine
that transforms heat into mechanical work. One can then
ask for the efficiency of such a device which is a subtle
question especially when using the overdamped limit for
a discontinuous temperature profile [14, 572–576]. The
optimization of such a device for maximal power has been
studied both for variation of the external force [577, 578] and
for variation of the intrinsic potential [579, 580]. These issues
become technically simpler in discretized versions [564, 581–
584] as in the simple model sketched and described in figure 8.
This system can also be seen as a simplified (one degree of

14 Universality of the efficiency if other quantities are optimized has been
studied in [566].
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Figure 9. In a thermoelectric device, simplified here as a quantum
dot with a single relevant energy level E, electrons are transported
on average from a hot reservoir with µ1 and T1 to a cold reservoir
with µ2 = µ1 + 	µ > µ1 and T2 = T1 − 	T using heat from the
hot reservoir.

freedom) version of the famous Feynman ratchet [585] that
as a paradigm for rectification of thermal noise has its own
conceptual subtleties [14, 586]. The Feynman ratchet has
inspired various model systems which have been analyzed both
analytically and in numerical simulations [587, 588]. A model
system using two continuous degrees of freedom coupled
anisotropically to two heat baths of different temperatures thus
generating a systematic torque has been investigated in [589].

From an experimental perspective, realizing such ratchets
in aqueous solution is not straightforward since one needs
significant temperature differences on rather small length
scales as realized in single particle studies of thermophoresis,
see, e.g., [590].

11.2.2. Electronic devices. In electronic devices,
temperature differences can be more easily imposed as it is
carried out, e.g., in thermoelectrics where they are exploited
to transport electrons against an electro-chemical potential.
For such systems, thermodynamic considerations have been
emphasized by Linke and co-workers who pointed out that such
machines can indeed operate at the Carnot limit [591, 592].
More recent studies based on simple models for quantum dots
have addressed in particular the issue of EMP [593–595]. The
simple paradigm discussed in [593] is sketched in figure 9.

A particularly intriguing aspect of such devices is the
observation that in the presence of a magnetic field the
Onsager–Casimir symmetry relations, in principle, seem to
allow Carnot efficiency at finite power [596]. This issue
deserves further study through the analysis of microscopic
models such as the one suggested in [597].

Likewise, any photo-electric device is also coupled to a
reservoir of rather high temperature since the photons being
absorbed from the sun come with the black-body distribution
of the sun’s temperature. Therefore, photo-electric devices
are amenable to a thermodynamic description focusing of
efficiency and EMP, see, e.g., [598].

11.2.3. General theory. For any discrete autonomous heat
engines in contact with heat baths of at least two different
temperatures, it must be specified for each transition at which
temperature it takes place, i.e. with which heat bath the
machine is in contact at this particular transition. As in
the isothermal case, the assumption of local-detailed balance

Figure 10. Common three-state diagram for the simplified BL
ratchet (figure 8) and the thermo-electric device (figure 9). For the
BL-ratchet L and R refer to the particle sitting in the minimum and
E corresponds to the particle being on the barrier top. For the
electronic device, L and R refer to the electron being in the left or
right reservoir. E corresponds to the electron sitting on the quantum
dot. In both cases, the state R should be identified with L after the
electron or particle has been transported from left to right thus
completing the cycle. The log-ratio of the transition rates is given in
table 2.

Table 2. Ratio of rates for the devices shown in figures 8 and 9 with
their network representation figure 10.

ln w+
1 /w−

1 ln w+
2 /w−

2

BL ratchet −(E + |f |d1)/T1 (E − |f |d2)/T2

Thermo-electric device (µ1 − E)/T1 (E − µ2)/T2

implies thermodynamic constraints on the ratios of forward
and backward rates as given in figure 10 and table 2 for the
two examples introduced above.

The thermodynamic constraints imply that the total
entropy production along a cycle still fulfills (251). For
the representation (254), one needs the affinities with the
corresponding conjugate distances entering the conjugate
fluxes given for the two examples in table 3. The general
differences compared with the isothermal case arise from the
presence of (at least) two different temperatures. First, there
is a new affinity associated with the two heat baths with
energy flow as the corresponding flux. Second, if matter is
transported between baths of different chemical potentials and
different temperatures, the corresponding affinity involves the
two temperatures. As a consequence, in linear response, the
latter affinity carries both a 	µ and a 	T term. Finally, a
force applied to a particle in a thermal ratchet subject to two
different temperatures requires to introduce even two affinities
with this force. As in the isothermal case, for an autonomous
heat engine the total entropy production rate can be expressed
by affinities and conjugate fluxes according to (257).

On the cycle level, the total entropy change becomes

	Sa = q̄(1)
a /T1 + q̄(2)

a /T2, (279)

where we use the heat as appropriate under NESS conditions.
This heat fulfills first laws of the type

wmech
a

(1,2)
+ wchem

a

(1,2) = q̄(1,2)
a + 	E(1,2)

a (280)

where 	E(1)
a = −	E(2)

a is the change in internal energy
of the system arising from the transitions associated with
the respective heat baths labeled by superscripts. With this
relation, the total entropy change along a cycle (279) can also
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Table 3. Characteristic quantities for the two examples of unicyclic heat engines shown in figures 8 and 9.

Relevant affinities Fk in Conjugate Input Output
Fk linear response distance dk −q̄(1) = T2wi T2wo

BL 1/T2 − 1/T1 	T/T 2
2 E E + |f |d1

ratchet f/T1, f/T2 f/T2, f/T2 d1, d2 |f |(d1 + d2)

Thermoelectric 1/T2 − 1/T1 	T/T 2
2 E E − µ1

device µ1/T1 − µ2/T2 −(	µ/T2 + µ1	T/T 2
2 ) 1 µ2 − µ1

be expressed by the heat extracted from the hot reservoir as

	Sa = −q̄(1)
a ηC/T2 + (wmech

a + wchem
a )/T2 ≡ wi,aηC − wo,a,

(281)
where the work terms refer to the sum of the contributions from
the respective bath contacts. The definition of dimensionless
input wi,a is motivated by the fact that for a heat engine the
input is the heat extracted from the hotter bath. Dimensionless
output denoted by wo,a is mechanical and/or chemical work
delivered by the machine.

The power of the machine can now be expressed
analogously to the isothermal case as

Po,i = εo,i

∑
a

j+
a [1 − exp(−wi,aηC + wo,a)]T2w{o,i}a (282)

where the occurrence of the Carnot efficiency ηC in the
exponent compared with the isothermal case (262) is crucial.
In the affinity representation, the difference to the isothermal
case is even more drastic since output and input powers can no
longer be written as simple products of a pair of conjugate
flux Jo,i and affinity T Fo,i as in (259). One could have
anticipated this complication since with two baths it is not
obvious which temperature should be chosen in (259) when
trying to generalize to the non-isothermal case.

11.2.4. EMP for unicyclic machines. For unicyclic machines
(and hence dropping the cycle index a), maximizing the power
Po with respect to the output wo, which would physically
correspond to varying the external force or chemical potentials,
leads to the analog of (274) in the form

wi = (w∗
o + ln[1 + w∗

o/(1 + xow
∗
o)])/ηC. (283)

This relation implies immediately the universal η∗ ≡ w∗
o/wi ≈

ηC/2 + O(η2
C) in the linear response regime which can

also easily be obtained from a phenomenological treatment
analogously to the one presented in section 10.4 [557].

Maximizing the power with respect to the input variable
wi leads to

w∗
i = [w∗

o + ln(1 − ηC/xi)]/ηC (284)

with
xi ≡ d ln j+/dwi ≈ x

eq
i + O(ηC, wo). (285)

As the respective column in table 3 shows, wi involves an
intrinsic parameter of the machine like the relevant energy
level. Combining relations (283) and (284) and varying both
wo and wi leads to the EMP

η∗∗ = ηC/[1 − (xo + xi/ηC) ln(1 − ηC/xi)] (286)

≈ ηC/2 − [(2xeq
o + 1)/x

eq
i ]η2

C/8 + O(η3
C) (287)

which shows that the second order coefficient is system
specific.

It can be checked that for a unicyclic device with spatial
symmetry, for which the current j reverses sign when the
affinities Fk change sign, the square-bracket prefactor of the
second term is indeed −1 thus recovering the overall 1/8
as previously derived by extending the phenomenological
irreversible thermodynamics approach to second order [565].

For an explicit evaluation of the EMP (286) one needs
the specific form of xo,i = xo,i(wo, wi) which requires
assumptions on the specific rates beyond the constraints
imposed by thermodynamics exploited so far. For the
mechanical BL ratchet, it is interesting to note that even for
d1 �= d2, an explicit calculation for w+

2 = w−
1 = 1 (and the

other rates as given in table 2) recovers the coefficient 1/8
despite the obvious breaking of the left-right symmetry. The
case d2 = 0 is discussed for the full temperature range in [564],
where, not surprisingly, deviations from the CA result are
found. The thermoelectric device is treated in [565, 593]. For
a photo-electric device, explicit results can be found in [598],
where also the role of non-radiative transition is discussed.
Further examples of EMP in three and five state networks have
been discussed in [533].

11.3. Periodically driven heat engines

The autonomous machines just discussed reach a NESS since
they are permanently connected to both heat baths. For a
periodically driven heat engine, contact with either one bath
or, in an adiabatic step, with none, is periodically enforced
externally.

11.3.1. Brownian heat engine. Within stochastic
thermodynamics such a model was introduced in [290] for a
Brownian particle in a time-dependent potential, see figure 11.
Optimizing for both, the potential and the time interval spent in
the isothermal transitions, EMP for fixed T1,2 was shown to be

η∗ = ηC/(2 − αηC) ≈ ηC + (α/4)η2
C + O(η3

C) (288)

where
α ≡ 1/[1 + (µ(T1)/µ(T2))

1/2] (289)

is a system-specific coefficient given by the temperature-
dependence of the mobility µ(T ). If the latter is independent
of temperature, one recovers the coefficient 1/8. Since
0 � α � 1, expression (288) implies the bounds

ηC/2 � η∗ � ηC/(2 − ηC) (290)
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Figure 11. Paradigm for a stochastic heat engine based on a
colloidal particle in a time-dependent harmonic laser trap in
consecutive contact with a hot (Th) and cold (Tc) bath. The steps 1
and 3 are isothermal; the steps 2 and 4 are instantaneous and
adiabatic during which the distributions are pb and pa , respectively.
Reproduced with permission from [290]. Copyright 2008 European
Physical Society.

on EMP later also derived under the assumption of ‘weak’
dissipation which leads to a quite similar formalism [559, 599].
Further ramifications and classifications of such bounds have
been discussed by Wang and Tu [600, 601] and in [602, 603].
The Onsager coefficients for a linear response treatment of this
heat engine have been defined and calculated in [604].

A micrometer-sized heat engine based on the Stirling
version of the scheme shown in figure 11 has been realized
experimentally [605]. The colloidal particle as ‘working fluid’
in a laser trap acting as the analog of a piston can be heated
locally thereby realizing the contact with a hot bath. By varying
the cycle time both a maximum in the power at finite time and
the approach to the maximal efficiency in the quasi-static limit
could be demonstrated. For further interesting comments on
this experiment, see [606].

11.3.2. Quantum dot. A similar analysis can be applied
to a finite-time Carnot cycle of a quantum dot that can be
connected to two different reservoirs similar as the set-up
shown in figure 9 [607]. For a cyclic engine, the energy
level E(τ) is controlled in both the isothermal steps when
the dot is connected to either one bath and in the adiabatic
steps when it is disconnected. Optimizing for the protocol
E(τ) as well as for the duration of isothermal and adiabatic
steps, one finds for EMP an expression similar to (288). In
the limit of weak dissipation, i.e. for small deviations from
the respective thermal population of the energy level, and
symmetric conditions, the coefficient α turns out to be α =
ηCA/ηC and hence one can here recover the CA result over the
full temperature range. The distributions of work and heat for
such a simple two-state engine have been calculated in [608].

12. Concluding perspective

After this long exposition it may be appropriate to recall the
basic assumption of this approach, to summarize the main
achievements and to raise a few open general issues.

12.1. Summary

Stochastic thermodynamics applies to systems where a few
observable degrees of freedom such as the positions of
colloidal particles or the gross conformations of biomolecules
are in non-equilibrium due to the action of possibly time-
dependent external forces, fields, flows or unbalanced chemical
reactants. The unobserved degrees of freedom such as those
making up the aqueous solution, however, are assumed to be
fast and thus always in the constrained equilibrium imposed
by the instantaneous values of the observed slow degrees of
freedom. Then internal energy, intrinsic entropy and free
energy are well-defined and, if a microscopic Hamiltonian was
given, in principle, computable for fixed values of the slow
variables. This assumption is sufficient to identify a first-law
like energy balance along any fluctuating trajectory recording
the changing state of the slow variables.

Entropy change along such a trajectory consists of three
parts: heat exchanged with the bath, intrinsic entropy of the
states and stochastic entropy. The latter requires in addition
an ensemble from which this trajectory is taken. If the same
trajectory is taken from a different ensemble it leads to a
different stochastic entropy. Thermodynamic consistency of
the Markovian dynamics generating the trajectory imposes a
local-detailed balance condition constraining either the noise in
a Langevin-type continuum dynamics or the ratio of transition
rates in a discrete dynamics.

At their core, the fluctuation theorems are mathematical
identities derived from properties of the weight of stochastic
paths under time reversal or other transformations. They
acquire physical meaning by associating the mathematical
ingredients with the thermodynamic quantities identified
within stochastic thermodynamics. The detailed fluctuation
theorems then express a symmetry of the distribution function
for thermodynamic quantities. An open question is whether the
probability distributions of work, heat and entropy production
can be grouped into ‘universality classes’ characterized, e.g.,
by the asymptotics of such distributions, and, if yes, which
specific features of a system determine this class. The more
generally applicable integral theorems often can be expressed
as refinements of the second law for transitions between certain
states. Still, these integral fluctuation theorems should not be
considered a ‘proof’ of the second law since irreversibility
has been implemented consistently from the beginning by
choosing a stochastic dynamics including the local-detailed
balance condition.

Conceptually, a major step has been to include feedback
schemes based on perfect or imperfect measurements into this
framework which requires surprisingly little additional effort
due to the strong formal similarity of stochastic entropy with
information. Achieving a full integration of measurement
apparatus and the erasure process into the thermodynamic
balance of the efficiency for specific information machines
remains an important issue [609].

The crucial ingredient for the developments summarized
so far is the notion of an individual trajectory and the
concomitant concept of distributions for thermodynamic
quantities which represents the main difference compared with
classical thermodynamics.
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New insights, however, have emerged from this approach
even when focusing on averages and correlation functions as
we have carried out in the second part of the review. The
general fluctuation–dissipation theorem for non-equilibrium
steady states shows how the response of any observable to
a perturbation can be expressed as a sum of two correlation
functions involving entropy production. In which cases this
additive relation between response and correlation can be
reformulated as a multiplicative one using the concept of
an effective temperature is still not understood despite some
insights gained from specific case studies.

Our discussion of molecular motors, machines and devices
has been centered on the notion of efficiency and efficiency at
maximum power. Despite the fundamental difference between
isothermal engines operating at one temperature as do all
cellular ones and genuine heat engines such as thermoelectric
devices involving two baths of different temperatures, a
common framework exists based on the representation of
entropy production in terms of cycles of the underlying
network of states. Clearly, more realistic networks need to
be studied in the future, in particular, for applications and
for modeling of specific biophysical systems but the basic
concepts seem to be identified. One particularly intriguing
perspective comes from the recent analysis of the energetic
cost of sensory adaptation using the concepts of stochastic
thermodynamics [610].

12.2. Beyond a Markovian dynamics: memory effects and
coarse graining

The identification of states, of work and of internal energy,
i.e. of the ingredients entering the first law on the level of
trajectories, is logically independent of the assumption of a
Markovian dynamics connecting these states. The crucial step
is the splitting of all degrees of freedom into slow and fast ones,
the latter always being in a constrained equilibrium imposed
by the instantaneous values of the slow ones. Likewise, the
identification of entropy production only requires the notion
of an ensemble which determines stochastic entropy along an
individual trajectory. Any dynamics guaranteeing that for fixed
external parameters compatible with genuine equilibrium, this
equilibrium will be reached for an arbitrary initial distribution
of the slow variables could qualify as a thermodynamically
consistent one.

12.2.1. Continuous states. A popular choice for a non-
Markovian dynamics obeying these constraints is Langevin
dynamics with a memory kernel that, for thermodynamics
consistency, determines the correlations of the colored
noise15. Under this assumption, the notions of stochastic
thermodynamics are well-defined and the various fluctuation
theorems hold true as shown quite generally in [378, 615–619].
Some of these papers contain illustrations for model systems
as do the references [620–622]. One specific motivation to

15 Stochastic thermodynamics for a non-Markovian dynamics not obeying
such a constraint has been explored for generalized Langevin equations in
[378, 611], for delayed Langevin systems in [612], for Poissonian shot noise
in [613], and for non-Gaussian white noise in [614].

explore such a dynamics arises from the recent fascinating
experimental data that show how hydrodynamic effects lead to
a frequency dependent mobility for colloidal motion [623].

A somewhat different and more subtle situation occurs if
not all slow variables are accessible in the experiment or the
simulation. The effective dynamics for the observable ones
will then no longer be Markovian and its specific form in the
case on non-harmonic interactions between the slow ones is
typically not accessible. The proper identification of, e.g.,
entropy production is then difficult if not impossible. Still,
one might be inclined to infer an apparent entropy production
by applying the rules for Markovian dynamics and to check
whether this quantity obeys the FT. In a recent study using two
coupled driven colloidal particles it turned out that the apparent
entropy production based on the observation of just one particle
shows an FT-like symmetry but with a different prefactor for a
surprisingly large range of parameter values. However, there
are also clear cases for which not even an effective FT can be
identified [624]. This type of coarse graining in the context of
the FDT for a NESS has been explored in [625].

12.2.2. Discrete states. For an underlying dynamics on a
discrete set of states following a Markovian master equation,
one option for coarse graining is to group several states into new
‘meso-states’ or aggregated states. Typically, the dynamics
between these meso-states is then no longer Markovian.
One question is whether one can then distinguish genuine
equilibrium from a NESS if only the coarse-grained trajectory
is accessible. For a three-state system coarse-grained into a
two-state system, this issue has been addressed in [626, 627]
and, for more general cases, in [628, 629].

Coarse graining of a discrete network becomes
systematically possible if states among which the transitions
are much faster are grouped together. From the perspective
of stochastic thermodynamics, entropy production and
fluctuation theorems this approach has been followed in
[630–637].

12.3. Coupling of non-equilibrium steady states: a zeroth
law?

In addition to the first and the second law, classical
thermodynamics is founded on a zeroth law stating that the
notion of temperature and chemical potential for equilibrium
systems is transitive, i.e. if a system A is in separate equilibrium
with system B and system C, then upon contact of B and C
neither heat nor particle flow will occur between these two
systems. A natural question is whether a similar equilibration
also occurs for non-equilibrium systems brought into contact
such that they can exchange energy or particles. Do then
quantities exist resembling temperature or chemical potential
that govern ‘equilibration’ between such steady states? On
a phenomenological level this question has been introduced
within the context of steady-state thermodynamics by Oono
and Paniconi [47] and further refined by Sasa and Tasaki [48].
For simple one-dimensional model systems such as zero-range
processes in contact a non-equilibrium chemical potential is
indeed well-defined [638]. For two-dimensional driven lattice
gases in contact, numerical work has revealed that in a large
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parameter range such a putative zeroth law and a corresponding
thermodynamic structure is approximately valid [639, 640].

12.4. Final remark

From its very beginnings, thermodynamics has fascinated
scientists by posing deep conceptual issues that needed
to be resolved for understanding and optimizing quite
practical matters such as the design of heat engines.
With the experimentally realized micrometer-sized heat engine
[605] discussed in one of the last sections of this review,
these latest developments have brought us back to the
very origins of classical thermodynamics albeit on quite
different time and length scales and, quite importantly, with
a much refined view on individual trajectories. Indeed,
without the spectacular advances in experimental techniques
concerning tracking and manipulation of single particles
and molecules, stochastic thermodynamics could still have
been conceived as a theoretical framework but would have
not reached the broader appeal that it has gained over the
last fifteen years. Whether the next decade of research in
the field will be dominated by specific applications, most
likely for biomolecular networks and devices facilitating
transport of all sorts, or by further conceptual work exploring
the ultimate limits of a thermodynamic approach to non-
equilibrium beyond the Markovian paradigm into feedback-
driven, information-processing, strongly interacting systems
remains to be seen.
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